JPH07216153A - Noncross-linked foamable ethylene-alpha-olefin copolymer resin composition - Google Patents

Noncross-linked foamable ethylene-alpha-olefin copolymer resin composition

Info

Publication number
JPH07216153A
JPH07216153A JP702594A JP702594A JPH07216153A JP H07216153 A JPH07216153 A JP H07216153A JP 702594 A JP702594 A JP 702594A JP 702594 A JP702594 A JP 702594A JP H07216153 A JPH07216153 A JP H07216153A
Authority
JP
Japan
Prior art keywords
ethylene
olefin copolymer
copolymer resin
resin composition
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP702594A
Other languages
Japanese (ja)
Other versions
JP3367059B2 (en
Inventor
Koji Kubo
幸治 久保
Juichi Kobayashi
重一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP00702594A priority Critical patent/JP3367059B2/en
Publication of JPH07216153A publication Critical patent/JPH07216153A/en
Application granted granted Critical
Publication of JP3367059B2 publication Critical patent/JP3367059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the subject compsn. which exhibits a stable moldability in foam molding and gives a highly foamed molding. CONSTITUTION:This resin compsn. comprises 70-90wt.% ethylene-alpha-olefin copolymer resin having a melt flow rate of 0.5-50g/10min and a density of 0.90g/cm<3> or higher but lower than 0.93g/cm<3> and 30-10wt.% ethylene-alpha-olefin copolymer resin having a melt flow rate of 0.5-50g/10min and a density of 0.93-0.96g/cm<3> and has a melt flow rate of 0.5-5g/10min and a density of 0.92-0.94g/cm<3>. When the compsn. is treated at 120-127 deg.C and subjected to differential scanning calorimetry, a melting curve is obtd. wherein two endothermic peaks with peak-temp. widths of 15 deg.C or higher appear and the caloric ratio of the endothermic peak at the higher temp. side is 30-60%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無架橋発泡用エチレン
−α−オレフィン共重合体樹脂組成物に関する。
TECHNICAL FIELD The present invention relates to an ethylene-α-olefin copolymer resin composition for non-crosslinking foaming.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ポリエチレン樹脂発泡成形体を得る方法として、予備発
泡粒子を用いる、いわゆるビーズ成形法が行われてい
る。現在、架橋した予備発泡粒子を用いて発泡成形体を
製造しているが、架橋工程が必須であり、またそれに用
いる薬品等も必要であり、しかも再利用しにくいという
不都合を有する。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
A so-called bead molding method using pre-expanded particles is used as a method for obtaining a polyethylene resin foam molded article. At present, a foamed molded article is produced using crosslinked pre-expanded particles, but it has a disadvantage that it requires a crosslinking step, requires chemicals used for it, and is difficult to reuse.

【0003】一方、架橋した予備発泡粒子の課題を解決
するために、無架橋のエチレン−α−オレフィン共重合
体樹脂を用いて発泡成形体を製造することが提案されて
いる(特開昭58−76433号公報、特開平1−13
5806号公報等)。しかしながら、これらのエチレン
−α−オレフィン共重合体樹脂を用いて製造された発泡
成形体では、成形温度巾が狭く、また発泡成形体表面の
発泡状態が悪い等の問題があった。
On the other hand, in order to solve the problem of the crosslinked pre-expanded particles, it has been proposed to produce a foamed molded article by using a non-crosslinked ethylene-α-olefin copolymer resin (JP-A-58). -76433, Japanese Patent Laid-Open No. 1-13
5806 publication). However, the foamed molded products produced using these ethylene-α-olefin copolymer resins have problems such as a narrow molding temperature range and a poor foaming condition on the surface of the foamed molded products.

【0004】[0004]

【課題を解決するための手段】かかる事情に鑑み、本発
明者等は、安定して良好な発泡成形体を得ることについ
て鋭意検討を重ねた結果、特定性状のエチレン−α−オ
レフィン共重合体樹脂と、特定性状のエチレン−α−オ
レフィン共重合体樹脂とを特定量配合した樹脂組成物で
あって、熱処理後に示差走査熱量測定により得られる融
解曲線が特定物性を示す樹脂組成物が、成形温度巾が広
く、発泡成形体表面の発泡状態が良好であることを見出
し、さらに種々の検討を加えて本発明を完成させた。
In view of such circumstances, the inventors of the present invention have earnestly studied to obtain a stable and good foamed molded product, and as a result, an ethylene-α-olefin copolymer having a specific property has been obtained. A resin composition in which a specific amount of a resin and an ethylene-α-olefin copolymer resin having a specific property is blended, and a resin composition in which a melting curve obtained by differential scanning calorimetry after heat treatment shows specific physical properties is molded. The inventors have found that the temperature range is wide and the foamed state on the surface of the foamed molded product is good, and further various investigations were added to complete the present invention.

【0005】すなわち、本発明は、(A)メルトフロー
レートが0.5〜50g/10分、密度が0.90g/
cm 3 以上0.93g/cm3 未満のエチレン−α−オ
レフィン共重合体樹脂70〜90重量%、および(B)
メルトフローレートが0.5〜50g/10分、密度が
0.93g/cm3 以上0.96g/cm3 以下のエチ
レン−α−オレフィン共重合体樹脂10〜30重量%を
含有する、メルトフローレートが0.5〜5g/10
分、密度が0.92g/cm3 以上0.94g/cm3
以下の樹脂組成物であって、120℃〜127℃の温度
で熱処理した後、示差走査熱量測定によって得られる融
解曲線に2つの吸熱ピークが現われ、そのピーク温度巾
が15℃以上、高温側の吸熱ピークの熱量比が30〜6
0%であることを特徴とする無架橋発泡用エチレン−α
−オレフィン共重合体樹脂組成物を提供するものであ
る。
That is, the present invention provides (A) melt flow
Rate is 0.5 to 50 g / 10 minutes, density is 0.90 g /
cm 30.93 g / cm or more3Less than ethylene-α-o
70 to 90% by weight of reffin copolymer resin, and (B)
The melt flow rate is 0.5 to 50 g / 10 minutes, and the density is
0.93 g / cm30.96 g / cm or more3Less than
Len-α-olefin copolymer resin 10 to 30% by weight
Contains a melt flow rate of 0.5 to 5 g / 10
Min, density 0.92g / cm30.94 g / cm or more3
The following resin composition having a temperature of 120 ° C to 127 ° C
After the heat treatment at, the melt obtained by differential scanning calorimetry
Two endothermic peaks appear on the solution curve and the peak temperature range
Is 15 ° C or higher and the heat quantity ratio of the endothermic peak on the high temperature side is 30 to 6
Ethylene-α for non-crosslinking foaming characterized by 0%
-Provides an olefin copolymer resin composition
It

【0006】以下、本発明を詳細に説明する。本発明に
おいて用いる(A)、(B)のエチレン−α−オレフィ
ン共重合体樹脂は、エチレンとα−オレフィンを遷移金
属触媒を使用して重合することによって得られるもので
ある。重合反応は、通常30〜300℃の重合温度下、
常圧〜3000kg/cm2の重合圧力下、溶媒の存在
下または不存在下、気−固、液−固または均一液相下で
実施される。
The present invention will be described in detail below. The ethylene-α-olefin copolymer resins (A) and (B) used in the present invention are obtained by polymerizing ethylene and α-olefin using a transition metal catalyst. The polymerization reaction is usually performed at a polymerization temperature of 30 to 300 ° C.
It is carried out under a polymerization pressure of atmospheric pressure to 3000 kg / cm 2 , in the presence or absence of a solvent, in a gas-solid, liquid-solid or homogeneous liquid phase.

【0007】α−オレフィンとしては、例えばプロピレ
ン、ブテン−1、4−メチルペンテン−1、ヘキセン−
1、オクテン−1、デセン−1、オクタデセン−1等の
炭素数3〜18のα−オレフィンが用いることができ、
中でも炭素数3〜10のα−オレフィンが好ましい。こ
れらα−オレフィンは一種のみならず二種以上用いるこ
とができる。α−オレフィンの含量は、(A)のエチレ
ン−α−オレフィン共重合体樹脂が、通常1〜15モル
%であり、(B)のエチレン−α−オレフィン共重合体
樹脂が、通常0.5〜5モル%である。α−オレフィン
の種類および含量で密度がコントロールされ、樹脂
(A)、(B)が区別される。
Examples of the α-olefin include propylene, butene-1,4-methylpentene-1, hexene-
C3-C18 α-olefins such as 1, octene-1, decene-1, and octadecene-1 can be used,
Of these, α-olefins having 3 to 10 carbon atoms are preferable. These α-olefins may be used alone or in combination of two or more. The α-olefin content of the ethylene-α-olefin copolymer resin (A) is usually 1 to 15 mol%, and the ethylene-α-olefin copolymer resin (B) is usually 0.5. ~ 5 mol%. The density is controlled by the kind and content of α-olefin, and the resins (A) and (B) are distinguished from each other.

【0008】本発明で用いるエチレン−α−オレフィン
共重合体樹脂(A)のメルトフローレート(MFR)
は、0.5〜50g/10分、好ましくは0.5〜10
g/10分であり、MFRが0.5g/10分未満で
は、発泡時の流動性が悪く、高発泡にするのが困難であ
り、50g/10分を超えると発泡成形体の耐衝撃性が
低下する。
Melt flow rate (MFR) of ethylene-α-olefin copolymer resin (A) used in the present invention
Is 0.5 to 50 g / 10 minutes, preferably 0.5 to 10
g / 10 min. If the MFR is less than 0.5 g / 10 min, the fluidity during foaming is poor and it is difficult to achieve high foaming. If it exceeds 50 g / 10 min, the impact resistance of the foamed molded product is high. Is reduced.

【0009】本発明で用いるエチレン−α−オレフィン
共重合体樹脂(A)の密度は、0.90g/cm3 以上
0.93g/cm3 未満、好ましくは0.91g/cm
3 以上0.93g/cm3 未満であり、密度が0.90
g/cm3 未満、または0.93g/cm3 を超えると
成形温度巾が狭くなる。
The density of the ethylene-α-olefin copolymer resin (A) used in the present invention is 0.90 g / cm 3 or more and less than 0.93 g / cm 3 , preferably 0.91 g / cm 3.
3 or more and less than 0.93 g / cm 3 and a density of 0.90
If it is less than g / cm 3 or exceeds 0.93 g / cm 3 , the molding temperature range will be narrowed.

【0010】本発明で用いるエチレン−α−オレフィン
共重合体樹脂(B)のMFRは、0.5〜50g/10
分、好ましくは0.5〜20g/10分であり、MFR
が0.5g/10分未満では、発泡時の流動性が悪く、
高発泡にするのが困難であり、50g/10分を超える
と発泡成形体の耐衝撃性が低下する。
The MFR of the ethylene-α-olefin copolymer resin (B) used in the present invention is 0.5 to 50 g / 10.
Min, preferably 0.5 to 20 g / 10 min, MFR
Is less than 0.5 g / 10 minutes, the fluidity during foaming is poor,
It is difficult to make the foam highly foamed, and if it exceeds 50 g / 10 minutes, the impact resistance of the foamed molded product is lowered.

【0011】本発明で用いるエチレン−α−オレフィン
共重合体樹脂(B)の密度は、0.93g/cm3 以上
0.96g/cm3 以下、好ましくは0.94g/cm
3 以上0.96g/cm3 以下であり、密度が0.93
g/cm3 未満、または0.96g/cm3 を超えると
成形温度巾が狭くなる。
The density of the ethylene-α-olefin copolymer resin (B) used in the present invention is 0.93 g / cm 3 or more and 0.96 g / cm 3 or less, preferably 0.94 g / cm 3.
3 or more and 0.96 g / cm 3 or less, and the density is 0.93
If it is less than g / cm 3 or exceeds 0.96 g / cm 3 , the molding temperature range becomes narrow.

【0012】エチレン−α−オレフィン共重合体樹脂
(A)の配合量は70〜90重量%、好ましくは70〜
85重量%、エチレン−α−オレフィン共重合体樹脂
(B)の配合量は30〜10重量%、好ましくは30〜
15重量%であり、エチレン−α−オレフィン共重合体
樹脂(B)の配合量が10重量%未満、または30重量
%を超えると成形温度巾が狭くなる。
The blending amount of the ethylene-α-olefin copolymer resin (A) is 70 to 90% by weight, preferably 70 to 90% by weight.
85% by weight, the blending amount of the ethylene-α-olefin copolymer resin (B) is 30 to 10% by weight, preferably 30 to
It is 15% by weight, and when the content of the ethylene-α-olefin copolymer resin (B) is less than 10% by weight or more than 30% by weight, the molding temperature range becomes narrow.

【0013】エチレン−α−オレフィン共重合体樹脂
(A)及びエチレン−α−オレフィン共重合体樹脂
(B)を含有する樹脂組成物のMFRは、0.5〜5g
/10分、好ましくは1〜3g/10分であり、MFR
が0.5g/10分未満では、発泡時の流動性が悪く、
高発泡にするのが困難であり、5g/10分を超えると
発泡粒の気泡径の均一性が低下する。また、上記組成物
の密度は0.92g/cm3 以上0.94g/cm3
下、好ましくは0.925g/cm3 以上0.935g
/cm3 以下であり、密度が0.92g/cm3 未満で
は、剛性が低下し、0.94g/cm3 を超えると成形
温度巾が狭くなる。
The MFR of the resin composition containing the ethylene-α-olefin copolymer resin (A) and the ethylene-α-olefin copolymer resin (B) is 0.5 to 5 g.
/ 10 minutes, preferably 1-3 g / 10 minutes, MFR
Is less than 0.5 g / 10 minutes, the fluidity during foaming is poor,
It is difficult to achieve high foaming, and if it exceeds 5 g / 10 minutes, the uniformity of the bubble diameter of the foamed particles will decrease. The density of the composition is 0.92 g / cm 3 or more and 0.94 g / cm 3 or less, preferably 0.925 g / cm 3 or more and 0.935 g.
/ Cm 3 or less, and if the density is less than 0.92 g / cm 3 , the rigidity is lowered, and if it exceeds 0.94 g / cm 3 , the molding temperature width is narrowed.

【0014】本発明は、樹脂(A)及び樹脂(B)を含
有する樹脂組成物であって、120〜127℃の温度で
熱処理した後、示差走査熱量測定によって得られる融解
曲線に2つの吸熱ピークが現れ、そのピーク温度巾が1
5℃以上、好ましくは15〜25℃であり、高温側の吸
熱ピークの熱量比が30〜60%であることを特徴とす
る樹脂組成物である。ピーク温度巾が15℃未満、また
は高温側の吸熱ピークの熱量比が30%未満では成形温
度巾が狭くなり、高温側の吸熱ピークの熱量比が60%
を超えると成形体の表面性が悪くなる。ピーク温度巾と
は、融解曲線における高温側融解ピーク温度と低温側融
解ピーク温度の差をいう。また、高温側の吸熱ピークの
熱量比とは、融解曲線における高温側のピーク面積を、
低温側のピーク面積と高温側のピーク面積の合計で除し
た値をいう。
The present invention is a resin composition containing a resin (A) and a resin (B), which is heat-treated at a temperature of 120 to 127 ° C. and then has two endotherms in a melting curve obtained by differential scanning calorimetry. A peak appears and the peak temperature width is 1
It is 5 degreeC or more, Preferably it is 15-25 degreeC, The heat quantity ratio of the endothermic peak on the high temperature side is 30-60%, It is a resin composition characterized by the above-mentioned. If the peak temperature width is less than 15 ° C or the heat quantity ratio of the endothermic peak on the high temperature side is less than 30%, the molding temperature width becomes narrow and the heat quantity ratio of the endothermic peak on the high temperature side is 60%.
If it exceeds, the surface property of the molded product deteriorates. The peak temperature width refers to the difference between the melting peak temperature on the high temperature side and the melting peak temperature on the low temperature side in the melting curve. Further, the calorific ratio of the endothermic peak on the high temperature side, the peak area on the high temperature side in the melting curve,
It is the value divided by the sum of the peak area on the low temperature side and the peak area on the high temperature side.

【0015】樹脂組成物を得るためのブレンド方法は、
特に限定されるものではなく、通常の混合操作、例え
ば、タンブラーブレンダー法、ヘンシェルミキサー法、
バンバリーミキサー法または押出造粒法等が挙げられ
る。
The blending method for obtaining the resin composition is as follows:
It is not particularly limited, and a normal mixing operation, for example, a tumbler blender method, a Henschel mixer method,
The Banbury mixer method, the extrusion granulation method, etc. are mentioned.

【0016】本発明の樹脂組成物は、中和剤、分散剤、
酸化防止剤、耐候性改良剤、帯電防止剤、顔料、フィラ
ー等の他の付加的成分を本発明の効果を阻害しない範囲
で配合することができる。
The resin composition of the present invention comprises a neutralizing agent, a dispersant,
Other additional components such as an antioxidant, a weather resistance improver, an antistatic agent, a pigment and a filler can be added within a range that does not impair the effects of the present invention.

【0017】本発明の無架橋発泡用エチレン−α−オレ
フィン共重合体樹脂組成物を用いて発泡成形体を得る方
法は特に制限されないが、樹脂組成物の溶融温度、例え
ば120℃〜127℃の温度で予備発泡を行なって平均
粒子径が約2〜6mmの予備発泡粒子を得たあと、この
粒子を直ちに、または例えば20℃、大気圧下に約12
〜72時間かけて養生した後、金型に入れ、水蒸気加熱
することにより発泡成形体を製造することができる。
The method for obtaining a foamed molded product using the ethylene-α-olefin copolymer resin composition for non-crosslinking foaming of the present invention is not particularly limited, but the melting temperature of the resin composition, for example, 120 ° C to 127 ° C. After pre-expanding at a temperature to obtain pre-expanded particles having an average particle size of about 2 to 6 mm, the particles are immediately or, for example, at 20 ° C. under atmospheric pressure, about 12 mm.
After curing for 72 hours, the foamed molded article can be produced by placing it in a mold and heating with steam.

【0018】予備発泡は、耐圧容器中で、樹脂粒子と揮
発性発泡剤とを分散剤の存在下で水に分散させ、その樹
脂粒子を粒子の融点に近い温度に加熱して、粒子内に揮
発性発泡剤を含浸させた後、揮発性発泡剤の示す蒸気圧
以上で耐圧容器内の温度、圧力を一定に保持しながら、
容器内容物を容器内よりも低圧の雰囲気下に放出するこ
とにより行なう。
In the pre-foaming, resin particles and a volatile foaming agent are dispersed in water in the presence of a dispersant in a pressure resistant container, and the resin particles are heated to a temperature close to the melting point of the particles so that the particles are dispersed in the particles. After impregnating the volatile foaming agent, keeping the temperature and pressure inside the pressure vessel constant above the vapor pressure of the volatile foaming agent,
This is done by discharging the contents of the container under an atmosphere of a pressure lower than that in the container.

【0019】前記揮発性発泡剤としては、例えばプロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族
炭化水素類、シクロブタン、シクロペンタン等の環式脂
肪族炭化水素類、およびトリクロロモノフルオロメタ
ン、ジクロロジフルオロメタン、ジクロロテトラフルオ
ロエタン、メチルクロライド、エチルクロライド、メチ
レンクロライド等のハロゲン化炭化水素類が使用され
る。前記揮発性発泡剤の使用量は、無架橋発泡用エチレ
ン−α−オレフィン共重合体樹脂組成物100重量部に
対し、通常10〜60重量部である。
Examples of the volatile foaming agent include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane, and trichloromonofluoromethane and dichloro. Halogenated hydrocarbons such as difluoromethane, dichlorotetrafluoroethane, methyl chloride, ethyl chloride and methylene chloride are used. The amount of the volatile foaming agent used is usually 10 to 60 parts by weight with respect to 100 parts by weight of the non-crosslinking foaming ethylene-α-olefin copolymer resin composition.

【0020】前記分散剤としては、例えばリン酸カルシ
ウム、酸化アルミニウム、酸化チタン、塩基性炭酸マグ
ネシウム、塩基性炭酸亜鉛等が挙げられる。分散剤の使
用量は、無架橋発泡用エチレン−α−オレフィン共重合
体樹脂組成物100重量部に対し、通常0.1〜3重量
部である。また、前記水の使用量は、無架橋発泡用エチ
レン−α−オレフィン共重合体樹脂組成物100重量部
に対し、通常100〜500重量部である。
Examples of the dispersant include calcium phosphate, aluminum oxide, titanium oxide, basic magnesium carbonate, basic zinc carbonate and the like. The amount of the dispersant used is usually 0.1 to 3 parts by weight based on 100 parts by weight of the non-crosslinking foaming ethylene-α-olefin copolymer resin composition. The amount of water used is usually 100 to 500 parts by weight with respect to 100 parts by weight of the non-crosslinking foaming ethylene-α-olefin copolymer resin composition.

【0021】前記のようにして得られる発泡成形体は、
通常、発泡倍率30〜50倍の高発泡のものであり、ま
た、平均気泡径100〜700μmの均一な気泡径を有
するものである。
The foamed molded product obtained as described above is
Usually, it has a high expansion ratio of 30 to 50 times, and has a uniform cell diameter of 100 to 700 μm in average cell diameter.

【0022】[0022]

【発明の効果】以上述べたように、本発明の無架橋発泡
用エチレン−α−オレフィン共重合体樹脂組成物は、発
泡成形時に安定した成形性を示し、高発泡の成形体を得
ることができる。
As described above, the ethylene-α-olefin copolymer resin composition for non-crosslinking foaming of the present invention exhibits stable moldability during foam molding, and is capable of obtaining a highly foamed molding. it can.

【0023】[0023]

【実施例】以下、本発明を実施例によって説明するが、
本発明はこれら実施例によって何ら限定されるものでは
ない。以下の実施例及び比較例における評価方法は次の
とおりである。 (1)メルトフローレート JIS K7210に準じて測定温度190℃、荷重
2.16kgの条件で測定した。 (2)密度 JIS K6760に基づき測定した。 (3)熱処理後の示差走査熱量測定 150℃で厚さ0.5mmにプレス成形したシートを、
温度が120℃〜127℃のオーブン中に1時間入れて
熱処理した後取り出し、パーキンエルマーDSC7型を
用い、試料10mgを40℃から150℃まで20℃/
分で加熱昇温して示差走査熱量測定を行なった。図1に
示したように、得られた融解曲線に2つの吸熱ピークが
現われる。図1において、低温側融解ピーク温度をTm
L 、高温側融解ピーク温度をTm H とし、低温側のピー
ク面積をAL 、高温側のピーク面積をAH とした。下記
式によりピーク温度巾と高温側の吸熱ピークの熱量比を
算出した。 ピーク温度巾(℃)=TmH −TmL 高温側の吸熱ピークの熱量比(%)=AH /(AL +A
H ) (4)予備発泡粒子の発泡状態 目視により良好なものを○、悪いものを×とした。 (5)発泡成形体の成形性 予備発泡粒子を金型に充填し、水蒸気で加熱成形し、発
泡成形体を得る工程において、良好な発泡成形体が得ら
れる水蒸気の巾(温度巾)が広いものを○、狭いものを
×とした。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to these examples.
Absent. The evaluation methods in the following examples and comparative examples are as follows.
It is as follows. (1) Melt flow rate Measured temperature 190 ° C, load according to JIS K7210
It was measured under the condition of 2.16 kg. (2) Density Measured according to JIS K6760. (3) Differential scanning calorimetry after heat treatment A sheet press-molded at 150 ° C to a thickness of 0.5 mm was
Place in an oven at a temperature of 120 ° C-127 ° C for 1 hour
After heat-treating, take out and use Perkin Elmer DSC7 type
Use 10 mg of sample from 40 ° C to 150 ° C at 20 ° C /
Differential heating calorimetry was performed by heating in minutes. In Figure 1
As shown, there are two endothermic peaks in the melting curve obtained.
Appears. In FIG. 1, the melting peak temperature on the low temperature side is Tm.
L, The high temperature side melting peak temperature is Tm HAnd the low temperature side
Area AL, The peak area on the high temperature side is AHAnd following
The heat quantity ratio between the peak temperature width and the endothermic peak on the high temperature side can be calculated by the formula
It was calculated. Peak temperature range (℃) = TmH-TmL Heat quantity ratio (%) of endothermic peak at high temperature = AH/ (AL+ A
H(4) Foamed state of pre-expanded particles Visually, good ones were marked with ◯, and bad ones were marked with x. (5) Moldability of foam-molded product Pre-expanded particles are filled in a mold, heat-molded with steam, and expanded.
In the process of obtaining a foam molded product, a good foam molded product was obtained.
○ with a wide width of steam (temperature range)
It was set to x.

【0024】実施例1 成分(A)のエチレン−α−オレフィン共重合体樹脂と
して、高圧バルク法(重合圧力1000kg/cm2
重合温度200℃)で製造されたエチレン−ヘキセン−
1共重合体樹脂(住友化学工業(株)製試作品、メルト
フローレート2g/10分、密度0.920g/c
3 )80重量%と成分(B)のエチレン−α−オレフ
ィン共重合体樹脂として、丸善ポリマー社製ケミレッツ
−HD 1150(メルトフローレート 15g/10
分、密度 0.957g/cm3 )20重量%を40m
m径のスクリューを有する押出機にて230℃で造粒し
無架橋発泡用エチレン−α−オレフィン共重合体樹脂組
成物(メルトフローレート3g/10分、密度0.92
7g/cm3 )を得た。得られた樹脂組成物を120
℃、123℃、125℃及び127℃の温度で熱処理し
た試料について、示差走査熱量測定による融解曲線のピ
ーク温度巾と、高温側の吸熱ピークの熱量比を測定し
た。その結果、ピーク温度巾は120℃で20℃、12
3℃で21℃、125℃で20℃、127℃で20℃で
あり、高温側の吸熱ピークの熱量比は120℃で58
%、123℃で50%、125℃で46%、127℃で
36%であった。また、得られた樹脂組成物100重量
部、ジクロロジフルオロメタン30重量部、微粒状酸化
アルミニウム1重量部、水300重量部をオートクレー
ブ内に入れ、オートクレーブ内の温度を120℃、圧力
を30kg/cm2 Gとし、その内圧をジクロロジフル
オロメタンを加えることにより圧力を30kg/cm2
Gに保持しながら、オートクレーブの一端を解放し、内
容物を大気中に放出して予備発泡粒子を得た。得られた
予備発泡粒子を20℃、大気圧下で48時間養生した
後、金型に充填し、1.5〜3.5kg/cm2 Gの水
蒸気で加熱成形し、発泡成形体を得た。得られた結果を
表1に示す。
Example 1 As the ethylene-α-olefin copolymer resin as the component (A), a high pressure bulk method (polymerization pressure 1000 kg / cm 2 ,
Ethylene-hexene produced at a polymerization temperature of 200 ° C.)
1 Copolymer resin (prototype manufactured by Sumitomo Chemical Co., Ltd., melt flow rate 2 g / 10 minutes, density 0.920 g / c
m 3) as 80 wt% and component (B) ethylene -α- olefin copolymer resin, Maruzen Polymer Co. Kemirettsu -HD 1150 (melt flow rate 15 g / 10
Min, density 0.957g / cm 3) 20 wt% 40 m
An ethylene-α-olefin copolymer resin composition for non-crosslinking foaming (melt flow rate 3 g / 10 min, density 0.92) was obtained by granulating at 230 ° C. with an extruder having a m-diameter screw.
7 g / cm 3 ) was obtained. The obtained resin composition is 120
For samples heat-treated at temperatures of 123 ° C, 125 ° C and 127 ° C, the peak temperature width of the melting curve by differential scanning calorimetry and the calorific ratio of the endothermic peak on the high temperature side were measured. As a result, the peak temperature range was 120 ° C, 20 ° C, 12
21 ° C. at 3 ° C., 20 ° C. at 125 ° C., 20 ° C. at 127 ° C., and the heat quantity ratio of the endothermic peak on the high temperature side is 58 at 120 ° C.
% At 123 ° C., 46% at 125 ° C. and 36% at 127 ° C. Further, 100 parts by weight of the obtained resin composition, 30 parts by weight of dichlorodifluoromethane, 1 part by weight of finely divided aluminum oxide, and 300 parts by weight of water were put into an autoclave, the temperature inside the autoclave was 120 ° C., and the pressure was 30 kg / cm. The pressure is set to 2 G, and the pressure is set to 30 kg / cm 2 by adding dichlorodifluoromethane.
While holding at G, one end of the autoclave was released and the contents were released into the atmosphere to obtain pre-expanded particles. The obtained pre-expanded particles were aged at 20 ° C. under atmospheric pressure for 48 hours, filled in a mold, and heat-molded with steam of 1.5 to 3.5 kg / cm 2 G to obtain a foam-molded body. . The results obtained are shown in Table 1.

【0025】実施例2 実施例1で使用したものと同じ成分(A)75重量%
と、実施例1で使用したものと同じ成分(B)25重量
%を用いる以外は、実施例1と同様に造粒し無架橋発泡
用エチレン−α−オレフィン共重合体樹脂組成物(メル
トフローレート3g/10分、密度0.928g/cm
3 )を得た。得られた樹脂組成物のピーク温度巾と高温
側の吸熱ピークの熱量比を、実施例1と同様にして測定
した結果、ピーク温度巾は120℃で20℃、123℃
で22℃、125℃で21℃、127℃で15℃であ
り、高温側の吸熱ピークの熱量比は120℃で56%、
123℃で55%、125℃で45%、127℃で38
%であった。また、得られた樹脂組成物を用いる以外
は、実施例1と同様にして予備発泡粒子及び発泡成形体
を得た。得られた結果を表1に示す。
Example 2 75% by weight of the same component (A) as used in Example 1
And, except that the same component (B) 25% by weight as that used in Example 1 was used, the ethylene-α-olefin copolymer resin composition for non-crosslinking foaming granulated in the same manner as in Example 1 (melt flow Rate 3g / 10 minutes, density 0.928g / cm
3 ) got The peak temperature width of the obtained resin composition and the heat quantity ratio of the endothermic peak on the high temperature side were measured in the same manner as in Example 1, and as a result, the peak temperature width was 120 ° C, 20 ° C and 123 ° C.
22 ° C., 21 ° C. at 125 ° C., 15 ° C. at 127 ° C., the heat ratio of the endothermic peak on the high temperature side is 56% at 120 ° C.,
55% at 123 ° C, 45% at 125 ° C, 38 at 127 ° C
%Met. Further, pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the obtained resin composition was used. The results obtained are shown in Table 1.

【0026】実施例3 成分(A)のエチレン−α−オレフィン共重合体樹脂と
して、高圧バルク法(重合圧力1000kg/cm2
重合温度200℃)で製造されたエチレン−ブテン−1
共重合体樹脂(住友化学工業(株)製試作品、メルトフ
ローレート2g/10分、密度0.920g/cm3
80重量%と実施例1で使用したものと同じ成分(B)
20重量%を用いる以外は、実施例1と同様に造粒し無
架橋発泡用エチレン−α−オレフィン共重合体樹脂組成
物(メルトフローレート3g/10分、密度0.927
g/cm3 )を得た。得られた樹脂組成物のピーク温度
巾と高温側の吸熱ピークの熱量比を、実施例1と同様に
して測定した結果、ピーク温度巾は120℃で20℃、
123℃で20℃、125℃で20℃、127℃で20
℃であり、高温側の吸熱ピークの熱量比は120℃で5
7%、123℃で50%、125℃で48%、127℃
で38%であった。また、得られた樹脂組成物を用いる
以外は、実施例1と同様にして予備発泡粒子及び発泡成
形体を得た。得られた結果を表1に示す。
Example 3 As the ethylene-α-olefin copolymer resin as the component (A), a high pressure bulk method (polymerization pressure 1000 kg / cm 2 ,
Ethylene-butene-1 produced at a polymerization temperature of 200 ° C.
Copolymer resin (Prototype manufactured by Sumitomo Chemical Co., Ltd., melt flow rate 2 g / 10 minutes, density 0.920 g / cm 3 )
80% by weight and the same component (B) as used in Example 1
An ethylene-α-olefin copolymer resin composition for non-crosslinking foaming, which was granulated in the same manner as in Example 1 except that 20% by weight was used (melt flow rate: 3 g / 10 min, density: 0.927)
g / cm 3 ) was obtained. The peak temperature range of the obtained resin composition and the heat quantity ratio of the endothermic peak on the high temperature side were measured in the same manner as in Example 1, and as a result, the peak temperature range was 120 ° C. and 20 ° C.
20 ° C at 123 ° C, 20 ° C at 125 ° C, 20 ° C at 127 ° C
The heat quantity ratio of the endothermic peak on the high temperature side is 5 ° C at 120 ° C.
7%, 50% at 123 ° C, 48% at 125 ° C, 127 ° C
Was 38%. Further, pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the obtained resin composition was used. The results obtained are shown in Table 1.

【0027】比較例1 実施例1で使用したものと同じ成分(A)80重量%と
成分(B)のエチレン−α−オレフィン共重合体樹脂と
して、丸善ポリマー社製ケミレッツ−HD 2050
(メルトフローレート5g/10分、密度0.962g
/cm3 )20重量%を用いる以外は、実施例1と同様
に造粒し無架橋発泡用エチレン−α−オレフィン共重合
体樹脂組成物(メルトフローレート3g/10分、密度
0.928g/cm3 )を得た。得られた樹脂組成物の
ピーク温度巾と高温側の吸熱ピークの熱量比を、実施例
1と同様にして測定した結果、ピーク温度巾は120℃
で23℃であり、高温側の吸熱ピークの熱量比は120
℃で63%であった。また、得られた樹脂組成物を用い
る以外は、実施例1と同様にして予備発泡粒子及び発泡
成形体を得た。得られた結果を表1に示す。
COMPARATIVE EXAMPLE 1 80% by weight of the same component (A) as used in Example 1 and an ethylene-α-olefin copolymer resin of the component (B) were used as Chemiletz-HD 2050 manufactured by Maruzen Polymer Co., Ltd.
(Melt flow rate 5g / 10 minutes, density 0.962g
/ Cm 3 ), except that 20% by weight of the above is used, granulation is carried out in the same manner as in Example 1 and an ethylene-α-olefin copolymer resin composition for non-crosslinking foaming (melt flow rate 3 g / 10 minutes, density 0.928 g / cm 3 ) was obtained. The peak temperature range of the obtained resin composition and the heat quantity ratio of the endothermic peak on the high temperature side were measured in the same manner as in Example 1, and as a result, the peak temperature range was 120 ° C.
Is 23 ° C, and the heat quantity ratio of the endothermic peak on the high temperature side is 120
It was 63% at ° C. Further, pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the obtained resin composition was used. The results obtained are shown in Table 1.

【0028】比較例2 高圧バルク法(重合圧力1000kg/cm2 、重合温
度200℃)で製造されたエチレン−ヘキセン−1共重
合体樹脂(住友化学工業(株)製試作品、メルトフロー
レート0.8g/10分、密度0.925g/cm3
100重量部を用いる以外は、実施例1と同様に造粒し
た。得られた樹脂のピーク温度巾と高温側の吸熱ピーク
の熱量比を、実施例1と同様にして測定した結果、ピー
ク温度巾は120℃で14℃であり、高温側の吸熱ピー
クの熱量比は120℃で40%であった。また、得られ
た樹脂組成物を用いる以外は、実施例1と同様にして予
備発泡粒子及び発泡成形体を得た。得られた結果を表1
に示す。
Comparative Example 2 Ethylene-hexene-1 copolymer resin (manufactured by Sumitomo Chemical Co., Ltd., melt flow rate 0) produced by a high pressure bulk method (polymerization pressure 1000 kg / cm 2 , polymerization temperature 200 ° C.) 0.8 g / 10 minutes, density 0.925 g / cm 3 )
Granulation was performed in the same manner as in Example 1 except that 100 parts by weight was used. The peak temperature width of the obtained resin and the heat quantity ratio of the endothermic peak on the high temperature side were measured in the same manner as in Example 1. As a result, the peak temperature width was 120 ° C. and 14 ° C., and the heat quantity ratio of the endothermic peak on the high temperature side was obtained. Was 40% at 120 ° C. Further, pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the obtained resin composition was used. The results obtained are shown in Table 1.
Shown in.

【0029】比較例3 高圧バルク法(重合圧力1000kg/cm2 、重合温
度200℃)で製造されたエチレン−ブテン−1共重合
体樹脂(住友化学工業(株)製試作品、メルトフローレ
ート2g/10分、密度0.930g/cm3 )100
重量部を用いる以外は、実施例1と同様に造粒した。得
られた樹脂のピーク温度巾と高温側の吸熱ピークの熱量
比を、実施例1と同様にして測定した結果、ピーク温度
巾は120℃で16℃であり、高温側の吸熱ピークの熱
量比は120℃で65%であった。また、得られた樹脂
組成物を用いる以外は、実施例1と同様にして予備発泡
粒子及び発泡成形体を得た。得られた結果を表1に示
す。
Comparative Example 3 Ethylene-butene-1 copolymer resin (manufactured by Sumitomo Chemical Co., Ltd., prototype, melt flow rate 2 g) produced by a high-pressure bulk method (polymerization pressure 1000 kg / cm 2 , polymerization temperature 200 ° C.) / 10 minutes, density 0.930 g / cm 3 ) 100
Granulation was carried out in the same manner as in Example 1 except that parts by weight were used. The peak temperature width of the obtained resin and the heat quantity ratio of the endothermic peak on the high temperature side were measured in the same manner as in Example 1. As a result, the peak temperature width was 16 ° C at 120 ° C, and the heat quantity ratio of the endothermic peak on the high temperature side was obtained. Was 65% at 120 ° C. Further, pre-expanded particles and a foamed molded product were obtained in the same manner as in Example 1 except that the obtained resin composition was used. The results obtained are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の組成物を120〜127℃の温度で熱
処理した後、示差走査熱量測定によって得られる融解曲
線を表す図の一例である。
FIG. 1 is an example of a diagram showing a melting curve obtained by differential scanning calorimetry after heat treating a composition of the present invention at a temperature of 120 to 127 ° C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(A)メルトフローレートが0.5〜50
g/10分、密度が0.90g/cm3 以上0.93g
/cm3 未満のエチレン−α−オレフィン共重合体樹脂
70〜90重量%、および(B)メルトフローレートが
0.5〜50g/10分、密度が0.93g/cm3
上0.96g/cm3 以下のエチレン−α−オレフィン
共重合体樹脂10〜30重量%を含有する、メルトフロ
ーレートが0.5〜5g/10分、密度が0.92g/
cm3 以上0.94g/cm3 以下の樹脂組成物であっ
て、120℃〜127℃の温度で熱処理した後、示差走
査熱量測定によって得られる融解曲線に2つの吸熱ピー
クが現われ、そのピーク温度巾が15℃以上、高温側の
吸熱ピークの熱量比が30〜60%であることを特徴と
する無架橋発泡用エチレン−α−オレフィン共重合体樹
脂組成物。
1. A melt flow rate of 0.5 to 50.
g / 10 minutes, density 0.90 g / cm 3 or more 0.93 g
70 to 90% by weight of ethylene-α-olefin copolymer resin of less than 1 / cm 3 , and (B) melt flow rate of 0.5 to 50 g / 10 minutes, and density of 0.93 g / cm 3 or more and 0.96 g / cm 3 or less containing 10 to 30 wt% of ethylene-α-olefin copolymer resin, melt flow rate of 0.5 to 5 g / 10 minutes, and density of 0.92 g /
A cm 3 or more 0.94 g / cm 3 or less of the resin composition, after heat treatment at a temperature of 120 ° C. ~ 127 ° C., appeared two endothermic peaks in the melting curve obtained by differential scanning calorimetry, the peak temperature An ethylene-α-olefin copolymer resin composition for non-crosslinking foaming, which has a width of 15 ° C or more and a heat quantity ratio of an endothermic peak on a high temperature side of 30 to 60%.
【請求項2】(A)エチレン−α−オレフィン共重合体
樹脂が、メルトフローレートが0.5〜10g/10
分、密度が0.91g/cm3 以上0.93g/cm3
未満のエチレン−α−オレフィン共重合体樹脂である請
求項1記載の無架橋発泡用エチレン−α−オレフィン共
重合体樹脂組成物。
2. An ethylene-α-olefin copolymer resin (A) having a melt flow rate of 0.5 to 10 g / 10.
Min, density 0.91g / cm 3 or more 0.93g / cm 3
The ethylene-α-olefin copolymer resin composition for non-crosslinking foaming according to claim 1, which is less than ethylene-α-olefin copolymer resin.
JP00702594A 1994-01-26 1994-01-26 Non-crosslinked foaming ethylene-α-olefin copolymer resin composition Expired - Fee Related JP3367059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00702594A JP3367059B2 (en) 1994-01-26 1994-01-26 Non-crosslinked foaming ethylene-α-olefin copolymer resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00702594A JP3367059B2 (en) 1994-01-26 1994-01-26 Non-crosslinked foaming ethylene-α-olefin copolymer resin composition

Publications (2)

Publication Number Publication Date
JPH07216153A true JPH07216153A (en) 1995-08-15
JP3367059B2 JP3367059B2 (en) 2003-01-14

Family

ID=11654509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00702594A Expired - Fee Related JP3367059B2 (en) 1994-01-26 1994-01-26 Non-crosslinked foaming ethylene-α-olefin copolymer resin composition

Country Status (1)

Country Link
JP (1) JP3367059B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126641A (en) * 2008-11-27 2010-06-10 Sumitomo Chemical Co Ltd Resin composition for use in non-crosslinking in-mold expansion, non-crosslinked in-mold expansion-molded article and method for manufacturing the same
WO2015076306A1 (en) 2013-11-20 2015-05-28 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
WO2022196372A1 (en) 2021-03-15 2022-09-22 株式会社ジェイエスピー Polyethylene resin foamed particle, and method for producing same
WO2023067953A1 (en) * 2021-10-21 2023-04-27 株式会社ジェイエスピー Polyethylene resin foam particles, and method for producing same
WO2023189115A1 (en) * 2022-03-30 2023-10-05 株式会社ジェイエスピー Expanded bead production method, and expanded beads

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126641A (en) * 2008-11-27 2010-06-10 Sumitomo Chemical Co Ltd Resin composition for use in non-crosslinking in-mold expansion, non-crosslinked in-mold expansion-molded article and method for manufacturing the same
WO2015076306A1 (en) 2013-11-20 2015-05-28 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
CN105764968A (en) * 2013-11-20 2016-07-13 株式会社钟化 Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JPWO2015076306A1 (en) * 2013-11-20 2017-03-16 株式会社カネカ Polyethylene resin foamed particles, polyethylene resin in-mold foam molded product, and method for producing the same
US10351688B2 (en) 2013-11-20 2019-07-16 Kaneka Corporation Polyethylene resin foamed particles, polyethylene resin in-mold foam-molded article, and production methods thereof
WO2022196372A1 (en) 2021-03-15 2022-09-22 株式会社ジェイエスピー Polyethylene resin foamed particle, and method for producing same
WO2023067953A1 (en) * 2021-10-21 2023-04-27 株式会社ジェイエスピー Polyethylene resin foam particles, and method for producing same
JP2023062493A (en) * 2021-10-21 2023-05-08 株式会社ジェイエスピー Polyethylene resin foam particles, and method for producing the same
WO2023189115A1 (en) * 2022-03-30 2023-10-05 株式会社ジェイエスピー Expanded bead production method, and expanded beads

Also Published As

Publication number Publication date
JP3367059B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP4111417B2 (en) Polypropylene resin foam particles and in-mold molded product
JP3548632B2 (en) Polypropylene resin composition, foam and production method thereof
JPH0686544B2 (en) Non-crosslinked linear low density polyethylene pre-expanded particles and molding method thereof
EP0918066B1 (en) Shock absorbing material
JPS60168632A (en) Expanded molding of bridged polypropylene resin
JPH05202221A (en) Foam based on high-impact copolymer
JP3367059B2 (en) Non-crosslinked foaming ethylene-α-olefin copolymer resin composition
JP3898623B2 (en) Insulating polyethylene container and method for producing the same
JP3382499B2 (en) Crosslinked polyethylene resin foam and method for producing the same
JP2878527B2 (en) Pre-expanded particles of polyethylene resin
JP2637504B2 (en) Polypropylene-based resin pre-expanded particles and method for producing the same
JP4615181B2 (en) Composition and use thereof
JP2000159922A (en) Production of pre-expanded particle
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JP4140107B2 (en) Ethylene resin composition and foam comprising the same
JP2005506429A (en) Use of polypropylene-based compositions in expanded beads
JP3888837B2 (en) Polypropylene resin foam molded article and method for producing the same
JP4739308B2 (en) Laminate and its use
JPH0257576B2 (en)
JPH02113035A (en) Preparation of master batch composition
JP3186800B2 (en) Foamable polyolefin resin composition
JP3186801B2 (en) Crosslinked polyolefin foamed resin composition
JP3139789B2 (en) Polyolefin foamable resin composition and crosslinked polyolefin resin foam
JPH01135806A (en) Straight-chain low-density polyethylene for non-crosslinking expansion molding
JPH03126736A (en) Production of polypropylene crosslinked form

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121108

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131108

LAPS Cancellation because of no payment of annual fees