JPH07206418A - Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound - Google Patents

Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound

Info

Publication number
JPH07206418A
JPH07206418A JP6005949A JP594994A JPH07206418A JP H07206418 A JPH07206418 A JP H07206418A JP 6005949 A JP6005949 A JP 6005949A JP 594994 A JP594994 A JP 594994A JP H07206418 A JPH07206418 A JP H07206418A
Authority
JP
Japan
Prior art keywords
silicon carbide
fine powder
type silicon
result
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6005949A
Other languages
Japanese (ja)
Inventor
Il Nam Jung
一 男 鄭
Gyu-Hwan Lee
揆 煥 李
Tetsuko So
哲 鎬 宋
Onsho Cho
恩 晶 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Advanced Institute of Science and Technology KAIST
Original Assignee
Korea Advanced Institute of Science and Technology KAIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Advanced Institute of Science and Technology KAIST filed Critical Korea Advanced Institute of Science and Technology KAIST
Priority to JP6005949A priority Critical patent/JPH07206418A/en
Publication of JPH07206418A publication Critical patent/JPH07206418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a silicon carbide fine powder with high purity in high yield by pyrolyzing a single trisila-alkane or a mixture of two or more trisila-alkanes selected from specified compds. in a carrier gas.
CONSTITUTION: Trisila-alkanes are obtd. by selecting from compds. expressed by formula I (R1, R2, R3 are each independently CH3 or Cl), formula II (R1, R2, R3 are each independently CH3 or H), formula III (R1, R2, R3 are each independently CH3 or Cl, or R3 is independently H or Cl), formula IV (R1, R2 are each indepenently CH3 or H). A single or mixture of the trisila-alkanes is diluted to ≤50 wt.% with a carrier gas comprising hydrogen, argon or a mixture of these, and then pyrolyzed at 750 to 1,600°C to produce a β-type silicon carbide fine powder. If necessary, when HCl remains in the reaction, the gas is subjected to secondary heat treatment in argon at 1,000 to 1,200°C to remove the residual HCl to obtain a β-type silicon carbide fine powder having 0.01 to 1 μm particle size.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トリシラアルカン化合
物の熱分解によりβ型炭化ケイ素微細粉末を製造する方
法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a β-type silicon carbide fine powder by thermal decomposition of a trisilaalkane compound.

【0002】[0002]

【従来の技術】一般に、炭化ケイ素は化学的及び物理的
に安定であり、耐熱性が良く、熱膨張係数も低く、耐摩
耗性に優れた有利な特性を有する材料である。そのた
め、炭化ケイ素はガスタービンの羽、自動車の付属品、
耐蝕性機械部品及び電子部品の製造に広く用いられてい
る。そして、これら部品を製造する場合は炭化ケイ素の
粉末を焼結して各部品を造るが、炭化ケイ素を焼結する
際は焼結促進剤を混ぜることもあるので、焼結する場合
に粒子は微細である程取扱いが容易である。
2. Description of the Related Art In general, silicon carbide is a material that is chemically and physically stable, has good heat resistance, has a low coefficient of thermal expansion, and has excellent properties such as excellent wear resistance. Therefore, silicon carbide is used for gas turbine wings, automobile accessories,
Widely used in the production of corrosion resistant mechanical parts and electronic parts. When manufacturing these parts, silicon carbide powder is sintered to make each part, but when sintering silicon carbide, a sintering accelerator may be mixed, so when sintering, the particles are The finer it is, the easier it is to handle.

【0003】従来、ケイ素化合物の気相熱分解反応を利
用したβ型炭化ケイ素微細粉末の製造方法が提案され、
該方法は純度が良く、粒子の径がミクロン(μm )程度
の微細な粉末を得る技術として注目されている。このよ
うな微細粉末の炭化ケイ素を製造する方法として、例え
ば特開昭59−102809号公報には、メチルトリク
ロロシラン(CH3 SiCl3 )を原料とし、運搬気体
に水素を使用して、1500〜2000℃の温度範囲内
でβ型炭化ケイ素微細粉末を製造する方法が提案されて
いる。また、特開昭60−46911号公報及び米国特
許4571331号明細書には、ジメチルシラン、トリ
メチルシラン、テトラメチルシラン、ジメチルジシラ
ン、テトラメチルジシラン、ペンタメチルトリシラン及
びヘキサメチルトリシラン等の塩素を有しない特定の有
機シラン化合物を使用し、β型炭化ケイ素微細粉末を製
造する方法も提案されている。一方、最近発表された特
開昭64−61307号及び64−83510号公報に
は、メチルジクロロシランのようなケイ素と水素の結合
及びケイ素と塩素の結合とを共に有する有機塩化シラン
化合物を水素又はメタンのような気体と一緒に熱分解
し、β型炭化ケイ素微細粉末を製造し得ると報告されて
いる。
Conventionally, there has been proposed a method for producing a β-type silicon carbide fine powder utilizing a gas phase thermal decomposition reaction of a silicon compound,
This method is attracting attention as a technique for obtaining fine powder having a high purity and a particle size of about micron (μm). As a method for producing such finely powdered silicon carbide, for example, in Japanese Patent Laid-Open No. 59-102809, methyltrichlorosilane (CH 3 SiCl 3 ) is used as a raw material, and hydrogen is used as a carrier gas. A method for producing a β-type silicon carbide fine powder within a temperature range of 2000 ° C. has been proposed. Further, in JP-A-60-46911 and US Pat. No. 4,571,331, chlorine such as dimethylsilane, trimethylsilane, tetramethylsilane, dimethyldisilane, tetramethyldisilane, pentamethyltrisilane and hexamethyltrisilane is disclosed. A method for producing a β-type silicon carbide fine powder using a specific organosilane compound that does not have been proposed. On the other hand, in the recently published JP-A-64-61307 and 64-83510, an organic chlorinated silane compound having both a bond of silicon and hydrogen and a bond of silicon and chlorine, such as methyldichlorosilane, is used. It is reported that it can be pyrolyzed with a gas such as methane to produce a β-type silicon carbide fine powder.

【0004】[0004]

【発明が解決しようとする課題】しかるに、このような
従来の製造方法において、トリクロロシラン化合物は熱
に極めて安定であるので炭化ケイ素の収得率が低く、生
成した炭化ケイ素微細粉末が反応管壁に析出して堅固に
付着しているので、反応生成物を取り出すことが難し
く、塩素を有しないシラン即ち、ジメチルシラン、ジシ
ラン及びトリシラン等の特定の有機シラン化合物を熱分
解した場合は、分解速度が低く収率が良いという利点は
あるが、反応物の製造過程が煩雑であるので、大量生産
に不適で生産原価が上昇するという不都合な点がある。
かつ、メチルジクロロシランのようにケイ素−水素結合
を有する有機塩化シランを水素又はメタンの気体と一緒
に熱分解する場合は、比較的低い温度で熱分解するので
反応条件を緩和し得るが、炭化ケイ素微細粉末の収得率
が低下するので経済性に乏しいという不都合な点があ
る。
However, in such a conventional production method, since the trichlorosilane compound is extremely stable to heat, the yield of silicon carbide is low, and the produced silicon carbide fine powder is deposited on the reaction tube wall. Since it deposits and adheres firmly, it is difficult to take out the reaction product, and when the silane having no chlorine, that is, a specific organic silane compound such as dimethylsilane, disilane and trisilane is thermally decomposed, the decomposition rate is Although it has an advantage of low yield and good yield, it has a disadvantage that it is not suitable for mass production and the production cost increases because the manufacturing process of the reaction product is complicated.
When pyrolyzing an organochlorosilane having a silicon-hydrogen bond, such as methyldichlorosilane, together with hydrogen or a gas of methane, the pyrolysis is carried out at a relatively low temperature and therefore the reaction conditions can be relaxed. There is an inconvenience that the economical efficiency is poor because the yield of fine silicon powder decreases.

【0005】[0005]

【課題を解決するための手段】それで、このような問題
点を解決するため、本発明者らは、経済的で大量生産が
可能なトリシラアルカン系列のメチルクロロトリシラア
ルカンとこれを還元して合成するメチルトリシラアルカ
ンを出発物質とし、運搬気体中でそれらを750〜16
00℃の温度範囲内で熱分解すると、球形のβ型高純度
炭化ケイ素微細粉末が反応管壁に付着せずに高収率で製
造できることを発見するに至った。
[Means for Solving the Problems] In order to solve such a problem, the present inventors have reduced the cost and trisilaalkane series of methylchlorotrisilaalkanes which are economical and capable of mass production. Starting from methyltrisilaalkane synthesized by
It has been discovered that when pyrolyzed within a temperature range of 00 ° C., spherical β-type high-purity silicon carbide fine powder can be produced in high yield without adhering to the reaction tube wall.

【0006】即ち、本発明者らは、先にクロロメチル基
を有するメチルクロロシランを銅触媒の存在下で金属ケ
イ素と反応させると、一般式(I)に示すトリシラアル
カン化合物を主生成物として得ることができたが(韓国
特許出願91−1055号)、これらは、本発明の炭化
ケイ素微細粉末の製造に適するものであることがわかっ
た。従って、本発明は、これら一般式(I)のメチルク
ロロトリシラアルカンと、これらをリチウムアルミニウ
ムヒドリド又はナトリウムヒドリドと反応させてケイ素
と塩素の結合をケイ素と水素の結合に変えた一般式(I
I)のメチルトリシラアルカンとを利用し、炭化ケイ素
微細粉末を製造することである。
That is, when the present inventors previously reacted methylchlorosilane having a chloromethyl group with metallic silicon in the presence of a copper catalyst, the trisilaalkane compound represented by the general formula (I) was used as a main product. Although they were obtained (Korean Patent Application No. 91-1055), they were found to be suitable for the production of the silicon carbide fine powder of the present invention. Therefore, the present invention provides the methyl chlorotrisilaalkanes of the general formula (I) and the general formula (I) in which the bond between silicon and chlorine is changed to a bond between silicon and hydrogen by reacting them with lithium aluminum hydride or sodium hydride.
The use of I), methyltrisilaalkane, is to produce silicon carbide fine powder.

【0007】[0007]

【化2】 [Chemical 2]

【0008】(式(I)中、R1 、R2 及びR3 は独立
的にCH3 又はClであり、式(II)中、R1 、R2
びR3 は独立的にCH3 又はHである)
(In the formula (I), R 1 , R 2 and R 3 are independently CH 3 or Cl, and in the formula (II), R 1 , R 2 and R 3 are independently CH 3 or H)

【0009】また、本発明者らは、先にジクロロメチル
基を有するシランを塩化水素と混合して金属ケイ素と反
応させると、一般式(III)のトリシラアルカン化合物を
主生成物として得ることができたが(韓国特許出願92
−10293号)、これらも本発明の炭化ケイ素微細粉
末の製造に適するものであることがわかった。
Further, the present inventors obtained a trisilaalkane compound of the general formula (III) as a main product by previously mixing silane having a dichloromethyl group with hydrogen chloride and reacting it with metallic silicon. (Korean patent application 92
It was found that these are also suitable for producing the silicon carbide fine powder of the present invention.

【0010】従って、本発明は、一般式(III)のメチル
クロロトリシラアルカンと、これらをリチウムアルミニ
ウムヒドリド又はナトリウムヒドリドと反応させてケイ
素と塩素の結合をケイ素と水素の結合に変えた一般式
(IV)のメチルトリシラアルカンを利用し、炭化ケイ素
微細粉末を製造することでもある。
Accordingly, the present invention provides a methyl chlorotrisilaalkane represented by the general formula (III) and a general formula in which a bond between silicon and chlorine is converted to a bond between silicon and hydrogen by reacting them with lithium aluminum hydride or sodium hydride. It is also to produce a silicon carbide fine powder by using the methyltrisilaalkane of (IV).

【0011】[0011]

【化3】 [Chemical 3]

【0012】(式(III)中、R1 及びR2 は独立的にC
3 又はClであり、R3 は独立的にH又はClであ
る。式(IV)中、R1 及びR2 は独立的にCH3 又はH
である)なお、一般式(IV)中、R1 がCH3 又はHで
あり、R2 がHの化合物は新規化合物である。
(In the formula (III), R 1 and R 2 are independently C
H 3 or Cl, and R 3 is independently H or Cl. In formula (IV), R 1 and R 2 are independently CH 3 or H
In the general formula (IV), a compound in which R 1 is CH 3 or H and R 2 is H is a novel compound.

【0013】本発明に係るβ型炭化ケイ素微細粉末製造
時に使用するトリシラアルカン系列の化合物の合成につ
いて詳しく説明すると、メチルクロロトリシラアルカン
(I)及び(III)はクロロメチル基を有する有機塩化シ
ランを金属ケイ素と反応させて得ることができる。この
反応においては銅を触媒に使用し、カドミウムを助触媒
に使用する。かつ、このように合成されたメチルクロロ
トリシラアルカン(I)及び(III)のケイ素と塩素の結
合は、エーテル溶液中で金属ヒドリドで還元すると、ケ
イ素と水素の結合に変換され、メチルトリシラアルカン
(II)及び(IV)が得られるが、この場合の反応式は上
記した通りである。
The synthesis of the trisilaalkane series compound used in the production of the β-type silicon carbide fine powder according to the present invention will be described in detail. Methylchlorotrisilaalkanes (I) and (III) are organic chlorides having a chloromethyl group. It can be obtained by reacting silane with metallic silicon. In this reaction, copper is used as the catalyst and cadmium is used as the cocatalyst. In addition, the bond between silicon and chlorine in the methylchlorotrisilaalkanes (I) and (III) thus synthesized is converted into a bond between silicon and hydrogen when reduced with a metal hydride in an ether solution, and methyltrisila. Alkanes (II) and (IV) are obtained, and the reaction formula in this case is as described above.

【0014】該メチルクロロトリシラアルカン(I)
(III)とメチルトリシラアルカン(II)(IV)は、それ
ぞれ単独で又は二つ以上の混合物を、水素又はアルゴン
又はそれらの混合気体で50%以下に希釈し、750〜
1600℃で熱分解すると、球形のβ型炭化ケイ素微細
粉末を製造することができる。
The methylchlorotrisilaalkane (I)
(III) and methyltrisilaalkane (II) (IV) are used alone or in a mixture of two or more, diluted with hydrogen or argon or a mixed gas thereof to 50% or less, and 750 to 750
When pyrolyzed at 1600 ° C., spherical β-type silicon carbide fine powder can be produced.

【0015】本発明は、また一般式(III)の化合物をリ
チウムアルミニウムヒドリド又はナトリウムヒドリドと
反応させて、一般式(IV)のメチルトリシラアルカンを
得ることでもある。
The present invention also comprises reacting a compound of general formula (III) with lithium aluminum hydride or sodium hydride to obtain a methyltrisilaalkane of general formula (IV).

【0016】本発明において、該トリシラアルカンを熱
分解して微細なβ型炭化ケイ素微細粉末を得る方法は、
水素又はアルゴンのような運搬気体を使用し、気化装置
で気化させたトリシラアルカンを希釈し、750〜16
00℃に加熱した反応管に吹き入れて熱分解させる。反
応器は垂直又は水平に置いて使用する。運搬気体に混合
されているトリシラアルカンの濃度は50%以下であ
り、容積比で50%以下であることが好ましい。濃度が
低い程炭化ケイ素の粒子が小さく、焼結が容易である。
濃度が高いと収率が低下し、炭化ケイ素の粒子が大きく
なり、分布が広くなるので、焼結には不適な状態にな
る。しかし、濃度を過度に低下することは不適であり、
濃度の最大希釈度は容積比で0.2%程度が良く、好ま
しくは1%位である。
In the present invention, the method of pyrolyzing the trisilaalkane to obtain fine β-type silicon carbide fine powder is
A carrier gas such as hydrogen or argon is used to dilute the trisilaalkane vaporized in the vaporizer to 750-16
It is blown into a reaction tube heated to 00 ° C. for thermal decomposition. The reactor is used vertically or horizontally. The concentration of trisilaalkane mixed in the carrier gas is 50% or less, and preferably 50% or less by volume. The lower the concentration, the smaller the silicon carbide particles and the easier the sintering.
If the concentration is high, the yield is reduced, the particles of silicon carbide are large, and the distribution is wide, so that the state is unsuitable for sintering. However, it is inappropriate to reduce the concentration too much,
The maximum dilution degree of the concentration is preferably about 0.2% by volume, preferably about 1%.

【0017】トリシラアルカンの熱分解温度は750〜
1600℃であり、好ましくは800〜1500℃であ
る。この場合、温度が低いと熱分解速度が急激に下降
し、750℃よりも低いと炭化ケイ素の生成以前にオイ
ルのような高分子物質が反応管壁に付着して炭化ケイ素
の収率が低下する。一方、温度が高いと熱分解速度は速
くなるが、1600℃よりも高いとメタンの発生量が多
くなり、遊離炭素が生成して炭化ケイ素の純度が悪くな
る。前記製造において、メチルクロロトリシラアルカン
を使用し、反応物に残留塩化水素が残っている場合は、
アルゴン気体中1000〜1200℃で塩化水素気体が
流出しなくなるまで二次熱処理を行い、残留塩化水素を
除去する。
The thermal decomposition temperature of trisilaalkane is 750 to 750.
The temperature is 1600 ° C, preferably 800 to 1500 ° C. In this case, when the temperature is low, the thermal decomposition rate drops sharply, and when the temperature is lower than 750 ° C, a polymer substance such as oil adheres to the reaction tube wall before the formation of silicon carbide and the yield of silicon carbide decreases. To do. On the other hand, if the temperature is high, the thermal decomposition rate is high, but if it is higher than 1600 ° C., the amount of methane generated is large and free carbon is generated to deteriorate the purity of silicon carbide. In the above production, when methylchlorotrisilaalkane was used and residual hydrogen chloride remained in the reaction product,
Secondary heat treatment is performed at 1000 to 1200 ° C. in argon gas until hydrogen chloride gas does not flow out to remove residual hydrogen chloride.

【0018】運搬気体としては、ヘリウム、アルゴン等
の不活性気体と水素のような還元性気体とを単独又は二
つ以上混合して使用することができる。好ましい運搬気
体は水素であり、水素にアルゴン又はヘリウムを混ぜて
も良い。
As the carrier gas, an inert gas such as helium or argon and a reducing gas such as hydrogen may be used alone or in combination of two or more. The preferred carrier gas is hydrogen, and hydrogen may be mixed with argon or helium.

【0019】[0019]

【発明の効果】トリシラアルカンの気体を上記の条件で
熱分解すると、微細な球形のβ型炭化ケイ素粉末が得ら
れる。該粒子の径は0.01〜1μm の範囲であり、そ
の分布度も極めて良い。それら反応物の濃度及び反応温
度を調節することにより、粒子の大きさ及び分布度を調
節することができる。出発物質のトリシラアルカンを精
製して使用することにより、高純度の炭化ケイ素を得る
ことができる。化学的方法を使用せず、物理的に粉砕す
る方法は微細な粉末を得ることが難しく、該粉砕工程中
に不純物が混入されて高純度の炭化ケイ素粉末が得られ
ず、炭化ケイ素の純度が悪いと完成品の性能が低下す
る。
When the gas of trisilaalkane is pyrolyzed under the above conditions, fine spherical β-type silicon carbide powder is obtained. The diameter of the particles is in the range of 0.01 to 1 μm, and the distribution thereof is also very good. By controlling the concentration of the reactants and the reaction temperature, the size and distribution of particles can be controlled. High purity silicon carbide can be obtained by purifying and using trisilaalkane as a starting material. It is difficult to obtain a fine powder by a method of physically crushing without using a chemical method, impurities are mixed during the crushing step, and a high-purity silicon carbide powder cannot be obtained. If it is bad, the performance of the finished product will deteriorate.

【0020】本発明の炭化ケイ素の製造方法において
は、原料としてトリシラアルカンが使用され、テトラメ
チルシラン又は他のケイ素化合物を使用する方法に比
べ、ケイ素に対する炭素の比重が多くないので、製品中
に過多な炭素が残留しない。
In the method for producing silicon carbide of the present invention, trisilaalkane is used as a raw material, and the specific gravity of carbon to silicon is not so large as compared with the method using tetramethylsilane or other silicon compounds. Excessive carbon does not remain in the.

【0021】[0021]

【実施例】以下、本発明を実施例により説明するが、本
発明は以下の実施例に限定されず、特許請求の範囲内で
多様に変更して使用することができる。本発明に係る炭
化ケイ素粉末の製造時の下記実施例の反応条件を要約
し、表1に示した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples and can be variously modified and used within the scope of the claims. The reaction conditions of the following examples during the production of the silicon carbide powder according to the present invention are summarized in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】〔実施例1〕炭化ケイ素発熱体の内装され
た直径600mm、長さ700mmの電気炉内に、内径65
mm、長さ1200mmのアルミナ反応管を設置し、温度測
定用白金、白金−ロジウム熱電対と、プログラム温度調
節機能を有する温度調節器とを装着した。アルミナ反応
管の両方側をステンレス板により閉鎖し、入口側の板に
は、運搬気体及び原料注入用ノズルと、温度記録器とに
連結した内部温度測定用白金、白金−ロジウム熱電対を
装着した。かつ、出口側の板には、廃気体排出用ノズル
を装着し、運搬気体に水素を使用して600ml/分の流
速で流し、温度をあげて中心部位の温度を1400℃に
維持した。水素気体は超高純度品を使用し、アルゴン気
体は水分乾燥器及び酸素除去装置をそれぞれ通した後使
用した。
Example 1 In an electric furnace having a diameter of 600 mm and a length of 700 mm containing a silicon carbide heating element, an inner diameter of 65 mm was used.
An alumina reaction tube having a length of mm and a length of 1200 mm was installed, and platinum for temperature measurement, a platinum-rhodium thermocouple, and a temperature controller having a program temperature adjusting function were attached. Both sides of the alumina reaction tube were closed with stainless steel plates, and the inlet plate was equipped with a nozzle for injecting carrier gas and raw materials, and platinum for internal temperature measurement connected to a temperature recorder, and a platinum-rhodium thermocouple. . Moreover, a nozzle for discharging a waste gas was attached to the plate on the outlet side, hydrogen was used as a carrier gas to flow at a flow rate of 600 ml / min, and the temperature was raised to maintain the temperature of the central portion at 1400 ° C. As the hydrogen gas, an ultra-high purity product was used, and the argon gas was used after passing through a moisture dryer and an oxygen removing device, respectively.

【0024】次いで、原料の2,2,6,6−テトラメ
チル−4,4−ジクロロ−2,4,6−トリシラヘプタ
ンを、150℃に維持した予熱器に注射器ポンプにより
所定速度で注入して完全に気化させた後、反応管内に運
搬気体と一緒に導入して気相熱分解反応させた。熱分解
反応中に生成する微細な炭化ケイ素粉末は殆ど反応管内
に残留するが、一部が運搬気体と一緒に反応管外に流出
するので、排出用ノズルにはミクロン布フィルターを有
したステンレス圧力フィルターを連結し、運搬気体から
粉末を収集し得るようにした。原料の全てを注入した後
は、運搬気体の流速を若干遅くして、1400℃で一時
間維持した。運搬気体の水素をアルゴンに変え、電気炉
の温度が常温に下降した後、アルミナ反応管端部のステ
ンレス板を外して、熱分解生成物を回収したが、これら
は大部分電気炉の中心部から回収され、灰色を帯びた微
細粉末であって、若干の塩化水素を包含し、収得率は8
0.2%であった。
Then, the raw material 2,2,6,6-tetramethyl-4,4-dichloro-2,4,6-trisilaheptane was injected into the preheater maintained at 150 ° C. by a syringe pump at a predetermined rate. After completely vaporizing it, it was introduced into the reaction tube together with a carrier gas to cause a vapor phase thermal decomposition reaction. Most of the fine silicon carbide powder generated during the pyrolysis reaction remains inside the reaction tube, but part of it flows out of the reaction tube along with the carrier gas, so the stainless steel pressure with a micron cloth filter in the discharge nozzle. The filter was connected so that the powder could be collected from the carrier gas. After injecting all of the raw materials, the flow rate of the carrier gas was slightly reduced and the temperature was maintained at 1400 ° C. for 1 hour. After changing the hydrogen in the carrier gas to argon and lowering the temperature of the electric furnace to room temperature, the stainless steel plate at the end of the alumina reaction tube was removed and the pyrolysis products were collected, but most of these were in the center of the electric furnace. It is a fine grayish powder, which contains some hydrogen chloride and has a yield of 8
It was 0.2%.

【0025】再び、前記微粉末を電気炉内に入れ、アル
ゴン気体を通過させて1200℃で塩化水素気体が流出
しなくなるまで熱処理を行い、常温で取り出すと、重さ
の減少は無視する程度であり、元素分析の結果は、表1
に示したようにSi 69.4%、C 30.2%であ
って、赤外線分光器の分析結果は850cm-1付近で、S
i−Cのピークが確認された。粉末の比表面積は18.
2m2/gであって、走査電子顕微鏡で粉末の模様及び大き
さを検査した結果、それら粉末は球形で約0.3μm の
粒子径を有し、粒子の分布が極めて均一であった。これ
らを再び透過電子顕微鏡で調査した結果、球形の粉末は
約50nm程度の超微細結晶粒子が約0.2〜0.3μm
程度の粒子に凝集していることが確認された。これらの
X線回折分析の結果、β型炭化ケイ素の結晶を確認し
た。
Again, the fine powder is placed in an electric furnace, heat-treated at 1200 ° C. until hydrogen chloride gas does not flow out at 1200 ° C., and taken out at room temperature, the decrease in weight is negligible. Yes, the results of elemental analysis are shown in Table 1.
As shown in Fig. 6, Si 69.4% and C 30.2%, and the analysis result of the infrared spectroscope is around 850 cm -1 , and S
The i-C peak was confirmed. The specific surface area of the powder is 18.
The powder was 2 m 2 / g, and the powder pattern and size were examined by a scanning electron microscope. As a result, the powder had a spherical shape and a particle size of about 0.3 μm, and the particle distribution was extremely uniform. As a result of investigating these again with a transmission electron microscope, it was found that the spherical powder had an ultrafine crystal particle size of about 50 nm of about 0.2 to 0.3 μm.
It was confirmed that the particles were aggregated to some extent. As a result of these X-ray diffraction analysis, β-type silicon carbide crystals were confirmed.

【0026】〔実施例2〕実施例1と同様な方法によ
り、水素の運搬気体中で、原料として2.6−ジメチル
−2,4,4,6−テトラクロロ−2,4,6−トリシ
ラヘプタンを使用し、熱分解生成物として灰褐色の微細
粉末を84.1%の高収得率で得た。走査及び透過顕微
鏡分析の結果、粒子の大きさは約0.2μm で、粒子の
分布は均一で、比表面積は33.5m2/gで、元素分析の
結果はSi 70.2%、C 29.4%であって、赤
外線分光分析の結果及びX線回折分析の結果、β型炭化
ケイ素であることを確認した。
Example 2 In the same manner as in Example 1, 2.6-dimethyl-2,4,4,6-tetrachloro-2,4,6-tritrie as a starting material was used in a hydrogen-carrying gas. Silaheptane was used to obtain an off-brown fine powder as a thermal decomposition product with a high yield of 84.1%. As a result of scanning and transmission microscope analysis, the particle size was about 0.2 μm, the particle distribution was uniform, the specific surface area was 33.5 m 2 / g, and the elemental analysis result was Si 70.2%, C 29 It was 0.4%, and it was confirmed from the results of infrared spectroscopic analysis and X-ray diffraction analysis that it was β-type silicon carbide.

【0027】〔実施例3〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として2,2,4,4,
6,6−ヘキサクロロ−2,4,6−トリシラヘプタン
を使用し、熱分解生成物として灰褐色の微細粉末を8
8.1%の高収得率で得た。走査及び透過顕微鏡分析の
結果、粒子の大きさは約0.3μm で、粒子の分布は均
一で、比表面積は17.5m2/g、元素分析の結果はSi
70.1%、C 29.6%で、赤外線分光分析の結
果及びX線回折分析の結果、β型炭化ケイ素であること
を確認した。
[Embodiment 3] In the same manner as in Embodiment 1, 2,2,4,4 as a raw material in a hydrogen-carrying gas.
6,6-hexachloro-2,4,6-trisilaheptane was used, and a grayish brown fine powder was used as a thermal decomposition product.
It was obtained with a high yield of 8.1%. As a result of scanning and transmission microscope analysis, the particle size was about 0.3 μm, the particle distribution was uniform, the specific surface area was 17.5 m 2 / g, and the elemental analysis result was Si.
At 70.1% and C 29.6%, the result of infrared spectroscopic analysis and the result of X-ray diffraction analysis confirmed that it was β-type silicon carbide.

【0028】〔実施例4〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として2,2,2,4,
4,6,6,6−オクタクロロ−1,3,5−トリシラ
ペンタンを使用し、熱分解生成物として灰褐色の微細粉
末を83.7%の高収得率で得た。走査及び透過電子顕
微鏡分析の結果、粒子の大きさは約0.3μm で、粒子
分布は均一で、比表面積は19.5m2/g、元素分析の結
果はSi 69.8%、C 30.1%であって、赤外
線分光分析の結果及びX線回折分析の結果、β型炭化ケ
イ素であることを確認した。
[Embodiment 4] In the same manner as in Embodiment 1, 2, 2, 2, 4 as a raw material in a hydrogen-carrying gas.
Using 4,6,6,6-octachloro-1,3,5-trisilapentane, an off-brown fine powder was obtained as a thermal decomposition product at a high yield of 83.7%. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.3 μm, the particle distribution was uniform, the specific surface area was 19.5 m 2 / g, and the elemental analysis result was Si 69.8%, C 30. It was 1%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0029】〔実施例5〕実施例1と同様な方法によ
り、水素とアルゴンの混合比1:2の運搬気体中で、原
料として2,2,6,6−テトラメチル−2,4,6−
トリシラヘプタンを使用し、熱分解生成物として灰褐色
の微細粉末を86.6%の高収得率で得た。この場合
は、原料がケイ素−塩素結合を包んでいないので、残留
塩化水素を除去するための2次熱処理過程を省いた。走
査及び透過電子顕微鏡分析の結果、粒子の大きさは約
0.3μm で、粒子分布は均一で、比表面積は20.5
m2/g、元素分析の結果はSi 69.1%、C 30.
5%であって、赤外線分光分析の結果及びX線回折分析
の結果、β型炭化ケイ素であることを確認した。
[Example 5] By the same method as in Example 1, 2,2,6,6-tetramethyl-2,4,6 was used as a raw material in a carrier gas having a mixing ratio of hydrogen and argon of 1: 2. −
Using trisila heptane, an off-brown fine powder was obtained as a pyrolysis product with a high yield of 86.6%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm, the particle distribution was uniform, and the specific surface area was 20.5.
m 2 / g, elemental analysis result was Si 69.1%, C 30.
It was 5%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0030】〔実施例6〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として2,6−ジメチル−
2,4,6−トリシラヘプタンを使用し、熱分解生成物
として灰褐色の微細粉末を82.8%の高収得率で得
た。この場合は原料がケイ素−塩素結合を包んでいない
ので、残留塩化水素を除去するための2次熱処理過程を
省いた。走査及び透過電子顕微鏡分析の結果、粒子の大
きさは約0.3μm で、粒子分布は均一で、比表面積は
19.0m2/g、元素分析の結果はSi 70.2%、C
29.3%であって、赤外線分光分析の結果及びX線
回折分析の結果、β型炭化ケイ素であることを確認し
た。
Example 6 By the same method as in Example 1, 2,6-dimethyl-
2,4,6-Trisilaheptane was used to obtain an off-brown fine powder as a thermal decomposition product with a high yield of 82.8%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm, the particle distribution was uniform, the specific surface area was 19.0 m 2 / g, and the elemental analysis result was Si 70.2%, C
It was 29.3%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0031】〔実施例7〕実施例1と同様な方法によ
り、アルゴン運搬気体中で、原料として2,6−ジメチ
ル−2,4,6−トリシラヘプタンを使用し、熱分解生
成物として灰褐色の微細粉末を93.1%の高取得率で
得た。この場合は原料がケイ素−塩素結合を包んでいな
いので、残留塩化水素を除去するための2次熱処理過程
を省いた。走査及び透過電子顕微鏡分析の結果、粒子の
大きさは約0.3μm で、粒子の分布は均一で、比表面
積は22.0m2/g、元素分析の結果はSi 65.0
%、C34.0%であって、赤外線分光分析の結果及び
X線回折分析の結果、β型炭化ケイ素であることを確認
した。
Example 7 In the same manner as in Example 1, 2,6-dimethyl-2,4,6-trisilaheptane was used as a raw material in an argon carrier gas, and ash was used as a thermal decomposition product. A fine brown powder was obtained with a high yield of 93.1%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm, the particle distribution was uniform, the specific surface area was 22.0 m 2 / g, and the elemental analysis result was Si 65.0.
% And C34.0%, and as a result of infrared spectroscopic analysis and a result of X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0032】〔実施例8〕実施例1と同様な方法によ
り、水素とアルゴンの混合比1:2の運搬気体中で、原
料として2,4,6−トリシラヘプタンを使用し、熱分
解生成物として灰褐色の微細粉末を94.1%の高収得
率で得た。この場合は原料がケイ素−塩素結合を包んで
いないので、残留塩化水素を除去するための2次熱処理
過程を省いた。走査及び透過電子顕微鏡分析の結果、粒
子の大きさは約0.3μm で、粒子分布は均一で、比表
面積は23.0m2/g、元素分析の結果はSi 69.8
%、C30.0%であって、赤外線分光分析の結果及び
X線回折分析の結果、β型炭化ケイ素であることを確認
した。
[Example 8] By the same method as in Example 1, using 2,4,6-trisilaheptane as a raw material in a carrier gas having a mixture ratio of hydrogen and argon of 1: 2, a thermal decomposition product was produced. As a product, an off-brown fine powder was obtained at a high yield of 94.1%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.3 μm, the particle distribution was uniform, the specific surface area was 23.0 m 2 / g, and the elemental analysis result was Si 69.8.
% And C30.0%, and as a result of infrared spectroscopic analysis and a result of X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0033】〔実施例9〕実施例1と同様な方法によ
り、水素とアルゴンの混合比1:2の運搬気体中で、原
料として1,3,5−トリシラペンタンを使用し、熱分
解生成物として灰褐色の微細粉末を81.1%の高収得
率で得た。この場合は原料がケイ素−塩素結合を包んで
いないので、残留塩化水素を除去するための2次熱処理
過程を省いた。走査及び透過電子顕微鏡分析の結果、粒
子の大きさは約0.2μm で、粒子分布は均一で、比表
面積は29.2m2/g、元素分析の結果はSi 70.9
%、C29.0%であって、赤外線分光分析の結果及び
X線回折分析の結果、β型炭化ケイ素であることを確認
した。
[Example 9] By the same method as in Example 1, 1,3,5-trisilapentane was used as a raw material in a carrier gas having a mixture ratio of hydrogen and argon of 1: 2, and thermal decomposition was generated. As a substance, an off-brown fine powder was obtained at a high yield of 81.1%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.2 μm, the particle distribution was uniform, the specific surface area was 29.2 m 2 / g, and the elemental analysis result was Si 70.9.
% And C29.0%, and the result of infrared spectroscopic analysis and the result of X-ray diffraction analysis confirmed that it was β-type silicon carbide.

【0034】〔実施例10〕実施例1と同様な方法によ
り、アルゴン運搬気体中で、原料として2,4,6−ト
リシラヘプタンと1,3,5−トリシラペンタンとを
1:1の混合比で使用し、熱分解生成物として灰褐色の
微細粉末を88.1%の高収得率で得た。この場合は原
料がケイ素−塩素結合を包んでいないので、残留塩化水
素を除去するための2次熱処理過程を省いた。走査及び
透過電子顕微鏡分析の結果、粒子の大きさは約0.1μ
m で、粒子分布は均一で、比表面積は50.6m2/g、元
素分析の結果はSi 69.8%、C 29.0%であ
って、赤外線分光分析の結果及びX線回折分析の結果、
β型炭化ケイ素であることを確認した。
Example 10 In the same manner as in Example 1, 2,4,6-trisilaheptane and 1,3,5-trisilapentane were used as starting materials in an argon carrier gas at a ratio of 1: 1. Used in a mixing ratio, a fine brownish-brown powder was obtained as a pyrolysis product with a high yield of 88.1%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.1 μm.
In m, the particle distribution is uniform, the specific surface area is 50.6 m 2 / g, the elemental analysis result is Si 69.8%, C 29.0%, and the results of infrared spectroscopic analysis and X-ray diffraction analysis are as follows. result,
It was confirmed to be β-type silicon carbide.

【0035】〔実施例11〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として1,1,1−トリク
ロロ−2−(トリクロロシリル)−3,3−ジメチル−
1,3−ジシラブタンを使用し、熱分解生成物として灰
褐色の微細粉末を80.8%の高収得率で得た。走査及
び透過電子顕微鏡分析の結果、粒子の大きさは約0.3
μm で、粒子分布は均一で、比表面積は25.1m2/g
で、元素分析の結果はSi 69.2%、C 30.2
%であって、赤外線分光分析の結果及びX線回折分析の
結果、β型炭化ケイ素であることを確認した。
Example 11 In the same manner as in Example 1, 1,1,1-trichloro-2- (trichlorosilyl) -3,3-dimethyl- was used as a raw material in a hydrogen-carrying gas.
Using 1,3-disilabutane, an off-brown fine powder was obtained as a thermal decomposition product at a high yield of 80.8%. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.3.
μm, particle distribution is uniform, specific surface area is 25.1 m 2 / g
The result of elemental analysis is Si 69.2%, C 30.2
%, And it was confirmed from the results of infrared spectroscopic analysis and X-ray diffraction analysis that it was β-type silicon carbide.

【0036】〔実施例12〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として1,1−ジクロロ−
2−(ジクロロシリル)−3,3−ジメチル−1,3−
ジシラブタンを使用し、熱分解生成物として灰褐色の微
細粉末を81.2%の高収得率で得た。走査及び透過電
子顕微鏡分析の結果、粒子の大きさは約0.3μm で、
粒子の分布は均一で、比表面積は20.7m2/gで、元素
分析の結果はSi 70.2%、C29.2%であっ
て、赤外線分光分析の結果及びX線回折分析の結果、β
型炭化ケイ素であることを確認した。
[Embodiment 12] In the same manner as in Embodiment 1, 1,1-dichloro-
2- (dichlorosilyl) -3,3-dimethyl-1,3-
A fine brownish-brown powder was obtained as a pyrolysis product with a high yield of 81.2% using disilabutane. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm.
The distribution of particles is uniform, the specific surface area is 20.7 m 2 / g, the elemental analysis results are Si 70.2% and C 29.2%, and the results of infrared spectroscopic analysis and X-ray diffraction analysis are as follows: β
It was confirmed to be type silicon carbide.

【0037】〔実施例13〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として1,1,1,3−テ
トラクロロ−2−(トリクロロシリル)−3−メチル−
1,3−ジシラブタンを使用し、熱分解生成物として灰
褐色の微細粉末を89.3%の高収得率で得た。走査及
び透過電子顕微鏡分析の結果、粒子の大きさは約0.3
μm で、粒子の分布は均一で、比表面積は23.2m2/
g、元素分析の結果はSi 70.3%、C 29.5
%であって、赤外線分光分析の結果及びX線回折分析の
結果、β型炭化ケイ素であることを確認した。
Example 13 In the same manner as in Example 1, 1,1,1,3-tetrachloro-2- (trichlorosilyl) -3-methyl- was used as a raw material in a hydrogen carrier gas.
Using 1,3-disilabutane, an off-brown fine powder was obtained as a thermal decomposition product at a high yield of 89.3%. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.3.
μm, the distribution of particles is uniform and the specific surface area is 23.2 m 2 /
g, the result of elemental analysis is Si 70.3%, C 29.5
%, And it was confirmed from the results of infrared spectroscopic analysis and X-ray diffraction analysis that it was β-type silicon carbide.

【0038】〔実施例14〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として1,1,1,3−テ
トラクロロ−2−(トリクロロシリル)−3−メチル−
1,3−ジシラブタンと1,1,3−トリクロロ−2−
(ジクロロシリル)−3−メチル−1,3−ジシラブタ
ンとを1:1の混合比で使用し、熱分解生成物として灰
褐色の微細粉末を94.1%の高収得率で得た。走査及
び透過電子顕微鏡分析の結果、粒子の大きさは約0.3
μm で、粒子の分布は均一で、比表面積は21.3m2/g
で、元素分析の結果はSi 69.8%、C 29.6
%であって、赤外線分光分析の結果及びX線回折分析の
結果、β型炭化ケイ素であることを確認した
Example 14 In the same manner as in Example 1, 1,1,1,3-tetrachloro-2- (trichlorosilyl) -3-methyl- was used as a raw material in a hydrogen carrier gas.
1,3-disilabutane and 1,1,3-trichloro-2-
(Dichlorosilyl) -3-methyl-1,3-disilabutane was used in a mixing ratio of 1: 1 to obtain an off-brown fine powder as a thermal decomposition product at a high yield of 94.1%. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.3.
μm, particle distribution is uniform, specific surface area is 21.3m 2 / g
The results of elemental analysis are Si 69.8% and C 29.6.
%, And the result of infrared spectroscopic analysis and the result of X-ray diffraction analysis confirmed that it was β-type silicon carbide.

【0039】〔実施例15〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として1,1,1,3,3
−ペンタクロロ−2−(トリクロロシリル)−1,3−
ジシラブタンを使用し、熱分解生成物として灰褐色の微
細粉末を83.3%の高収得率で得た。走査及び透過電
子顕微鏡分析の結果、粒子の大きさは約0.3μm で、
粒子の分布は均一で、比表面積は22.5m2/gで、元素
分析の結果はSi 69.2%、C30.2%であっ
て、赤外線分光分析の結果及びX線回折分析の結果、β
型炭化ケイ素であることを確認した
[Embodiment 15] In the same manner as in Embodiment 1, 1,1,1,3,3 as raw materials in hydrogen-carrying gas.
-Pentachloro-2- (trichlorosilyl) -1,3-
A fine brownish brown powder was obtained as a pyrolysis product with a high yield of 83.3% using disilabutane. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm.
The distribution of particles is uniform, the specific surface area is 22.5 m 2 / g, the elemental analysis result is Si 69.2%, C 30.2%, the infrared spectroscopic analysis result and the X-ray diffraction analysis result, β
Confirmed to be type silicon carbide

【0040】〔実施例16〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として1,1,3,3−テ
トラクロロ−2−(ジクロロシリル)−1,3−ジシラ
ブタンを使用し、熱分解生成物として灰褐色の微細粉末
を84.2%の高収得率で得た。走査及び透過電子顕微
鏡分析の結果、粒子の大きさは約0.3μm で、粒子の
分布は均一で、比表面積は18.8m2/gで、元素分析の
結果はSi 69.5%、C 30.3%であって、赤
外線分光分析の結果及びX線回折分析の結果、β型炭化
ケイ素であることを確認した
Example 16 In the same manner as in Example 1, 1,1,3,3-tetrachloro-2- (dichlorosilyl) -1,3-disilabutane was used as a raw material in a hydrogen-carrying gas. As a thermal decomposition product, an off-brown fine powder was obtained at a high yield of 84.2%. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm, the particle distribution was uniform, the specific surface area was 18.8 m 2 / g, and the elemental analysis result was Si 69.5%, C It was 30.3%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0041】〔実施例17〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として2−シリル−3,3
−ジメチル−1,3−ジシリルブタンを使用し、熱分解
生成物として灰褐色の微細粉末を80.9%の高収得率
で得た。この場合は原料がケイ素−塩素結合を包んでい
ないので、残留塩化水素を除去するための2次熱処理を
省いた。走査及び透過電子顕微鏡分析の結果、粒子の大
きさは約0.2μm で、粒子の分布は均一で、比表面積
は23.3m2/gで、元素分析の結果はSi 69.3
%、C30.5%であって、赤外線分光分析の結果及び
X線回折分析の結果、β型炭化ケイ素であることを確認
した。
Example 17 In the same manner as in Example 1, in a hydrogen carrier gas, 2-silyl-3,3 as a raw material was used.
Using dimethyl-1,3-disilylbutane, an off-brown fine powder was obtained as a thermal decomposition product with a high yield of 80.9%. In this case, since the raw material does not wrap the silicon-chlorine bond, the secondary heat treatment for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.2 μm, the particle distribution was uniform, the specific surface area was 23.3 m 2 / g, and the elemental analysis result was Si 69.3.
%, C30.5%, and as a result of infrared spectroscopic analysis and a result of X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0042】〔実施例18〕三方側に口を有する100
0ml入りの丸底フラスコに、30cmのコンデンサーと1
25mlの漏斗とを装着し、該フラスコにリチウムアルミ
ニウムヒドリド9.56g(0.25mol )を入れて、
氷水にて冷却した後、金属ナトリウムにより乾燥蒸留し
たジブチルエーテル溶媒約250mlを、窒素にて空気と
の接触を防止しながら注入した。1,1,1,3−テト
ラクロロ−2−(トリクロロシリル)−3−メチル−
1,3−ジシラブタン75.1g(0.20mol )を、
滴下漏斗により3時間かけて注入しながらリチウムアル
ミニウムヒドリドと反応させた。滴下後、2時間室温で
撹拌した後、反応生成物の一部を採取し、気体クロマト
グラフィにより反応の完了を確認して、該反応生成物を
氷で処理し、リチウムアルミニウムヒドリドを分別漏斗
でエーテル溶液層から分離した。無水硫酸マグネシウム
にて溶液層を乾燥し、分別蒸留して生成物2−シリル−
3−メチル−1,3−ジシラブタン20.4g(収得率
76%)を得た。生成物を60MHz 水素核磁気共鳴分析
の結果、δ−0.55ppm でC−H(m,1H)基を、
0.15ppmでCH3 (d,6H)基を、3.7ppm で
SiH3 (d,6H)基を、4.0ppm でSi−H(he
ptet,1H)基を確認した。
[Embodiment 18] 100 having mouths on three sides
In a 0 ml round bottom flask, a 30 cm condenser and 1
A 25 ml funnel was attached and the flask was charged with 9.56 g (0.25 mol) of lithium aluminum hydride.
After cooling with ice water, about 250 ml of dibutyl ether solvent dried and distilled with metallic sodium was injected while preventing contact with air with nitrogen. 1,1,1,3-tetrachloro-2- (trichlorosilyl) -3-methyl-
75.1 g (0.20 mol) of 1,3-disilabutane,
It was reacted with lithium aluminum hydride while pouring over a dropping funnel for 3 hours. After the dropping, the reaction product was stirred for 2 hours at room temperature, a part of the reaction product was collected, and the completion of the reaction was confirmed by gas chromatography. The reaction product was treated with ice, and lithium aluminum hydride was separated with a separating funnel using ether. Separated from the solution layer. The solution layer was dried over anhydrous magnesium sulfate and fractionally distilled to give the product 2-silyl-
20.4 g of 3-methyl-1,3-disilabutane (collection rate 76%) was obtained. As a result of hydrogen nuclear magnetic resonance analysis of the product at 60 MHz, a C—H (m, 1H) group was obtained at δ−0.55 ppm.
CH 3 and (d, 6H) group at 0.15 ppm, a SiH 3 (d, 6H) group at 3.7 ppm, SiH at 4.0 ppm (he
ptet, 1H) group was confirmed.

【0043】〔実施例19〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として2−シリル−3−メ
チル−1,3−ジシリルブタンを使用し、熱分解生成物
として灰褐色の微細粉末を81.2%の高収得率で得
た。この場合は原料がケイ素−塩素結合を包んでいない
ので、残留塩化水素を除去するための2次熱処理を省い
た。走査及び透過電子顕微鏡分析の結果、粒子の大きさ
は約0.3μm で、粒子の分布は均一で、比表面積は2
0.5m2/gで、元素分析の結果はSi 70.3%、C
29.5%であって、赤外線分光分析の結果及びX線
回折分析の結果、β型炭化ケイ素であることを確認し
た。
Example 19 In the same manner as in Example 1, 2-silyl-3-methyl-1,3-disilylbutane was used as a raw material in a hydrogen-carrying gas, and a gray-brown product was obtained as a thermal decomposition product. A fine powder was obtained with a high yield of 81.2%. In this case, since the raw material does not wrap the silicon-chlorine bond, the secondary heat treatment for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm, the particle distribution was uniform, and the specific surface area was 2 μm.
0.5m 2 / g, elemental analysis result is Si 70.3%, C
It was 29.5%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0044】〔実施例20〕実施例18と同様な方法に
より、1,1,1,3,3−ペンタクロロ−2−(トリ
クロロシリル)−1,3−ジシラブタン79.2g
(0.20mol )をリチウムアルミニウムヒドリドと反
応させ、生成物2−シリル−1,3−ジシラブタン1
9.2g(収得率80%)を得た。該生成物を60MHz
水素核磁気共鳴分析の結果、δ−0.55ppm でC−H
(m,1H)基を、0.15ppm でCH3 (t,3H)
基を、3.7ppm でSiH3 (d,6H)基を、3.9
ppm でSi−H(m,2H)基を確認した。
Example 20 In the same manner as in Example 18, 79.2 g of 1,1,1,3,3-pentachloro-2- (trichlorosilyl) -1,3-disilabutane
(0.20 mol) was reacted with lithium aluminum hydride to give the product 2-silyl-1,3-disilabutane 1
9.2 g (80% yield) was obtained. The product at 60MHz
As a result of hydrogen nuclear magnetic resonance analysis, C-H at δ-0.55 ppm
CH 3 (t, 3H) at 0.15 ppm with (m, 1H) group
Group at 3.7 ppm and SiH 3 (d, 6H) group at 3.9
The Si-H (m, 2H) group was confirmed at ppm.

【0045】〔実施例21〕実施例1と同様な方法によ
り、水素運搬気体中で、原料として−シリル−1,3−
ジシラブタンを使用し、熱分解生成物として灰褐色の微
細粉末を87.3%の高収得率で得た。この場合は原料
がケイ素−塩素結合を包んでいないので、残留塩化水素
を除去するための2次熱処理過程を省いた。走査及び透
過電子顕微鏡分析の結果、粒子の大きさは約0.2μm
で、粒子の分布は均一で、比表面積は28.5m2/g、元
素分析の結果はSi 70.0%、C 29.8%であ
って、赤外線分光分析の結果及びX線回折分析の結果、
β型炭化ケイ素であることを確認した。
Example 21 In the same manner as in Example 1, in a hydrogen carrier gas, as a raw material, -silyl-1,3-
A fine brownish-brown powder was obtained as a thermal decomposition product at a high yield rate of 87.3% using disilabutane. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.2 μm.
The particle distribution is uniform, the specific surface area is 28.5 m 2 / g, the elemental analysis results are Si 70.0% and C 29.8%, and the results of infrared spectroscopic analysis and X-ray diffraction analysis are result,
It was confirmed to be β-type silicon carbide.

【0046】〔実施例22〕実施例1と同様な方法によ
り、アルゴン運搬気体中で、原料として2−シリル−3
−メチル−1,3−ジシラブタンを使用し、熱分解生成
物として灰褐色の微細粉末を86.4%の高収得率で得
た。この場合は原料がケイ素−塩素結合を包んでいない
ので、残留塩化水素を除去するための2次熱処理過程を
省いた。走査及び透過電子顕微鏡分析の結果、粒子の大
きさは約0.2μm で、粒子の分布は均一で、比表面積
は29.5m2/gで、元素分析の結果はSi 69.8
%、C30.0%であって、赤外線分光分析の結果及び
X線回折分析の結果、β型炭化ケイ素であることを確認
した。
[Embodiment 22] By a method similar to that of Embodiment 1, 2-silyl-3 was used as a raw material in a gas carrying argon.
-Methyl-1,3-disilabutane was used to obtain an off-brown fine powder as a thermal decomposition product with a high yield of 86.4%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.2 μm, the particle distribution was uniform, the specific surface area was 29.5 m 2 / g, and the elemental analysis result was Si 69.8.
% And C30.0%, and as a result of infrared spectroscopic analysis and a result of X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0047】〔実施例23〕実施例1と同様な方法によ
り、1000℃の水素運搬気体中で、原料として2,
4,6−トリシラヘプタンを使用し、熱分解生成物とし
て灰褐色の微細粉末を75.5%の高収得率で得た。こ
の場合は原料がケイ素−塩素結合を包んでいないので、
残留塩化水素を除去するための2次熱処理過程を省い
た。走査及び透過電子顕微鏡分析の結果、粒子の大きさ
は約0.3μm で、粒子の分布は均一で、比表面積は2
0.7m2/gで、元素分析の結果はSi 69.7%、C
29.8%であって、赤外線分光分析の結果及びX線
回折分析の結果、β型炭化ケイ素であることを確認し
た。
[Example 23] By the same method as in Example 1, 2
4,6-Trisilaheptane was used to obtain an off-brown fine powder as a thermal decomposition product with a high yield of 75.5%. In this case, since the raw material does not wrap the silicon-chlorine bond,
The secondary heat treatment process for removing residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscopy analysis, the particle size was about 0.3 μm, the particle distribution was uniform, and the specific surface area was 2 μm.
0.7m 2 / g, elemental analysis result is Si 69.7%, C
It was 29.8%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

【0048】〔実施例24〕実施例1と同様な方法によ
り、800℃の水素運搬気体中で、原料として2,4,
6−トリシラヘプタンを使用し、熱分解生成物として灰
褐色の微細粉末を64.8%の高収得率で得た。この場
合は原料がケイ素−塩素結合を包んでいないので、残留
塩化水素を除去するための2次熱処理過程を省いた。走
査及び透過電子顕微鏡分析の結果、粒子の大きさは約
0.3μm で、粒子の分布は均一で、比表面積は18.
5m2/gで、元素分析の結果はSi 69.1%、C 2
9.5%であって、赤外線分光分析の結果及びX線回折
分析の結果、β型炭化ケイ素であることを確認した。
[Embodiment 24] By the same method as in Embodiment 1, 2, 4, 4
Using 6-trisilaheptane, an off-brown fine powder was obtained as a thermal decomposition product at a high yield of 64.8%. In this case, since the raw material does not enclose the silicon-chlorine bond, the secondary heat treatment process for removing the residual hydrogen chloride was omitted. As a result of scanning and transmission electron microscope analysis, the particle size was about 0.3 μm, the particle distribution was uniform, and the specific surface area was 18.
At 5 m 2 / g, the result of elemental analysis is Si 69.1%, C 2
It was 9.5%, and as a result of infrared spectroscopic analysis and X-ray diffraction analysis, it was confirmed to be β-type silicon carbide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 趙 恩 晶 大韓民国ソウル特別市陽川区新亭6洞329 木洞アパート1411−203 ─────────────────────────────────────────────────── ───Continued from the front page (72) Inventor Zhao Akira Akira Zhao-dong 1411-203 Mok-dong, 329, Sintei-dong, Yangcheon-gu, Seoul, Republic of Korea

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I)、(II)、(III)及び(I
V)の化合物から選ばれるトリシラアルカンの単独又は
二つ以上の混合物を運搬気体中で熱分解することを特徴
とするβ型炭化ケイ素微細粉末の製造方法、 【化1】 (一般式(I)中、R1 、R2 及びR3 は独立的にCH
3 又はClを表し、一般式(II)中、R1 、R2 及びR
3 は独立的にCH3 又はHを表し、一般式(III)中、R
1 、R2 及びR3 は独立的にCH3 又はClを表し、R
3 は独立的にH又はClを表し、一般式(IV)中、R1
及びR2 は独立的にCH3 又はHを表す)
1. General formulas (I), (II), (III) and (I
A method for producing a β-type silicon carbide fine powder, which comprises thermally decomposing a single or a mixture of two or more trisilaalkanes selected from the compounds of V) in a carrier gas; (In the general formula (I), R 1 , R 2 and R 3 are independently CH.
3 or Cl, and in the general formula (II), R 1 , R 2 and R
3 independently represents CH 3 or H, and in the general formula (III), R 3
1 , R 2 and R 3 independently represent CH 3 or Cl, and R
3 independently represents H or Cl, and in the general formula (IV), R 1
And R 2 independently represents CH 3 or H)
【請求項2】 前記運搬気体中のトリシラアルカンの濃
度が50%以下である請求項1記載のβ型炭化ケイ素微
細粉末の製造方法。
2. The method for producing β-type silicon carbide fine powder according to claim 1, wherein the concentration of trisilaalkane in the carrier gas is 50% or less.
【請求項3】 前記運搬気体が、アルゴン、水素又はそ
れらの混合気体である請求項1記載のβ型炭化ケイ素微
細粉末の製造方法。
3. The method for producing a β-type silicon carbide fine powder according to claim 1, wherein the carrier gas is argon, hydrogen or a mixed gas thereof.
【請求項4】 前記熱分解反応温度が、750〜160
0℃である請求項1記載のβ型炭化ケイ素微細粉末の製
造方法。
4. The thermal decomposition reaction temperature is 750 to 160.
The method for producing a β-type silicon carbide fine powder according to claim 1, wherein the temperature is 0 ° C.
【請求項5】 前記製造過程中、残留塩化水素が残って
いる場合、アルゴン気体中1000〜1200℃で2次
熱処理を行い、残留塩化水素を除去する請求項1記載の
β型炭化ケイ素微細粉末の製造方法。
5. The β-type silicon carbide fine powder according to claim 1, wherein, when residual hydrogen chloride remains during the manufacturing process, a second heat treatment is performed in argon gas at 1000 to 1200 ° C. to remove the residual hydrogen chloride. Manufacturing method.
【請求項6】 前記一般式(IV)中、R1 はCH3 又は
Hであり、R2 はHであるトリシラアルカン。
6. A trisilaalkane in which R 1 is CH 3 or H and R 2 is H in the general formula (IV).
【請求項7】 前記一般式(III)の化合物をリチウムア
ルミニウムヒドリド又はナトリウムヒドリドと反応させ
ることを特徴とする前記一般式(IV)の化合物の製造方
法。
7. The method for producing the compound of the general formula (IV), which comprises reacting the compound of the general formula (III) with lithium aluminum hydride or sodium hydride.
JP6005949A 1994-01-24 1994-01-24 Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound Pending JPH07206418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6005949A JPH07206418A (en) 1994-01-24 1994-01-24 Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6005949A JPH07206418A (en) 1994-01-24 1994-01-24 Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound

Publications (1)

Publication Number Publication Date
JPH07206418A true JPH07206418A (en) 1995-08-08

Family

ID=11625154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6005949A Pending JPH07206418A (en) 1994-01-24 1994-01-24 Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound

Country Status (1)

Country Link
JP (1) JPH07206418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293418A (en) * 1997-04-21 1998-11-04 Toyo Ink Mfg Co Ltd Electrostatic charge image developing toner and image forming method using same
US8987494B2 (en) 2012-04-11 2015-03-24 Gelest Technologies, Inc. Low molecular weight carbosilanes, precursors thereof, and methods of preparation
JP2016030719A (en) * 2014-07-30 2016-03-07 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461307A (en) * 1987-08-29 1989-03-08 Ibiden Co Ltd Production of beta-type silicon carbide fine powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461307A (en) * 1987-08-29 1989-03-08 Ibiden Co Ltd Production of beta-type silicon carbide fine powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10293418A (en) * 1997-04-21 1998-11-04 Toyo Ink Mfg Co Ltd Electrostatic charge image developing toner and image forming method using same
US8987494B2 (en) 2012-04-11 2015-03-24 Gelest Technologies, Inc. Low molecular weight carbosilanes, precursors thereof, and methods of preparation
US9181283B2 (en) 2012-04-11 2015-11-10 Gelest Technologies, Inc. Methods of preparing low molecular weight carbosilanes and precursors thereof
JP2016030719A (en) * 2014-07-30 2016-03-07 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal

Similar Documents

Publication Publication Date Title
JP4778504B2 (en) Method for producing silicon
US4276424A (en) Methods for the production of organic polysilanes
JPS63159300A (en) Production of silicon carbide whisker
WO1983004188A1 (en) Process for manufacturing metal carbides and their precursors
JPH0142885B2 (en)
EP0063272B1 (en) Synthesis of silicon nitride
JP2012524022A (en) Method and apparatus for producing high purity polysilicon
JP2002533289A (en) Agglomeration of silicon powder
EP0015422A1 (en) Method for producing powder of alpha-silicon nitride
JPS6126487B2 (en)
EP0143122A2 (en) An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom
JPH07206418A (en) Preparation of beta type silicon carbide fine powder by pyrolysis of trisilaalkane compound
US4676966A (en) Method for the preparation of a fine powder of silicon carbide
JP4162268B2 (en) Silylalkylborane, oligo- or poly-borocarbosilazane and silicon carbonitride ceramics
JPS6225605B2 (en)
Ziegenbalg et al. Synthesis of α-silicon nitride powder by gas-phase ammonolysis of CH3SiCl3
JP2005522508A (en) Process for the production of halosilanes under microwave energy excitation
KR950001659B1 (en) Method of preparing ñô-sic particles by pyrolysis of disilalkane
JPH08507575A (en) Process for producing silicon carbide layer and article thereof
JP3658901B2 (en) Method for producing alkoxysilane
KR950007335B1 (en) Method of preparing ñô-type carbosilicate micro powder
JPH03126611A (en) Preparation of carbide compound
JPS6148409A (en) Fine powder comprising silicon, carbon, and nitrogen, and process for preparing such powder
JPS6046911A (en) Production of fine silicon carbide powder
JPS59121109A (en) Production of high purity silicon