JP3658901B2 - Method for producing alkoxysilane - Google Patents

Method for producing alkoxysilane Download PDF

Info

Publication number
JP3658901B2
JP3658901B2 JP34044796A JP34044796A JP3658901B2 JP 3658901 B2 JP3658901 B2 JP 3658901B2 JP 34044796 A JP34044796 A JP 34044796A JP 34044796 A JP34044796 A JP 34044796A JP 3658901 B2 JP3658901 B2 JP 3658901B2
Authority
JP
Japan
Prior art keywords
silicon
catalyst
reaction
cupric oxide
alkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34044796A
Other languages
Japanese (ja)
Other versions
JPH10168084A (en
Inventor
芳範 山田
勝可 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP34044796A priority Critical patent/JP3658901B2/en
Publication of JPH10168084A publication Critical patent/JPH10168084A/en
Application granted granted Critical
Publication of JP3658901B2 publication Critical patent/JP3658901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、電子・電気部品の絶縁膜材料や、シランカップリング剤の原料として広く使われているアルコキシシランの製造方法につき、当該用途に悪影響を与える塩素を含まないアルコキシシランを製造する方法に関する。
【0002】
【従来の技術】
半導体や液晶用の絶縁膜や保護膜の原料として、テトラエトキシシランやトリエトキシシラン等のアルコキシシランは近年ますます多く使用されているが、このような電子材料用途では材料中の塩素が半導体素子の電気特性や安定性に悪影響を与えるため、できる限り少ないことが望まれている。また、トリメトキシシランやトリエトキシシラン等は、産業用に広く応用されているシランカップリング剤の原料として有用であるが、塩素が含まれているとシランカップリング剤を合成する際に反応速度や収率を落とす等の悪影響を及ぼす場合があるため、塩素を含まないアルコキシシランが望まれている。
【0003】
また、製造装置や保管タンク等が炭素鋼やステンレス鋼等の一般的な金属で形成されている場合、塩素によって金属が侵されるため、装置の腐食の問題の他に、金属の腐食の結果としてアルコキシシランに金属不純物が溶出してきて上記用途に悪影響を与えるという問題があった。
【0004】
しかし、現在これらのアルコキシシランは、工業的にはクロロシランとアルコールとの反応や、塩化銅触媒を用いた金属珪素とアルコールとの反応等、いずれも製造過程で塩素が多量に混入する可能性の高い方法で製造されているため、製品中に塩素が混入する事は避け難い。
【0005】
これらの問題に対して、塩化銅に、例えば酸化第一銅等の塩化銅以外の銅触媒(以下「非塩化銅触媒」と称する。)を混ぜて使用することにより塩化物触媒の量を減らす方法(特開昭62−286992)や、水酸化第二銅を触媒として使用する方法(特公平7−17656)が提案されたが、前者の明細書にも開示されているとおり、アルコキシシランの合成反応において非ハロゲン系銅化合物触媒は、ハロゲン系銅化合物触媒に比べて珪素の転化率及び反応速度が著しく低いというのが常識であり、これらの方法はさらに次のような理由で実用的ではなかった。
【0006】
まず、塩化銅触媒に非塩化銅触媒を混ぜる方法では、塩化銅触媒を多少非塩化銅触媒に置き換えたとしても塩化銅触媒を使う点には変わりなく、この方法で作られた製品中には一定量の塩化物が含まれるため、例えば電子材料用のアルコキシシランに求められるような0.1ppm以下というような低濃度の塩素濃度を達成することは困難だった。一方、水酸化銅触媒は、塩素の問題は起きないものの、水酸化銅自体が化学的に不安定で取り扱いが難しい上、反応中に分解して水分を発生するため、反応生成物中にアルコキシシランの加水分解によるシロキサンが生成して反応液が泡だってしまう等、工業的に実施するには問題点が多く、実用的でなかった。
【0007】
【発明が解決しようとする課題】
本発明はかゝる現状に鑑み、当該アルコキシシランの製造方法について、塩素を含まない上に安価で取り扱いの容易な触媒を使用し、なおかつ珪素の転化率及び反応速度が高い方法を提供せんとするものである。
【0008】
【課題を解決するための手段】
本発明者等は前記の問題に対して鋭意検討した結果、含有水分の少ない酸化第二銅からなる触媒を用い、金属珪素と低級アルコールとを反応させることにより、有害な塩素を含まないアルコキシシランを、珪素の高い転化率及び高い反応速度で製造することができることを見出して本発明を完成するに至った。
【0009】
【発明の実施の形態】
本発明において原料の一つとして使用される金属珪素は純度80%以上のものが適しており、形状は粒状が好適であり、粒径は平均粒径200μm以下が珪素の転化率及び反応速度が高くなるので好ましい。特に好ましい平均粒径は10〜150μmである。一般的に粉末の金属珪素はそれほど吸湿性が高くはなく、工業的に製造されたものでも吸着水分は3000ppm程度であり、本発明に使用するには差し支えないが、適当な方法で乾燥してから使用することもできる。
【0010】
本発明において用いる触媒は酸化第二銅で、その純度は高い方が良いが、一般的に市販されている工業用薬品である98%程度以上であれば問題無く使用できる。工業的な製法には熱分解法及び間接湿式法等が知られているが、いずれであっても効果に差はない。ただし塩素を含まない触媒を用いるという目的から、不純物として塩素を含むものは好ましくない。
【0011】
工業用酸化第二銅には、線条・粒・粉等の形状があるが、本発明に適するのは粒径が0.1〜50μmの粒径を持つ粉末であり、さらに好ましい粒径は0.5〜10μmである。酸化第二銅触媒は金属珪素の表面に付着して触媒活性を発現するという機構から、粒径が大きすぎると比表面積が小さくなるため触媒としての効率が悪くなるが、一方であまり小さな粒径のものは固結したり流動性が悪くなり粉体として取扱い難くなる上、アルコキシシランの合成反応が進行するにつれて珪素表面から遊離し易く、遊離した触媒はアルコールの分解等の副反応を起こすので好ましくない。
【0012】
なお、本発明における酸化第二銅触媒および金属珪素の粒径は、水を分散媒とするレーザー回折/散乱式粒度分布測定装置を用いて粒度測定より得られた平均粒径の値である。
望みの粒径の珪素や酸化第二銅の粉末を得る方法としては、通常の粉砕法及び分級法を利用できる。より具体的には、ボールミル、ジェットミル、振動ミル等の粉砕方法や、ふるい、サイクロン等の分級方法が挙げられる。
【0013】
非塩化銅触媒として酸化第二銅触媒を用いることは、反応性が低く実用的でないと従来考えられていた。
しかし、本発明者等が鋭意検討した結果、酸化第二銅は水分を吸着し易く、工業的に製造販売されている粉末状の酸化第二銅の主用途は顔料、釉薬、肥料等の原料で、多少の吸湿は使用上問題とならないため大気開放の製造工程を経る結果、通常1重量%以上もの水分を吸着していることが多く、アルコキシシランの合成反応に関しては、触媒に吸着した水分が極めて大きな阻害作用を及ぼすため、このまま使用した場合は触媒活性は低く、反応が殆ど起きなくなるが、含有水分量が充分に低い酸化第二銅を使用すると、該反応における珪素の転化率及び反応速度が著しく高くなることを見出した。
【0014】
酸化第二銅の水分量は、3000ppm以下でなければならず、好ましくは1000ppm以下である。3000ppmを超えると珪素の転化率が悪くなり使用できない。具体的に水分を減少させる方法としては、例えば加熱乾燥や真空乾燥等の工業的に一般的な乾燥方法を利用することができる。
酸化第二銅触媒の使用量は、金属珪素100重量部に対して、1〜12重量部の範囲が好ましい。作用の項で後述する理由により、この範囲外では金属珪素の転化率及び反応速度は著しく低くなってしまう。より好ましくは金属珪素に対して4〜8重量部である。
【0015】
もう一つの原料である低級アルキルアルコールとしては、直鎖状あるいは分技状のいずれでも良く、式ROH(ただしRは炭素数1〜4のアルキル基を表す)で表されるが、具体的にはメタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、iso−ブタノール及びt−ブタノールが挙げられるが、このうち安価で反応性が高く、生成するアルコキシシランの有用性が高いという理由で炭素数1〜3のアルキルアルコールが好ましく、特に反応性が高いメタノール、エタノールが好ましい。
これらの原料アルコールはそれぞれ単独でも異種のアルコールを混合して用いても良く、混合した場合には、異種のアルコキシ基を持つアルコキシシランが生成する。いずれの場合でも原料アルコールの不純物濃度は5重量%以下である事が好ましく、特に水分は1重量%以下、さらに好ましくは0.2重量%以下に抑えたものが良い。アルコール中の水分は蒸留やゼオライト等を浸漬する事によって容易に減少させることができ、こうして水分を減少させたアルコールは本発明に好ましく用いる事ができる。
【0016】
従来の塩化銅を触媒とし、金属珪素と低級アルキルアルコールとを反応させてアルコキシシランを製造する方法には、反応溶媒を用いて塩化銅と金属珪素とをスラリー状に分散させて反応を行ういわゆる液相法と呼ばれる方法と、反応溶媒は用いないで塩化銅と金属珪素とを流動床や固定床等の固気反応装置に入れてアルコールを反応させるいわゆる気相法と呼ばれる方法の2種類があったが、本発明はこれらのいずれの方法でも好ましく行う事ができる。
【0017】
また従来の塩化銅を触媒とするアルコキシシランの製造方法では、アルコールを供給して反応させる前に金属珪素と触媒の混合物を高温で長時間加熱して触媒活性化を行う必要があった。この触媒活性化反応では塩化銅と金属珪素が反応して金属珪素表面に珪素−銅化合物ができ、これが珪素とアルコールとの反応の触媒活性点になると言われているが、副生物として極めて腐食性が強い四塩化珪素が生成するため反応器の材質や排気ガスの取り扱いに注意が必要だった。また、この触媒活性化反応は高温にしないと反応速度が遅く、気相法では例えば350℃で5時間触媒活性化をしたり、液相法では例えば200℃で10時間触媒活性化する等の高温長時間の条件で行なうのが一般的だった。
【0018】
本発明では、触媒の含有水分量と使用量を好ましい範囲内にした場合、金属珪素と酸化第二銅との触媒活性化反応は極めて速く進み、アルコールが共存しても触媒活性化反応への悪影響はないので、従来の塩化銅触媒の場合の様に合成反応に先だって高温で長時間の触媒活性化処理を行なう必要はなく、バッチ式で反応する場合は、原料を反応器に仕込んだ後すぐに合成反応に入る事が可能である。また、触媒活性化処理が必要でないので、原料の金属シリコンと酸化第二銅触媒とを適当な比率と速度で反応器中に追加していく事により連続的に該アルコキシシラン合成反応を行う事もできる。
【0019】
反応における低級アルコールの反応系への供給速度は、あまり高くすると生成物中の未反応アルコール濃度が高くなりすぎるし、一方あまり低すぎると反応器容量当たり及び時間当たりのアルコキシシランの生成速度が小さくなるため経済的に好ましくない。好ましい範囲は、金属珪素1モルに対して低級アルコール10〜1000ミリモル/時間が好ましく、さらに好ましくは50〜500ミリモル/時間である。未反応アルコ−ルは蒸留等の一般的な方法で回収し再利用する事ができる。
【0020】
【作用】
当発明による限られた範囲内の条件だけで、好ましい結果が得られる理由は次のように推測される。すなわち、最も一般的な塩化銅触媒を用いる場合、触媒活性化反応では珪素−銅化合物ができるのと同時に四塩化珪素が生成するが、四塩化珪素は揮発性があるために金属珪素表面から離れて行き、金属珪素表面には新鮮で活性の高い表面が残されるためにアルコールとの反応も容易に進行するが、一方でこの触媒活性化反応は反応速度が遅いため、高温で長時間かけて触媒活性化の反応する必要があった。
【0021】
これに対して、水分の少ない酸化第二銅を触媒として用いた場合には、珪素−銅化合物ができる反応速度が速いため、触媒活性化反応を高温、長時間行う必要はないが、同時に生成する酸化珪素は揮発性が無く化学的に不活性なため、珪素に対する触媒量を多くし過ぎると金属珪素表面に不活性な表面層が形成されてしまい、アルコールとの反応が阻害されてしまうため、反応速度及び珪素の転化率は低くて実用的ではないと考えられてきた。一方、酸化第二銅に水分が多い場合には、触媒活性化反応自体が阻害されるために触媒活性点の数が少なくなり、アルコールとの反応も起き難かった。
【0022】
しかし、本発明に示すような粒径の金属珪素を用いて、それに対して必要十分な量に限定された酸化第二銅触媒を用いるとき、各々の珪素粒子には、アルコールとの反応が進行するにつれて多少失活しても最後まで触媒作用を保つのに十分な量の触媒活性点が得られ、しかも珪素表面を不活性な酸化珪素層で覆ってしまうには至らないため、珪素とアルコールの反応速度が高くなることを見出したものである。
【0023】
特公平7−17656に開示されているように、金属珪素に水酸化銅を触媒として用いる場合も珪素−銅化合物ができる反応速度は速く、同時に生成する水酸化珪素に揮発性がない点は同じであるが、水酸化珪素は生成したアルコキシシランと容易に脱水縮合してシロキサンを生成する点が異なる。生成したシロキサンは反応溶媒を泡立たせる作用が強く、また、金属珪素をシロキサン層で覆ってしまうので珪素の転化率及び反応速度は著しく低くなる上、当該特許が開示するように反応液を攪拌しながら反応を行なう場合、反応液は泡沫状となり著しく体積を増大して取扱い困難となる。通常、工業的には反応液が泡沫化しやすい水/油系等では消泡剤を添加するのが常識であるが、当該特許が開示するような油性反応溶媒にシロキサンが存在するような系では適当な消泡剤は見つかっていないため、当該発明を工業的に実施する事は困難だった。
【0024】
【実施例】
次に、本発明を実施例及び比較例を挙げて具体的に説明する。なお、本発明におけるトリアルコキシシランの選択率及び金属珪素の転化率は下記の式で算出される値である。
・トリアルコキシシラン選択率(モル%)=[(トリアルコキシシランのモル数)/(トリアルコキシシランのモル数+テトラアルコキシシランのモル数)]×100
・金属珪素転化率(重量%)=100−[(反応残査中の金属珪素の重量)/(仕込んだ金属珪素の重量)×100]
【0025】
(実施例1)
窒素及び低級アルコールの導入管、反応液温度計、攪拌器、反応生成物の出口管、並びに反応生成物の冷却器及び受器を備えたガラス製の1リットルフラスコに、反応溶媒としてドデシルベンゼン600ミリリットル、金属珪素(純度98%、平均粒径100μm)300gおよび酸化第二銅(平均粒径0.7μm、水分120ppm)16gを仕込んだ。該液を攪拌混合しながら加熱し、温度を180℃に保持した。そして、エタノール(純度99%)を反応液中に120g/時間で供給して金属珪素と反応させた。なお、酸化第二銅の含有水分量は天秤上で粉末を約300℃で30分間加熱し、1分毎に重量減少を測定して、一定になった重量減少の値を含有水分量とした。
【0026】
エタノールの供給を開始してから5分後に生成物出口の冷却器から受器に生成液が流下し始めた。この生成液の組成をガスクロマトグラフ法により分析してその組成の経時変化を観察し、生成液がエタノール100%になった時点で反応終了とみなした。そして受器に溜まった生成液をガスクロマトグラフ法により分析し、生成物の生成量を求めた結果からトリアルコキシシランの選択率および珪素転化率を算出した。また、生成液中の塩素濃度をイオンクロマトグラフ法により測定した。これらの結果を表1に示す。生成液中の塩素濃度はイオンクロマト法の検出下限値である0.1ppm未満であった。なお以下の酸化第二銅触媒を用いたすべての実施例及び比較例でも同様に塩素は検出下限以下であり、酸化第二銅触媒を用いた場合、従来の塩化銅触媒を用いる方法では避けることができなかった塩素系不純物が含まれないアルコキシシランが製造できる事が確かめられた。
【0027】
(実施例2)
酸化第二銅の規格を(平均粒径0.7μm、水分920ppm)とした他は実施例1と全く同じ実験を行った結果を表1に示す。実施例1に比べると金属珪素の転化率が若干低下し、反応速度も若干低下したが、アルコキシシランの製造法として実用的な範囲内である。
【0028】
(実施例3)
金属珪素(純度98%、平均粒径100μm)300gと酸化第二銅(平均粒径0.7μm、水分120ppm)16gとを磁製ポットミルに入れ、ボールミルで8時間混合した後、内径30mm長さ600mmの石英管に詰めた。この石英管の下部は低級アルコール及び窒素を吹き込むための導入管を備えており、上部には冷却器と冷却されて流出してきた生成液の受器を備えている。この石英管を内温250℃に保持して、エタノール(純度99%)180g/時間及び窒素300ミリリットル/分を導入し、金属珪素と反応させた。ガスの流通に伴って石英管内の粉末は流動化が起きた。
エタノールの供給を開始してから5分後に冷却器から受器に生成液が流下し始めた。この生成液の組成をガスクロマトグラフ法により分析してその組成の経時変化を観察し、生成液がエタノール100%になった時点で反応終了とみなした。そして受器に溜まった生成液をガスクロマトグラフ法により分析し、生成物の生成量を求めた結果からトリアルコキシシランの選択率及び珪素転化率を算出した。また、生成液中の塩素根濃度をイオンクロマトグラフ法により測定した。これらの結果を表1に示す。
【0029】
(実施例4)
低級アルコールとしてメタノールを使用する以外はすべて実施例1と同じ実験を行った。その結果を表1に示す。エタノールを使用した実施例1の結果に比べて若干金属珪素転化率が向上し、逆にトリ体の選択率が低下したが、これは金属珪素からトリ体ができる主反応と、トリ体がテトラ体に変わる副反応の両方でエタノールよりもメタノールの方が反応性が高いためであると思われる。
【0030】
(実施例5)
低級アルコールとしてメタノールを使用する以外はすべて実施例3と同じ実験を行った。その結果を表1に示す。エタノールを使用した実施例3の結果に比べて若干金属珪素転化率が向上し、逆にトリ体の選択率が低下したが、これは金属珪素からトリ体ができる主反応と、トリ体がテトラ体に変わる副反応の両方でエタノールよりもメタノールの方が反応性が高いためであると思われる。
【0031】
(実施例6)
金属珪素の規格を(純度98%、平均粒径400μm)とした他は実施例1と全く同じ実験を行った結果を表1に示す。実施例1に比べるとトリ体の選択率、金属珪素の転化率の両方が低下した上、反応速度が著しく低下したため反応終了までの時間が長くかかった。
【0032】
(実施例7)
酸化第二銅の規格を(平均粒径100μm、水分120ppm)とした他は実施例1と全く同じ実験を行った結果を表1に示す。実施例1に比べるとトリ体の選択率、金属珪素の転化率の両方が低下した上、反応速度が著しく低下したため反応終了までの時間が長くかかった。
【0033】
(実施例8)
酸化第二銅の量を48gとした他は実施例1と全く同じ実験を行った結果を表1に示す。実施例1に比べると金属珪素の転化率が著しく低く、一割にも満たないため工業的には実用的な方法ではないと思われる。
【0034】
(比較例1)
酸化第二銅の規格を(平均粒径0.7μm、水分1.0%)とした他は実施例1と全く同じ実験を行った結果を表1に示す。実施例1に比べると金属珪素の転化率が著しく低く、工業的には全く実用的な方法ではないと思われる。
【0035】
【表1】

Figure 0003658901
【0036】
【発明の効果】
本発明によれば、装置の腐食の原因となる塩化物を触媒又は原料としないため、電子・電気材料やシランカップリング剤の原料として悪影響を与える塩素系不純物を含まないアルコキシシランを、安価かつ簡便に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alkoxysilane that does not contain chlorine, which adversely affects the use of an insulating film material for electronic / electrical parts and a method for producing an alkoxysilane widely used as a raw material for a silane coupling agent. .
[0002]
[Prior art]
In recent years, alkoxysilanes such as tetraethoxysilane and triethoxysilane are increasingly used as raw materials for insulating films and protective films for semiconductors and liquid crystals. In such electronic materials, chlorine in the materials is used as a semiconductor element. As much as possible, it is desired to have as little as possible in order to adversely affect the electrical characteristics and stability. Trimethoxysilane, triethoxysilane, etc. are useful as raw materials for silane coupling agents that are widely applied for industrial use. However, when chlorine is contained, the reaction rate when synthesizing the silane coupling agent is high. Therefore, alkoxysilane containing no chlorine is desired.
[0003]
In addition, when the manufacturing equipment and storage tanks are made of common metals such as carbon steel and stainless steel, the metal is attacked by chlorine. There is a problem that metal impurities are eluted in the alkoxysilane, which adversely affects the above-mentioned use.
[0004]
However, at present, these alkoxysilanes are industrially reactive with chlorosilane and alcohol, or with metal silicon and alcohol using a copper chloride catalyst. Since it is manufactured by a high method, it is difficult to avoid chlorine in the product.
[0005]
In response to these problems, the amount of chloride catalyst is reduced by using copper chloride and a copper catalyst other than copper chloride such as cuprous oxide (hereinafter referred to as “non-copper chloride catalyst”). A method (JP-A-62-286992) and a method using cupric hydroxide as a catalyst (Japanese Patent Publication No. 7-17656) have been proposed, but as disclosed in the former specification, In the synthesis reaction, it is common knowledge that the non-halogen-based copper compound catalyst has a remarkably low silicon conversion rate and reaction rate compared to the halogen-based copper compound catalyst, and these methods are not practical for the following reasons. There wasn't.
[0006]
First, in the method of mixing a copper chloride catalyst with a non-copper chloride catalyst, even if the copper chloride catalyst is replaced with a non-copper chloride catalyst, the copper chloride catalyst is still used. Since a certain amount of chloride is contained, it has been difficult to achieve a chlorine concentration as low as 0.1 ppm or less as required for alkoxysilanes for electronic materials. On the other hand, the copper hydroxide catalyst does not cause the problem of chlorine, but the copper hydroxide itself is chemically unstable and difficult to handle, and also decomposes during the reaction to generate moisture. There were many problems in industrial implementation, such as the formation of siloxane by hydrolysis of silane and the reaction solution being foamed, which was not practical.
[0007]
[Problems to be solved by the invention]
In view of the present situation, the present invention provides a method for producing the alkoxysilane that does not contain chlorine, uses an inexpensive and easy-to-handle catalyst, and has a high silicon conversion rate and reaction rate. To do.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have used a catalyst made of cupric oxide having a low water content, and reacting silicon metal with a lower alcohol to thereby eliminate harmful chlorine-containing alkoxysilanes. Has been found to be able to be produced at a high conversion rate and high reaction rate of silicon, and the present invention has been completed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The metal silicon used as one of the raw materials in the present invention is suitable to have a purity of 80% or more, the shape is preferably granular, and the average particle size is 200 μm or less in terms of silicon conversion and reaction rate. Since it becomes high, it is preferable. A particularly preferable average particle diameter is 10 to 150 μm. In general, powdered metal silicon is not so hygroscopic, and even if it is industrially produced, the adsorbed moisture is about 3000 ppm and can be used in the present invention. Can also be used.
[0010]
The catalyst used in the present invention is cupric oxide, and its purity should be high. However, it can be used without problems as long as it is about 98% or more, which is a commercially available industrial chemical. As an industrial production method, a thermal decomposition method, an indirect wet method, and the like are known. However, for the purpose of using a catalyst containing no chlorine, those containing chlorine as impurities are not preferred.
[0011]
Industrial cupric oxide has shapes such as filaments, grains, and powders, but those suitable for the present invention are powders having a particle size of 0.1 to 50 μm, and more preferable particle size is 0.5 to 10 μm. From the mechanism that the cupric oxide catalyst adheres to the surface of metal silicon and exhibits catalytic activity, if the particle size is too large, the specific surface area becomes small and the efficiency as a catalyst is deteriorated. In addition to solidification and poor fluidity, it becomes difficult to handle as a powder, and as the synthesis reaction of alkoxysilane proceeds, it is easily released from the silicon surface, and the released catalyst causes side reactions such as alcohol decomposition. It is not preferable.
[0012]
The particle sizes of the cupric oxide catalyst and metal silicon in the present invention are average particle size values obtained by particle size measurement using a laser diffraction / scattering particle size distribution measuring apparatus using water as a dispersion medium.
As a method for obtaining silicon or cupric oxide powder having a desired particle size, a normal pulverization method and classification method can be used. More specifically, a pulverizing method such as a ball mill, a jet mill, and a vibration mill, and a classification method such as a sieve and a cyclone can be used.
[0013]
The use of a cupric oxide catalyst as the non-copper chloride catalyst has been conventionally considered to be impractical because of its low reactivity.
However, as a result of intensive studies by the present inventors, cupric oxide easily adsorbs moisture, and the main use of powdered cupric oxide that is manufactured and sold industrially is a raw material for pigments, glazes, fertilizers, etc. However, some moisture absorption is not a problem in use, and as a result of passing through the manufacturing process that is open to the atmosphere, usually 1% by weight or more of moisture is usually adsorbed. Has a very large inhibitory action, the catalyst activity is low when used as it is, and the reaction hardly occurs. However, when cupric oxide having a sufficiently low water content is used, the conversion rate and reaction of silicon in the reaction are reduced. We found that the speed was significantly higher.
[0014]
The water content of cupric oxide must be 3000 ppm or less, preferably 1000 ppm or less. If it exceeds 3000 ppm, the conversion rate of silicon deteriorates and cannot be used. Specifically, as a method for reducing moisture, industrially common drying methods such as heat drying and vacuum drying can be used.
The amount of cupric oxide catalyst used is preferably in the range of 1 to 12 parts by weight with respect to 100 parts by weight of metal silicon. For reasons that will be described later in the section of action, the conversion rate and reaction rate of metallic silicon are significantly reduced outside this range. More preferably, it is 4 to 8 parts by weight with respect to metallic silicon.
[0015]
The lower alkyl alcohol as another raw material may be either linear or fractional, and is represented by the formula ROH (where R represents an alkyl group having 1 to 4 carbon atoms). Examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, iso-butanol and t-butanol. Of these, inexpensive and highly reactive, the usefulness of the resulting alkoxysilane is useful. Alkyl alcohols having 1 to 3 carbon atoms are preferable because they are high, and methanol and ethanol having high reactivity are particularly preferable.
These raw material alcohols may be used alone or as a mixture of different alcohols, and when mixed, alkoxysilanes having different alkoxy groups are formed. In any case, the impurity concentration of the raw material alcohol is preferably 5% by weight or less, and the water content is particularly preferably 1% by weight or less, more preferably 0.2% by weight or less. The water content in the alcohol can be easily reduced by distilling or immersing zeolite or the like, and the alcohol thus reduced in water content can be preferably used in the present invention.
[0016]
In the conventional method of producing alkoxysilane by reacting metal silicon and lower alkyl alcohol using copper chloride as a catalyst, the reaction is carried out by dispersing copper chloride and metal silicon in a slurry state using a reaction solvent. There are two types: a method called a liquid phase method and a method called a gas phase method in which copper chloride and metal silicon are placed in a solid-gas reaction apparatus such as a fluidized bed or a fixed bed without using a reaction solvent and the alcohol is reacted. However, the present invention can be preferably carried out by any of these methods.
[0017]
Further, in the conventional method for producing alkoxysilane using copper chloride as a catalyst, it is necessary to activate the catalyst by heating a mixture of metal silicon and catalyst at a high temperature for a long time before supplying the alcohol and reacting it. In this catalyst activation reaction, copper chloride and metal silicon react to form a silicon-copper compound on the surface of metal silicon, which is said to be a catalytic active site for the reaction between silicon and alcohol. Careful handling of the reactor material and exhaust gas was necessary because of the formation of strong silicon tetrachloride. In addition, the reaction rate of the catalyst activation reaction is slow unless the temperature is increased. For example, the gas phase method activates the catalyst at 350 ° C. for 5 hours, and the liquid phase method activates the catalyst at 200 ° C. for 10 hours. It was common to carry out under conditions of high temperature and long time.
[0018]
In the present invention, when the moisture content and usage amount of the catalyst are within the preferred range, the catalyst activation reaction of metal silicon and cupric oxide proceeds very quickly, and even if alcohol coexists, the catalyst activation reaction is not completed. Since there is no adverse effect, there is no need to perform catalyst activation treatment for a long time at a high temperature prior to the synthesis reaction as in the case of the conventional copper chloride catalyst. It is possible to enter the synthesis reaction immediately. Further, since the catalyst activation treatment is not necessary, the alkoxysilane synthesis reaction can be continuously performed by adding the raw material metal silicon and cupric oxide catalyst to the reactor at an appropriate ratio and speed. You can also.
[0019]
If the supply rate of the lower alcohol to the reaction system in the reaction is too high, the concentration of unreacted alcohol in the product becomes too high, while if it is too low, the production rate of alkoxysilane per reactor volume and per hour is low. Therefore, it is not preferable economically. A preferred range is preferably 10 to 1000 mmol / hour of lower alcohol, more preferably 50 to 500 mmol / hour with respect to 1 mole of metal silicon. Unreacted alcohol can be recovered and reused by a general method such as distillation.
[0020]
[Action]
The reason why favorable results can be obtained only under conditions within a limited range according to the present invention is presumed as follows. That is, when using the most common copper chloride catalyst, silicon tetrachloride is formed at the same time as the silicon-copper compound is formed in the catalyst activation reaction, but since silicon tetrachloride is volatile, it is separated from the surface of the metal silicon. Since the surface of the metal silicon remains fresh and highly active, the reaction with alcohol easily proceeds. On the other hand, the catalyst activation reaction has a slow reaction rate, so it takes a long time at a high temperature. It was necessary to react for catalyst activation.
[0021]
On the other hand, when cupric oxide with low water content is used as a catalyst, the reaction rate for forming a silicon-copper compound is fast, so there is no need to carry out the catalyst activation reaction at a high temperature for a long time, but it is produced simultaneously. Since silicon oxide is not volatile and chemically inert, an excessive amount of catalyst for silicon will form an inactive surface layer on the surface of the metal silicon, thereby inhibiting the reaction with alcohol. It has been considered that the reaction rate and the conversion rate of silicon are low and impractical. On the other hand, when the cupric oxide has a large amount of water, the catalyst activation reaction itself is hindered, so that the number of catalytically active sites is reduced, and the reaction with alcohol hardly occurs.
[0022]
However, when using a metallic silicon having a particle diameter as shown in the present invention and using a cupric oxide catalyst limited to a necessary and sufficient amount, a reaction with alcohol proceeds in each silicon particle. As a result, even if it is deactivated to a certain extent, a sufficient amount of catalytically active sites are obtained to keep the catalytic action until the end, and the silicon surface is not covered with an inactive silicon oxide layer. Has been found to increase the reaction rate.
[0023]
As disclosed in Japanese Patent Publication No. 7-17656, even when copper hydroxide is used as a catalyst for metal silicon, the reaction rate for forming a silicon-copper compound is fast, and the silicon hydroxide produced at the same time is not volatile. However, silicon hydroxide differs from the produced alkoxysilane in that it easily dehydrates and condenses to produce siloxane. The produced siloxane has a strong effect of foaming the reaction solvent. Further, since the metal silicon is covered with the siloxane layer, the conversion rate and reaction rate of silicon are remarkably lowered, and the reaction solution is stirred as disclosed in the patent. However, when the reaction is carried out, the reaction solution becomes foamy and the volume is remarkably increased, making it difficult to handle. In general, it is common sense to add an antifoaming agent in water / oil systems where the reaction liquid is easily foamed industrially, but in systems where siloxane is present in the oily reaction solvent as disclosed in the patent, Since no suitable antifoaming agent has been found, it has been difficult to implement the invention industrially.
[0024]
【Example】
Next, the present invention will be specifically described with reference to examples and comparative examples. In addition, the selectivity of trialkoxysilane and the conversion rate of metallic silicon in the present invention are values calculated by the following equations.
Trialkoxysilane selectivity (mol%) = [(mol number of trialkoxysilane) / (mol number of trialkoxysilane + mol number of tetraalkoxysilane)] × 100
Metal silicon conversion (% by weight) = 100 − [(weight of metal silicon in reaction residue) / (weight of charged metal silicon) × 100]
[0025]
(Example 1)
Dodecylbenzene 600 as a reaction solvent was added to a glass 1 liter flask equipped with a nitrogen and lower alcohol introduction tube, a reaction solution thermometer, a stirrer, a reaction product outlet tube, and a reaction product cooler and receiver. Milliliter, metal silicon (purity 98%, average particle size 100 μm) 300 g and cupric oxide (average particle size 0.7 μm, moisture 120 ppm) 16 g were charged. The liquid was heated with stirring and mixing, and the temperature was maintained at 180 ° C. Then, ethanol (purity 99%) was supplied into the reaction solution at 120 g / hour to react with metal silicon. The water content of cupric oxide was determined by heating the powder on a balance at about 300 ° C. for 30 minutes, measuring the weight loss every minute, and taking the constant weight loss value as the water content. .
[0026]
Five minutes after the start of ethanol supply, the product liquid started to flow from the cooler at the product outlet to the receiver. The composition of this product solution was analyzed by a gas chromatograph method, and the change with time of the composition was observed. When the product solution reached 100% ethanol, the reaction was considered complete. Then, the product liquid accumulated in the receiver was analyzed by gas chromatography, and the selectivity of trialkoxysilane and the silicon conversion rate were calculated from the results of determining the amount of product produced. The chlorine concentration in the product solution was measured by ion chromatography. These results are shown in Table 1. The chlorine concentration in the product liquid was less than 0.1 ppm which is the lower limit of detection of the ion chromatography method. In all examples and comparative examples using the cupric oxide catalyst below, chlorine is similarly below the lower limit of detection. When using a cupric oxide catalyst, avoid using the conventional method using a copper chloride catalyst. It was confirmed that an alkoxysilane containing no chlorine-based impurities could be produced.
[0027]
(Example 2)
Table 1 shows the results of the same experiment as in Example 1 except that the standard of cupric oxide was (average particle size 0.7 μm, moisture 920 ppm). Compared to Example 1, the conversion rate of metallic silicon was slightly reduced and the reaction rate was also slightly reduced, but it was within a practical range for the production method of alkoxysilane.
[0028]
(Example 3)
300 g of metallic silicon (purity 98%, average particle size 100 μm) and 16 g of cupric oxide (average particle size 0.7 μm, moisture 120 ppm) were placed in a porcelain pot mill and mixed for 8 hours in a ball mill. Packed in a 600 mm quartz tube. The lower part of the quartz tube is provided with an introduction pipe for blowing lower alcohol and nitrogen, and the upper part is provided with a cooler and a receiver for the product liquid that has flowed out after being cooled. The quartz tube was kept at an internal temperature of 250 ° C., and ethanol (purity 99%) 180 g / hour and nitrogen 300 ml / minute were introduced to react with metallic silicon. As the gas flowed, the powder in the quartz tube became fluidized.
Five minutes after starting the supply of ethanol, the product liquid started to flow from the cooler to the receiver. The composition of this product solution was analyzed by a gas chromatograph method, and the change with time of the composition was observed. When the product solution reached 100% ethanol, the reaction was considered complete. Then, the product liquid accumulated in the receiver was analyzed by gas chromatography, and the selectivity for trialkoxysilane and the silicon conversion rate were calculated from the results of determining the amount of product produced. In addition, the chlorine root concentration in the product solution was measured by ion chromatography. These results are shown in Table 1.
[0029]
(Example 4)
The same experiment as in Example 1 was performed except that methanol was used as the lower alcohol. The results are shown in Table 1. Compared to the results of Example 1 using ethanol, the metal silicon conversion rate was slightly improved, and the selectivity for the tri-isomer was decreased. This is probably because methanol is more reactive than ethanol in both side reactions that change to the body.
[0030]
(Example 5)
The same experiment as in Example 3 was performed except that methanol was used as the lower alcohol. The results are shown in Table 1. Compared to the results of Example 3 using ethanol, the metal silicon conversion rate was slightly improved, and the selectivity for the tri-isomer was decreased. This is probably because methanol is more reactive than ethanol in both side reactions that change to the body.
[0031]
(Example 6)
Table 1 shows the results of the same experiment as in Example 1 except that the standard of metallic silicon was (purity 98%, average particle size 400 μm). Compared to Example 1, both the selectivity for the tribody and the conversion of metallic silicon were reduced, and the reaction rate was significantly reduced, so that it took a long time to complete the reaction.
[0032]
(Example 7)
Table 1 shows the results of the same experiment as in Example 1 except that the standard of cupric oxide was (average particle size 100 μm, moisture 120 ppm). Compared to Example 1, both the selectivity for the tribody and the conversion rate of metallic silicon were reduced, and the reaction rate was significantly reduced, so that it took a long time to complete the reaction.
[0033]
(Example 8)
Table 1 shows the results of the same experiment as in Example 1 except that the amount of cupric oxide was 48 g. Compared to Example 1, the conversion rate of metallic silicon is remarkably low and less than 10%, so it seems that this is not a practical method industrially.
[0034]
(Comparative Example 1)
Table 1 shows the results of the same experiment as in Example 1 except that the standard of cupric oxide was (average particle size 0.7 μm, moisture 1.0%). Compared with Example 1, the conversion rate of metallic silicon is remarkably low, and it seems that it is not a practical method at all industrially.
[0035]
[Table 1]
Figure 0003658901
[0036]
【The invention's effect】
According to the present invention, since chloride that causes corrosion of the apparatus is not used as a catalyst or raw material, alkoxysilane that does not contain chlorine-based impurities that adversely affect the raw material of electronic / electrical materials and silane coupling agents can be obtained inexpensively. It can be easily obtained.

Claims (4)

金属珪素と式ROHで表される低級アルコール(ただしRは炭素数1〜4のアルキル基)とを反応させてアルコキシシランを製造する方法において、触媒として含有水分量が3000ppm以下の酸化第二銅を用いることを特徴とするアルコキシシランの製造方法。In a process for producing alkoxysilane by reacting metallic silicon with a lower alcohol represented by the formula ROH (where R is an alkyl group having 1 to 4 carbon atoms), cupric oxide having a water content of 3000 ppm or less as a catalyst. A process for producing an alkoxysilane, characterized in that 酸化第二銅の使用量が、金属珪素100重量部に対して1〜12重量部であることを特徴とする請求項1のアルコキシシランの製造方法。The method for producing alkoxysilane according to claim 1, wherein the amount of cupric oxide used is 1 to 12 parts by weight with respect to 100 parts by weight of metal silicon. 酸化第二銅の平均粒径が0.1〜50μmであることを特徴とする請求項1または2のアルコキシシランの製造方法。The method for producing an alkoxysilane according to claim 1 or 2, wherein the cupric oxide has an average particle size of 0.1 to 50 µm. 金属珪素の粒径が200μm以下であることを特徴とする請求項1乃至3のアルコキシシランの製造方法。4. The method for producing an alkoxysilane according to claim 1, wherein the metal silicon has a particle size of 200 [mu] m or less.
JP34044796A 1996-12-06 1996-12-06 Method for producing alkoxysilane Expired - Lifetime JP3658901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34044796A JP3658901B2 (en) 1996-12-06 1996-12-06 Method for producing alkoxysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34044796A JP3658901B2 (en) 1996-12-06 1996-12-06 Method for producing alkoxysilane

Publications (2)

Publication Number Publication Date
JPH10168084A JPH10168084A (en) 1998-06-23
JP3658901B2 true JP3658901B2 (en) 2005-06-15

Family

ID=18337055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34044796A Expired - Lifetime JP3658901B2 (en) 1996-12-06 1996-12-06 Method for producing alkoxysilane

Country Status (1)

Country Link
JP (1) JP3658901B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10025367A1 (en) 2000-05-23 2001-12-13 Basf Ag Freshly precipitated CuO as a catalyst for trialkoxysilane synthesis
DE10033964A1 (en) 2000-07-13 2002-01-24 Basf Ag Fluorinated copper salts as a catalyst for trialkoxysilane synthesis
US7652164B2 (en) 2005-09-13 2010-01-26 Momentive Performance Materials Inc. Process for the direct synthesis of trialkoxysilane
CN101735257A (en) * 2008-11-13 2010-06-16 丹阳市有机硅材料实业公司 Method for synthesizing trimethoxy silane
WO2014054843A1 (en) 2012-10-02 2014-04-10 Oci Company Ltd. Method for preparing monosilane by using trialkoxysilane

Also Published As

Publication number Publication date
JPH10168084A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
US20080081923A1 (en) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
JPS62918B2 (en)
US8513449B2 (en) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes
JPH03275690A (en) Production of alkoxysilanes
US5260471A (en) Process for producing trialkoxysilane
CA1323037C (en) Process for the production of trialkoxysilanes
JP3658901B2 (en) Method for producing alkoxysilane
JPH05178863A (en) Preparation of alkoxysilane by bringing alcohol solution of hydrogen fluoride into contact with silicon
JPH0259590A (en) Production of organic cholorosilane
US6423860B1 (en) Method for promoting dialkyldihalosilane formation during direct method alkylhalosilane production
US5380903A (en) Process for the preparation of organochlorosilanes
JPS6341919B2 (en)
JP4092746B2 (en) Method for producing alkoxysilane
JP3760984B2 (en) Co-catalyst for organohalosilane synthesis and method for producing organohalosilane
JPS633869B2 (en)
US5051248A (en) Silane products from reaction of silicon monoxide with hydrogen halides
JP2563305B2 (en) Method for producing trialkoxysilane
JP2584772B2 (en) Method for producing trialkoxysilane
JP4151084B2 (en) Method for producing alkoxysilane
JP2914089B2 (en) Method for producing trialkoxysilane
JP2773568B2 (en) Method for producing trialkoxysilane
US5120520A (en) Silane products from reaction of solid silicon monoxide with aromatic halides
JP2906919B2 (en) Method for producing trialkoxysilane
JP2906918B2 (en) Method for producing trialkoxysilane
US3110721A (en) Preparation of organo-halogenosilanes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term