JP3147316B2 - Method for manufacturing semiconductor light emitting device - Google Patents

Method for manufacturing semiconductor light emitting device

Info

Publication number
JP3147316B2
JP3147316B2 JP21917991A JP21917991A JP3147316B2 JP 3147316 B2 JP3147316 B2 JP 3147316B2 JP 21917991 A JP21917991 A JP 21917991A JP 21917991 A JP21917991 A JP 21917991A JP 3147316 B2 JP3147316 B2 JP 3147316B2
Authority
JP
Japan
Prior art keywords
layer
aln
light emitting
sapphire
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21917991A
Other languages
Japanese (ja)
Other versions
JPH0541541A (en
Inventor
徹 佐々木
隆志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21917991A priority Critical patent/JP3147316B2/en
Publication of JPH0541541A publication Critical patent/JPH0541541A/en
Application granted granted Critical
Publication of JP3147316B2 publication Critical patent/JP3147316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、可視(赤外)から紫外
で発光する半導体発光素子の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor light emitting device which emits light from visible (infrared) to ultraviolet.

【0002】[0002]

【従来の技術】III族窒化物半導体InN,GaN,
AlN,InGaAlNでは大型のバルク単結晶が成長
できないため、従来サファイアを基板として用いたエピ
タキシャル成長が一般に行われてきた。しかし、サファ
イアと上記III族窒化物半導体の間には11〜23%
の格子不整合および〜2×10−6〔dog−1〕の熱
膨張係数差が存在し、このために生じる不整合転位 及
び熱歪みがIII族窒化物半導体エピタキシャル膜の結
晶性・電気的光学的特性の向上の妨げとなっている。ま
た、両者の化学的性質の違いにより生じる界面エネルギ
のため、サファイア上に直接成長したIII族窒化物半
導体エピタキシャル膜は顕著な三次元成長を起こし、表
面形態の平坦化・結晶性の向上が難しい。この結果、サ
ファイア基板上に作製したIn1−x−yGaAl
N(0≦x≦1,0≦x+y≦1)発光素子は発光効率
や素子寿命を十分に向上できないという問題があった。
2. Description of the Related Art Group III nitride semiconductors InN, GaN,
Since large bulk single crystals cannot be grown on AlN or InGaAlN, epitaxial growth using sapphire as a substrate has conventionally been generally performed. However, between sapphire and the group III nitride semiconductor, 11 to 23%
Lattice mismatch and a thermal expansion coefficient difference of 22 × 10 −6 [dog −1 ], and the mismatch dislocations and thermal strain that occur due to this cause crystallinity and electrical optics of the group III nitride semiconductor epitaxial film. This hinders the improvement of the mechanical characteristics. In addition, due to the interfacial energy caused by the difference in chemical properties between the two, the group III nitride semiconductor epitaxial film directly grown on sapphire undergoes remarkable three-dimensional growth, making it difficult to flatten the surface morphology and improve the crystallinity. . As a result, In 1-xy Ga x Al y fabricated on the sapphire substrate
The N (0 ≦ x ≦ 1, 0 ≦ x + y ≦ 1) light emitting element has a problem that the luminous efficiency and the element life cannot be sufficiently improved.

【0003】格子不整合の大きなヘテロエピタキシャル
成長では、基板・エピタキシャル膜の中間的な物理定数
をもつ材料を介して成長を行うことによりエピタキシャ
ル膜の品質を向上することができる。サファイア上のI
II族窒化物半導体成長ではAlN層を介した成長が有
効である。これはAlNがサファイアとIII族窒化物
半導体の中間的な格子定数と熱膨張係数をもつため、格
子不整合と熱歪みが効率的に緩和される結果である。ま
た、AlNとIII族窒化物半導体は化学的性質が近
く、両者の間の界面エネルギも小さい。このため、平坦
なAlN層を形成できさえすればその上に成長するエピ
タキシャル膜の三次元成長を抑制できる。
In heteroepitaxial growth with a large lattice mismatch, the quality of the epitaxial film can be improved by growing the material through a material having an intermediate physical constant between the substrate and the epitaxial film. I on sapphire
In growing a group II nitride semiconductor, growth through an AlN layer is effective. This is a result of the fact that AlN has an intermediate lattice constant and thermal expansion coefficient between sapphire and a group III nitride semiconductor, so that lattice mismatch and thermal distortion are efficiently reduced. Further, AlN and the group III nitride semiconductor have similar chemical properties, and the interface energy between them is small. Therefore, as long as a flat AlN layer can be formed, three-dimensional growth of an epitaxial film grown thereon can be suppressed.

【0004】従来、以上の目的のAlN形成方法として
は、 サファイア基板をNH,N、あるいは
有機アミン等の窒素原料ガス雰囲気中で熱処理すること
により基板表面を単結晶AlN化する方法、 AlN
の単結晶成長が可能な高温に保ったサファイア基板上に
有機アルミニウム,ハロゲン化アルミニウムあるいは金
属アルミニウム蒸気等のアルミニウム原料ガスと窒素原
料ガスを供給し単結晶AlN層を堆積する方法、 5
00〜1000℃の低温でアルミニウム原料ガスと窒素
原料ガスを供給し、数100〜1000Åの多結晶もし
くはアモルファスAlN層を堆積した後、これより高温
でアニールすることにより単結晶化する方法があった。
Conventionally, as the above-mentioned AlN forming method, there is a method in which a sapphire substrate is heat-treated in an atmosphere of a nitrogen source gas such as NH 3 , N 2 H 2 or organic amine to convert the substrate surface into single-crystal AlN. , AlN
A method of supplying an aluminum source gas such as organic aluminum, aluminum halide or metal aluminum vapor and a nitrogen source gas onto a sapphire substrate kept at a high temperature capable of growing a single crystal of, and depositing a single crystal AlN layer;
There is a method of supplying an aluminum source gas and a nitrogen source gas at a low temperature of 00 to 1000 ° C., depositing a polycrystalline or amorphous AlN layer of several 100 to 1000 °, and then annealing at a higher temperature to form a single crystal. .

【0005】の方法では、数10Åの窒化層を再現性
良く形成できる上、この単結晶AlN層は傾斜的な組成
変化を伴うためわずか数10Åの領域で効果的に格子不
整合を緩和する。しかしながら詳細な観察の結果、この
方法で作製したAlN層は10Åのオーダーで表面荒れ
を起こしていることが明らかになった。このことに起因
して、の方法で作製したAlN層上にエピタキシャル
成長を行うと、膜厚の増加に伴いこの凹凸が強調され平
坦な表面形状が得られない。
According to the method described above, a nitride layer of several tens of degrees can be formed with good reproducibility, and since this single-crystal AlN layer involves a gradient composition change, lattice mismatch can be effectively reduced in a region of only several tens of degrees. However, a detailed observation revealed that the AlN layer produced by this method had a surface roughness of the order of 10 °. Due to this, when epitaxial growth is performed on the AlN layer manufactured by the method described above, the unevenness is emphasized as the film thickness increases, and a flat surface shape cannot be obtained.

【0006】また、の方法で作製したAlN層は高温
で膜成長を行うため、三次元成長核の形成が避けられな
い。以上のことより、及びの方法で作製したAlN
バッファ層は、その上に成長したエピタキシャル膜の電
気的光学的特性の向上には効果を有するものの、三次元
成長の抑制には無力である。
Further, since the AlN layer produced by the method described above grows at a high temperature, formation of a three-dimensional growth nucleus is inevitable. From the above, the AlN produced by the above method and
The buffer layer is effective in improving the electrical and optical characteristics of the epitaxial film grown thereon, but is ineffective in suppressing three-dimensional growth.

【0007】の方法は、三次元成長が起こらないよう
な低温でAlN膜を堆積するため平坦なバッファ層の形
成が可能となる。この結果、その上に成長するエピタキ
シャル膜の三次元成長が抑制され、表面形態の平坦化・
結晶性の向上を達成できる。ところで、サファイア上に
低温堆積したAlN層にはアニールによって単結晶化す
るための最大膜厚dmaxと、連続膜となるために必要
な最低膜厚dminが存在し、膜厚をdmaxとd
min間に制御する必要がある。通常、dmaxは10
00Å程度、dminは100〜200Åである。さら
に、AlNバッファ層厚がこの範囲であっても、エピタ
キシャル膜の特性はAlNバッファ層厚に強く依存す
る。しかしながら、サファイア基板上に直接AlN層を
堆積する従来の方法では、膜厚の制御性が悪いという問
題があった。この原因を把握するため、成長初期段階に
おけるサファイア上AlNの成長膜厚の成長時間依存性
を詳細に調べた結果、図5に示すような再現性のない1
〜3分の時間遅れが存在することが明らかになった。こ
の時間遅れはサファイアとAlNの化学的性質の差に起
因し、基板上におけるアルミニウム原料ガスの濃度があ
る濃度に達するまで堆積が開始しないことが原因であ
る。これはサファイア上に直接AlNを堆積しようとす
る限り本質的な問題である。
According to the method described above, since an AlN film is deposited at such a low temperature that three-dimensional growth does not occur, a flat buffer layer can be formed. As a result, the three-dimensional growth of the epitaxial film grown thereon is suppressed, and the surface morphology is flattened.
Improved crystallinity can be achieved. By the way, the AlN layer deposited at low temperature on sapphire has a maximum film thickness d max for single crystallization by annealing, and a minimum film thickness d min necessary for forming a continuous film, and the film thickness is d max . d
It is necessary to control during the min . Usually, d max is 10
About 00 °, d min is 100 to 200 °. Furthermore, even when the AlN buffer layer thickness is within this range, the characteristics of the epitaxial film strongly depend on the AlN buffer layer thickness. However, the conventional method of directly depositing an AlN layer on a sapphire substrate has a problem that the controllability of the film thickness is poor. In order to understand the cause, the growth time dependence of the growth film thickness of AlN on sapphire in the initial stage of growth was examined in detail. As a result, as shown in FIG.
It was found that there was a time delay of ~ 3 minutes. This time delay is caused by a difference in chemical properties between sapphire and AlN, and is caused by the fact that deposition does not start until the concentration of the aluminum source gas on the substrate reaches a certain concentration. This is an essential problem as long as one intends to deposit AlN directly on sapphire.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するためなされたもので、その目的は、III族
窒化物半導体In1−x−yGaAlN(0≦x≦
1,0≦x+y≦1)エピタキシャル膜の高品質化によ
る高効率・長寿命の半導体発光素子を作製する方法を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object thereof is to provide a group III nitride semiconductor In 1-xy Ga x Al y N (0 ≦ x ≦
1,0 ≦ x + y ≦ 1) It is an object of the present invention to provide a method for manufacturing a highly efficient and long-life semiconductor light emitting device by improving the quality of an epitaxial film.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、サファイア基板を窒素原料ガス雰囲気中
で熱処理し、基板表面を単結晶AlN化する第1の工程
と、窒化層上にアルミニウム原料ガスとの反応により多
結晶もしくはアモルファスAlNバッファ層を堆積する
第2の工程と、前記AlNバッファ層をその堆積温度よ
りも高温でアニールする第3の工程と、InGaAlN
層を少なくとも1層含む発光層を形成する第4の工程と
を含むことを特徴とする半導体発光素子の作製方法を発
明の要旨とするものである。換言すれば、本発明によっ
て作製された半導体発光素子は、サファイア基板表面に
形成した窒化層と該窒化層上に堆積した多結晶もしくは
アモルファスAlNバッファ層を含むことを最も主要な
特徴とする。
In order to achieve the above object, the present invention provides a first step of heat-treating a sapphire substrate in a nitrogen source gas atmosphere to convert the substrate surface into single-crystal AlN, A second step of depositing a polycrystalline or amorphous AlN buffer layer by a reaction with an aluminum source gas, a third step of annealing the AlN buffer layer at a temperature higher than the deposition temperature,
And a fourth step of forming a light-emitting layer having at least one layer. In other words, the semiconductor light emitting device manufactured according to the present invention is most characterized by including a nitride layer formed on the surface of the sapphire substrate and a polycrystalline or amorphous AlN buffer layer deposited on the nitride layer.

【0010】従来のAlN層を介してサファイア上に作
製した半導体発光素子とはその構造及び作製方法におい
て以下の点が異なる。すなわち、窒化処理により表面を
単結晶AlN化したサファイア基板上に作製した半導体
発光素子とは、表面窒化層に接して低温堆積後アニール
により単結晶化したAlNバッファ層を含む点が異な
る。サファイア基板上にAlNの単結晶成長温度以上の
高温で堆積したAlNバッファ層を介して作製した半導
体発光素子とは、AlNバッファ層をサファイア表面窒
化層を介して堆積している点及びAlN層の堆積を平坦
なAlN層が得られる低温で行い、その後、これより高
温でアニールすることにより単結晶化する点が異なる。
また、低温堆積した後これより高温でアニールすること
により単結晶化したAlNバッファ層を介して作製した
半導体発光素子とは、AlNバッファ層をサファイア表
面窒化層を介して堆積している点が異なる。
A semiconductor light emitting device manufactured on sapphire via a conventional AlN layer differs in the structure and manufacturing method from the following points. That is, a semiconductor light emitting device manufactured on a sapphire substrate whose surface is made into single crystal AlN by nitriding treatment is different in that it includes an AlN buffer layer which is in contact with a surface nitride layer and which is single crystallized by annealing after low-temperature deposition. A semiconductor light emitting device manufactured through an AlN buffer layer deposited on a sapphire substrate at a high temperature equal to or higher than the AlN single crystal growth temperature means that an AlN buffer layer is deposited via a sapphire surface nitride layer and The difference is that the deposition is performed at a low temperature at which a flat AlN layer can be obtained, and thereafter, annealing is performed at a higher temperature to achieve single crystallization.
Further, the semiconductor light emitting device is different from the semiconductor light emitting device manufactured through the single crystallized AlN buffer layer by annealing at a higher temperature after being deposited at a low temperature, in that the AlN buffer layer is deposited via the sapphire surface nitride layer. .

【0011】[0011]

【作用】本発明の作製方法によれば、サファイア基板表
面の窒化層上に多結晶もしくはアモルファスAlNバッ
ファ層を堆積し、その後AlNバッファ層を高温でアニ
ールして単結晶化している。本発明では、前記構成によ
りバッファ層の膜厚制御性が格段に向上し、さらにその
上に形成するIn1−x−yGaAlN層の平坦性
が向上するという顕著な作用・効果を有する。
According to the manufacturing method of the present invention, a polycrystalline or amorphous AlN buffer layer is deposited on a nitride layer on the surface of a sapphire substrate, and then the AlN buffer layer is annealed at a high temperature to be single crystal. According to the present invention, a remarkable function and effect that the thickness controllability of the buffer layer is remarkably improved by the above configuration, and the flatness of the In 1-xy Ga x Al y N layer formed thereon is further improved. Having.

【0012】[0012]

【実施例】次に本発明の実施例について説明する。な
お、実施例は一つの例示であって、本発明の精神を逸脱
しない範囲で、種々の変更あるいは改良を行い得ること
は言うまでもない。
Next, an embodiment of the present invention will be described. The embodiment is merely an example, and it goes without saying that various changes or improvements can be made without departing from the spirit of the present invention.

【0013】図1は本発明によって作製された半導体発
光素子の一例を説明する図であって、発光素子の断面を
示す。本発光素子はサファイア(0001)基板1の表
面に形成した窒化層2(窒化深さ50Å)、膜厚500
ÅのAlNバッファ層3、膜厚5μmのSiドープn型
低抵抗GaN層4、膜厚0.5μmのZnドーピングに
より半絶縁化したGaN発光層5、半絶縁層の電極6、
n型低抵抗層のオーミック電極7からなる。電極6に正
の電圧を電極7に負の電圧を加えると発光層5は480
nmの波長で発光した。最大光出力は0.8mWであ
り、外部量子効率は0.2%であった。この例では、n
型低抵抗層、半絶縁層としてGaNを用いたが、これに
代えてIn1−x−yGaAlN(0≦x≦1,0
≦x+y≦1)を用いることにより発光波長を300〜
800nmの範囲で変化させることができる。
FIG. 1 is a view for explaining an example of a semiconductor light emitting device manufactured according to the present invention, and shows a cross section of the light emitting device. This light emitting device has a nitride layer 2 (nitride depth of 50 °) formed on the surface of a sapphire (0001) substrate 1 and a film thickness of 500.
Å, an AlN buffer layer 3, a 5 μm-thick Si-doped n-type low-resistance GaN layer 4, a 0.5 μm-thick GaN light emitting layer 5 semi-insulated by Zn doping, a semi-insulating layer electrode 6,
It comprises an ohmic electrode 7 of an n-type low resistance layer. When a positive voltage is applied to the electrode 6 and a negative voltage is applied to the electrode 7, the light emitting layer 5
Emitted at a wavelength of nm. The maximum light output was 0.8 mW and the external quantum efficiency was 0.2%. In this example, n
-Type low-resistance layer, GaN is used as the semi-insulating layer, in place of this In 1-x-y Ga x Al y N (0 ≦ x ≦ 1,0
≦ x + y ≦ 1), the emission wavelength becomes 300 to
It can be changed in the range of 800 nm.

【0014】図2は本発明によって作製された半導体発
光素子の他の例の断面を示す。本発光素子はサファイア
(0001)基板10の表面に形成した窒化層11(窒
化深さ50Å)、膜厚500ÅのAlNバッファ層1
2、膜厚5μmのSiドープn型InAlNクラッド層
13、膜厚0.5μmのアンドープInGaN活性層1
4、膜厚2μmのMgドープp型InAlNクラッド層
15、p型クラッド層のオーミック電極16、n型クラ
ッド層のオーミック電極17からなる。ここに示したI
nAlN層13及びInGaN層14は、互いに格子整
合し、クラッド層のバンドギャップエネルギが活性層の
バンドギャップエネルギに比べ0.3eV以上大きくな
るように組成を選んだ。この結果、クラッド層の屈折率
は活性層の屈折率に比べ約10%小さくなる。電極16
に正の電圧を電極17に負の電圧を加えると活性層14
は420nmの波長で発光した。最大光出力は13mW
であり、外部量子効率は3%であった。
FIG. 2 shows a cross section of another example of a semiconductor light emitting device manufactured according to the present invention. This light-emitting device is composed of a nitride layer 11 (nitriding depth 50 °) formed on the surface of a sapphire (0001) substrate 10 and an AlN buffer layer 1 having a thickness of 500 °.
2. Si-doped n-type InAlN cladding layer 13 with a thickness of 5 μm, undoped InGaN active layer 1 with a thickness of 0.5 μm
4. A 2 μm-thick Mg-doped p-type InAlN cladding layer 15, a p-type cladding layer ohmic electrode 16, and an n-type cladding layer ohmic electrode 17. I shown here
The composition was selected so that the nAlN layer 13 and the InGaN layer 14 were lattice-matched to each other, and the band gap energy of the cladding layer was 0.3 eV or more larger than the band gap energy of the active layer. As a result, the refractive index of the cladding layer is about 10% smaller than that of the active layer. Electrode 16
When a positive voltage is applied to the electrode 17 and a negative voltage is applied to the electrode 17, the active layer 14
Emitted light at a wavelength of 420 nm. Maximum light output is 13mW
And the external quantum efficiency was 3%.

【0015】この例では、n型及びp型クラッド層とし
てInAlNを、また活性層としてInGaNを用いた
が、互いに格子整合し、クラッド層のバンドギャップエ
ネルギが活性層のバンドギャップエネルギに比べ0.3
eV以上大きくなるという条件の下で組成を変化させる
ことにより、発光波長を190〜650nmの範囲で変
化させることができる。
In this example, InAlN was used as the n-type and p-type cladding layers, and InGaN was used as the active layer. However, they were lattice-matched to each other, and the bandgap energy of the cladding layer was 0.1% lower than that of the active layer. 3
The emission wavelength can be changed in the range of 190 to 650 nm by changing the composition under the condition that the voltage increases by eV or more.

【0016】図3は、原料ガスとしてIII族有機金属
とNH3 を用いる場合について、本発明による半導体
発光素子の作製方法を実施するための成長装置の一例を
示すものである。図において、20はサファイア(00
01)基板、21はカーボン・サセプタ、22は石英反
応管、23は高周波誘導コイル、24は熱電対、25は
有機金属ガス導入管、26はNHガス導入管、27は
ガス及びNガス導入管、28は排気口を示す。
FIG. 3 shows an example of a growth apparatus for carrying out the method for manufacturing a semiconductor light emitting device according to the present invention when a group III organic metal and NH 3 are used as source gases. In the figure, 20 is sapphire (00
01) substrate, 21 is a carbon susceptor, 22 is a quartz reaction tube, 23 is a high frequency induction coil, 24 is a thermocouple, 25 is an organometallic gas introduction tube, 26 is an NH 3 gas introduction tube, 27 is H 2 gas and N 2 gas inlet, 28 denotes an exhaust port.

【0017】この装置で、半導体発光素子用の多層膜構
造を作製するには、まず石英反応管22内を真空排気装
置により排気する。次に、石英反応管22内に0.5〜
20l/分のHガスを導入した後、高周波誘導コイル
23を通電することによりカーボン・サセプタ21を1
000〜1300℃に加熱し1〜60分保持することに
より、サファイア(0001)基板20表面を清浄化す
る。続いて、Hガスを0.5〜20l/分のNH
スに切り替え1〜60分保持することより、サファイア
(0001)基板20表面を単結晶AlN化する。次
に、カーボン・サセプタ21の温度を500〜1000
℃まで降温する。この状態で、バブラの温度を15〜6
0℃に設定したトリメチルアルミニウム(TMAl)を
1〜1000cc/分のHガス(あるいはNもしく
はArガス)でバブリングし、0〜20l/分のH
ス(あるいはNもしくはArガス)と合流させた後導
入管25より石英反応管22へ供給し単結晶もしくはア
モルファスのAlN層を堆積する。成長中の石英反応管
22内の総ガス圧は40〜1000Torrに調整す
る。AlNを10〜2000Å堆積させたところでTM
Alの石英反応管22への供給を止め、カーボン・サセ
プタ21を1000〜1300℃に加熱しNH雰囲気
中で1〜60分保持することにより堆積したAlN膜を
単結晶化する。これに続けて、発光素子用のクラッド
層、活性層等の多層膜構造を作製する。
In order to produce a multilayer structure for a semiconductor light emitting device using this apparatus, first, the inside of the quartz reaction tube 22 is evacuated by a vacuum evacuation apparatus. Next, 0.5 to 0.5
After introducing 20 l / min of H 2 gas, the high-frequency induction coil 23 is energized to set the carbon susceptor 21 to 1
The surface of the sapphire (0001) substrate 20 is cleaned by heating to 000 to 1300 ° C. and holding for 1 to 60 minutes. Subsequently, the surface of the sapphire (0001) substrate 20 is changed to single-crystal AlN by switching the H 2 gas to the NH 3 gas of 0.5 to 20 l / min and holding it for 1 to 60 minutes. Next, the temperature of the carbon susceptor 21 is set to 500 to 1000.
Cool down to ° C. In this state, the temperature of the bubbler
Trimethylaluminum set to 0 ℃ to (TMAl) was bubbled with 1~1000Cc / min H 2 gas (or N 2 or Ar gas), 0~20l / min H 2 gas (or N 2 or Ar gas) and After the merging, it is supplied from the introduction tube 25 to the quartz reaction tube 22 to deposit a single crystal or amorphous AlN layer. The total gas pressure in the growing quartz reaction tube 22 is adjusted to 40 to 1000 Torr. When AlN was deposited at 10 to 2000 °, TM
The supply of Al to the quartz reaction tube 22 is stopped, the carbon susceptor 21 is heated to 1000 to 1300 ° C., and kept in an NH 3 atmosphere for 1 to 60 minutes to monocrystallize the deposited AlN film. Subsequently, a multilayer film structure such as a cladding layer and an active layer for a light emitting element is manufactured.

【0018】上記の実施例では、III族原料及び窒素
原料としてTMAl及びNHを用いたが、これに代え
てTEAl等の他のIII族有機金属あるいはIII族
ハライド化物等の他のIII族原料及びNや有機
アミン等のその他の窒素原料を用いても同様の効果が得
られる。上記の実施例では、サファイア基板の面方位と
して(0001)面を用いたが、これに代えて(011
2)面、(0110)面、(2110)面を用いても同
様の効果が得られる。
In the above embodiment, TMAl and NH 3 were used as the group III raw material and the nitrogen raw material, but instead of this, another group III organic metal such as TEAl or another group III raw material such as a group III halide was used. The same effect can be obtained by using other nitrogen raw materials such as N 2 H 2 and organic amine. In the above embodiment, the (0001) plane was used as the plane orientation of the sapphire substrate.
Similar effects can be obtained by using the (2) plane, (0110) plane, and (2110) plane.

【0019】[0019]

【発明の効果】本発明では予め窒化処理することによっ
てAlN化したサファイア表面に多結晶もしくはアモル
ファスAlNバッファ層を低温堆積するため、図4の示
すとおり成長初期の時間遅れを生ずることなく成長を開
始できる。このため、AlNバッファ層の膜厚制御を精
密に再現性よく行うことができる。これはAlNの堆積
に先立ってサファイア表面をAlN化させておいたた
め、アルミニウム原料ガスの基板表面への到達と同時に
堆積が開始するためである。また、表面窒化層上にAl
Nを堆積する場合には、未処理のサファイア基板に直接
堆積する場合に比べより薄い膜厚で連続膜となる上、平
坦性にも優れるという利点をもつ。さらに、サファイア
基板上に形成した窒化層はその上に堆積したAlNバッ
ファ層の結晶性を向上させる効果を有するため、その上
に成長したエピタキシャル膜の特性をも向上させる。ま
た、低温堆積したAlN層は窒化処理によりサファイア
表面に生じた原子オーダーの凹凸を平坦化する作用を有
するため、サファイア表面窒化層上に直接III族窒化
物半導体薄膜をエピタキシャル成長する際に問題となる
三次元成長を抑制することができる。
According to the present invention, since a polycrystalline or amorphous AlN buffer layer is deposited at a low temperature on the sapphire surface which has been converted to AlN by pre-nitriding, the growth is started without a time delay in the initial growth as shown in FIG. it can. Therefore, the thickness of the AlN buffer layer can be controlled precisely and with good reproducibility. This is because the sapphire surface was converted to AlN prior to the deposition of AlN, so that the deposition started simultaneously with the aluminum source gas reaching the substrate surface. Also, Al on the surface nitrided layer
In the case of depositing N, there is an advantage that a thin film is formed as a continuous film and the flatness is excellent as compared with the case where N is directly deposited on an untreated sapphire substrate. Further, since the nitride layer formed on the sapphire substrate has the effect of improving the crystallinity of the AlN buffer layer deposited thereon, the characteristics of the epitaxial film grown thereon are also improved. Further, since the AlN layer deposited at a low temperature has a function of flattening irregularities on the order of atoms generated on the sapphire surface by the nitriding treatment, it becomes a problem when the group III nitride semiconductor thin film is epitaxially grown directly on the sapphire surface nitride layer. Three-dimensional growth can be suppressed.

【0020】この結果、本発明によれば高効率・長寿命
の半導体発光素子を再現性よく作製することができる。
特に、サファイア基板上に形成した窒化層がその上に堆
積するAlN層の初期段階における膜厚制御性及びその
平坦性や結晶性を向上させることは、全く新規の効果で
ある。
As a result, according to the present invention, a semiconductor light emitting device having high efficiency and long life can be manufactured with good reproducibility.
In particular, the improvement of the controllability of the thickness of the AlN layer deposited on the sapphire substrate on the AlN layer deposited on the sapphire substrate and the improvement of its flatness and crystallinity are completely novel effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によって作製された半導体発光素子の一
例。
FIG. 1 is an example of a semiconductor light emitting device manufactured according to the present invention.

【図2】本発明によって作製された半導体発光素子の他
の例。
FIG. 2 is another example of a semiconductor light emitting device manufactured according to the present invention.

【図3】本発明の半導体発光素子を作製する際に用いた
化合物半導体薄膜のエピタキシャル成長装置。
FIG. 3 shows an apparatus for epitaxially growing a compound semiconductor thin film used in producing the semiconductor light emitting device of the present invention.

【図4】窒化処理したサファイア基板上でのAlN成長
初期段階における成長膜厚の成長時間依存性を示す。
FIG. 4 shows the growth time dependence of the growth film thickness in the initial stage of AlN growth on a sapphire substrate subjected to nitriding treatment.

【図5】未処理サファイア基板上でのAlN成長初期段
階における成長膜厚の成長時間依存性を示す。
FIG. 5 shows the growth time dependence of the growth film thickness in the initial stage of AlN growth on an untreated sapphire substrate.

【符号の説明】[Explanation of symbols]

1 サファイア(0001)基板 2 サファイア表面窒化層 3 AlNバッファ層 4 Siドープn型低抵抗GaN層 5 Znドープ半絶縁GaN発光層 6 半絶縁層の電極 7 n型低抵抗層のオーミック電極 10 サファイア(0001)基板 11 サファイア表面窒化層 12 AlNバッファ層 13 Siドープn型InAlNクラッド層 14 アンドープInGaN活性層 15 Mgドープp型InAlNクラッド層 16 p型クラッド層のオーミック電極 17 n型クラッド層のオーミック電極 20 サファイア(0001)基板 21 カーボン・サセプタ 22 石英反応管 23 高周波誘導コイル 24 熱電対 25 有機金属ガス導入管 26 NHガス導入管 27 Hガス及びNガス導入管 28 排気口Reference Signs List 1 sapphire (0001) substrate 2 sapphire surface nitride layer 3 AlN buffer layer 4 Si-doped n-type low-resistance GaN layer 5 Zn-doped semi-insulating GaN light-emitting layer 6 electrode of semi-insulating layer 7 ohmic electrode of n-type low-resistance layer 10 sapphire ( 0001) Substrate 11 Sapphire surface nitride layer 12 AlN buffer layer 13 Si-doped n-type InAlN cladding layer 14 undoped InGaN active layer 15 Mg-doped p-type InAlN cladding layer 16 ohmic electrode of p-type cladding layer 17 ohmic electrode of n-type cladding layer 20 Sapphire (0001) substrate 21 Carbon susceptor 22 Quartz reaction tube 23 High frequency induction coil 24 Thermocouple 25 Organometallic gas introduction tube 26 NH 3 gas introduction tube 27 H 2 gas and N 2 gas introduction tube 28 Exhaust port

フロントページの続き (56)参考文献 特開 平3−203388(JP,A) 特開 平2−229476(JP,A) 特開 昭63−178516(JP,A) 1990年(平成2年)秋季第51回応用物 理学会学術講演会予稿集第1分冊 28a −SX−18 p.305 日本結晶成長学会誌 Vol.13 N o.4(1986)p.218−225 電子情報通信学会技術研究報告 Vo l.88 No.199 ED88−79(1988) p.7−12 (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 H01L 21/205 Continuation of the front page (56) References JP-A-3-203388 (JP, A) JP-A-2-229476 (JP, A) JP-A-63-178516 (JP, A) Fall of 1990 (Heisei 2) Proceedings of the 51st Annual Meeting of the Japan Society of Applied Science, Volume 1 28a-SX-18 p. 305 Journal of the Japanese Association for Crystal Growth Vol. 13 No. 4 (1986) p. 218-225 IEICE Technical Report Vol. 88 No. 199 ED88-79 (1988) p. 7-12 (58) Field surveyed (Int. Cl. 7 , DB name) H01L 33/00 H01L 21/205

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 サファイア基板を窒素原料ガス雰囲気中
で熱処理し、基板表面を単結晶AlN化する第1の工程
と、窒化層上にアルミニウム原料ガスとの反応により多
結晶もしくはアモルファスAlNバッファ層を堆積する
第2の工程と、前記AlNバッファ層をその堆積温度よ
りも高温でアニールする第3の工程と、InGaAlN
層を少なくとも1層含む発光層を形成する第4の工程と
を含むことを特徴とする半導体発光素子の作製方法。
A sapphire substrate is heat-treated in a nitrogen source gas atmosphere to convert the substrate surface into single crystal AlN, and a polycrystalline or amorphous AlN buffer layer is formed on the nitride layer by a reaction with an aluminum source gas. A second step of depositing; a third step of annealing the AlN buffer layer at a temperature higher than its deposition temperature;
And a fourth step of forming a light emitting layer including at least one layer.
【請求項2】 アルミニウム原料ガスとして有機アルミ
ニウム,ハロゲン化アルミニウムあるいは金属アルミニ
ウム蒸気のいずれか1つ、窒素原料ガスとしてはN
,Nあるいは有機アミンのいずれか1つから
選ばれることを特徴とする請求項1記載の半導体発光素
子の作製方法。
2. An aluminum source gas of one of organic aluminum, aluminum halide or metal aluminum vapor, and a nitrogen source gas of N
H 3, N 2 H 2 or a method for manufacturing a semiconductor light emitting device according to claim 1, wherein the selected from one of an organic amine.
JP21917991A 1991-08-05 1991-08-05 Method for manufacturing semiconductor light emitting device Expired - Fee Related JP3147316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21917991A JP3147316B2 (en) 1991-08-05 1991-08-05 Method for manufacturing semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21917991A JP3147316B2 (en) 1991-08-05 1991-08-05 Method for manufacturing semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH0541541A JPH0541541A (en) 1993-02-19
JP3147316B2 true JP3147316B2 (en) 2001-03-19

Family

ID=16731440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21917991A Expired - Fee Related JP3147316B2 (en) 1991-08-05 1991-08-05 Method for manufacturing semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3147316B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656832A (en) 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5751013A (en) * 1994-07-21 1998-05-12 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
WO1997011518A1 (en) 1995-09-18 1997-03-27 Hitachi, Ltd. Semiconductor material, method of producing the semiconductor material, and semiconductor device
JP3423897B2 (en) 1999-04-01 2003-07-07 宮崎沖電気株式会社 Method for manufacturing semiconductor device
KR20010029852A (en) 1999-06-30 2001-04-16 도다 다다히데 Group ⅲ nitride compound semiconductor device and producing method therefor
JP3589114B2 (en) * 1999-09-21 2004-11-17 日立電線株式会社 Insecticide
JP4963763B2 (en) * 2000-12-21 2012-06-27 日本碍子株式会社 Semiconductor element
JP4260380B2 (en) * 2001-06-12 2009-04-30 日本碍子株式会社 Method for producing group III nitride film, sapphire single crystal substrate for producing group III nitride film, and substrate for epitaxial growth
JP2007073975A (en) * 2004-06-29 2007-03-22 Ngk Insulators Ltd Quality improvement method of group iii nitride crystal, substrate for epitaxial growth, and semiconductor element
JP4712450B2 (en) 2004-06-29 2011-06-29 日本碍子株式会社 Method for improving surface flatness of AlN crystal
JP5159040B2 (en) * 2005-03-31 2013-03-06 株式会社光波 Method for forming low temperature growth buffer layer and method for manufacturing light emitting device
JP5236148B2 (en) * 2005-05-12 2013-07-17 日本碍子株式会社 EPITAXIAL SUBSTRATE, SEMICONDUCTOR DEVICE, METHOD FOR MANUFACTURING EPITAXIAL SUBSTRATE, METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND METHOD FOR ALIGNING DISLOCATION IN GROUP III NITRIDE CRYSTAL
KR100667506B1 (en) * 2005-08-02 2007-01-10 엘지전자 주식회사 Led with metal nitride layer and method of forming the same
KR100766858B1 (en) * 2006-03-16 2007-10-12 서울옵토디바이스주식회사 Method for forming buffer layer for a light emitting device of a nitride compound semiconductor and light emitting device of a nitride compound semiconductor thereof
JP5071703B2 (en) * 2006-08-08 2012-11-14 独立行政法人物質・材料研究機構 Semiconductor manufacturing equipment
JP4823856B2 (en) * 2006-11-01 2011-11-24 国立大学法人三重大学 Method for producing AlN group III nitride single crystal thick film
JP6131908B2 (en) * 2014-05-08 2017-05-24 豊田合成株式会社 Group III nitride semiconductor manufacturing method and light emitting device manufacturing method
CN107078030B (en) * 2015-09-11 2022-08-23 国立大学法人三重大学 Method for manufacturing nitride semiconductor substrate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
1990年(平成2年)秋季第51回応用物理学会学術講演会予稿集第1分冊 28a−SX−18 p.305
日本結晶成長学会誌 Vol.13 No.4(1986)p.218−225
電子情報通信学会技術研究報告 Vol.88 No.199 ED88−79(1988)p.7−12

Also Published As

Publication number Publication date
JPH0541541A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JP3147316B2 (en) Method for manufacturing semiconductor light emitting device
JP3866540B2 (en) Nitride semiconductor device and manufacturing method thereof
US6146916A (en) Method for forming a GaN-based semiconductor light emitting device
JP4757441B2 (en) Growth of group III nitride films on mismatched substrates without conventional low temperature nucleation layers
US6989287B2 (en) Method for producing nitride semiconductor, semiconductor wafer and semiconductor device
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
JP3361285B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing gallium nitride based compound semiconductor
JPH0415200B2 (en)
JPWO2003063215A1 (en) Method of manufacturing nitride semiconductor device
US20110062016A1 (en) Method for manufacturing aluminum-containing nitride intermediate layer, method for manufacturing nitride layer, and method for manufacturing nitride semiconductor element
JP5073624B2 (en) Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device
JP2965709B2 (en) Method for manufacturing semiconductor light emitting device
JP3244980B2 (en) Method for manufacturing semiconductor device
JP2004111848A (en) Sapphire substrate, epitaxial substrate using it, and its manufacturing method
WO2019123763A1 (en) Method for producing group iii nitride semiconductor substrate
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JPH11340147A (en) Manufacture of nitride semiconductor wafer and element
JP2003133246A (en) Gallium nitride compound semiconductor light emitting element and its manufacturing method
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
US8529699B2 (en) Method of growing zinc-oxide-based semiconductor and method of manufacturing semiconductor light emitting device
JP3097597B2 (en) Method of forming group III nitride semiconductor
JP5073623B2 (en) Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device
JP2004099405A (en) Nitride semiconductor multilayer material and method of growing the same
JP2005045153A (en) Manufacturing method of nitride semiconductor, semiconductor wafer, and semiconductor device
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees