JPH07183740A - Operational amplifier circuit - Google Patents

Operational amplifier circuit

Info

Publication number
JPH07183740A
JPH07183740A JP5346718A JP34671893A JPH07183740A JP H07183740 A JPH07183740 A JP H07183740A JP 5346718 A JP5346718 A JP 5346718A JP 34671893 A JP34671893 A JP 34671893A JP H07183740 A JPH07183740 A JP H07183740A
Authority
JP
Japan
Prior art keywords
operational amplifier
inverting
inverting input
amplification
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5346718A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kako
靖彦 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP5346718A priority Critical patent/JPH07183740A/en
Publication of JPH07183740A publication Critical patent/JPH07183740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To use one operational amplifier to realize the same operation function at the time of inverting amplification as well as non-inverting amplification by connecting one end of a variable resistor to the output part of an amplifier means and grounding the other end and connecting a slider part and the inverted input part of the amplifier means by a resistor. CONSTITUTION:A variable resistor VR1 has one end connected to the output part of an amplifier means 1 and has the other end grounded, and the slider end and the inverted input part of this means 1 are connected by a resistor R3. As the result, the same degree A of amplification is obtained at the time of inverting amplification and non-inverting amplification of the amplifier 1. At the time of inverting amplification of the amplifier 1, the operation function is determined by a resistor R1, a first impedance element, and a variable resistor VR1 because the inverted input and the non-inverted input have potential 0 together; and at the time of non-inverting amplification, the operation function is determined by resistors R1 and R2, first and second impedance elements, and the variable resistor VR1. Consequently, resistance values of resistors R1 to R3 are equalized and values of impedance elements are equalized to realize the same operation function at the time of non-inverting amplification and inverting amplification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電動機の制御装置に用
いて好適な演算増幅回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operational amplifier circuit suitable for use in a motor control device.

【0002】[0002]

【従来の技術】電動機制御装置では、開閉手段によっ
て、増幅回路あるいは積分回路の符号を反転もしくは非
反転とする機能が必要とされる場合がある。特に、電動
機が駆動する機構の機械共振を制御する装置では、フィ
ードバック補償器の構成や機械振動の周波数に応じて観
測した機械振動信号の位相を調整する必要があるため、
スイッチ等の開閉手段によって、増幅器の符号を反転あ
るいは非反転としなければならない。そこで、第1の従
来技術として、図3に示すように増幅度Aの2個の演算
増幅器と1個の切換手段Sを用いて演算増幅回路を構成
する方法がある。図において演算増幅回路のゲインは可
変抵抗器VR1で変えている。切換手段Sを端子aに接
続すると非反転増幅回路となり、端子bに接続すると反
転増幅回路となる。また、第2の従来例として、図4に
示すように1個の演算増幅器1と1個の開閉手段Kを用
いて演算増幅回路を構成する方法がある。開閉手段Kを
開とすると非反転増幅回路となり、閉とすると反転増幅
回路となる。R1、R2は抵抗、Z3はインピーダンス
である。
2. Description of the Related Art In a motor control device, there is a case where a function of inverting or non-inverting the sign of an amplifier circuit or an integrating circuit is required depending on the opening / closing means. In particular, in the device that controls the mechanical resonance of the mechanism driven by the electric motor, it is necessary to adjust the phase of the observed mechanical vibration signal according to the configuration of the feedback compensator and the frequency of mechanical vibration.
The sign of the amplifier must be inverted or non-inverted by an opening / closing means such as a switch. Therefore, as a first conventional technique, there is a method of forming an operational amplifier circuit by using two operational amplifiers having an amplification degree A and one switching means S as shown in FIG. In the figure, the gain of the operational amplifier circuit is changed by the variable resistor VR1. When the switching means S is connected to the terminal a, it becomes a non-inverting amplifier circuit, and when it is connected to the terminal b, it becomes an inverting amplifier circuit. As a second conventional example, there is a method of forming an operational amplifier circuit using one operational amplifier 1 and one switching means K as shown in FIG. When the opening / closing means K is opened, it becomes a non-inverting amplifier circuit, and when it is closed, it becomes an inverting amplifier circuit. R1 and R2 are resistors, and Z3 is impedance.

【0003】[0003]

【発明が解決しようとする課題】ところが、第1の従来
技術では、符号の反転をするためだけに、演算増幅器が
1個余分に必要となる欠点がある。即ち、演算増幅器1
個だけでは、目的とする演算増幅回路の構成が不可能で
あった。第2の従来例では、インピーダンスZ3が抵抗
でかつ増幅度Aが1のとき、すなわちZ3=R1のとき
だけしか目的とする演算増幅回路が構成できなかった。
すなわち、反転増幅時の増幅度は、入力インピーダンス
と増幅度が非常に大きい理想的な増幅手段を仮定する
と、 Gi =Z3 /R1 (1) となる。非反転増幅時の増幅度も同様に
However, the first prior art has a drawback in that an extra operational amplifier is required only to invert the sign. That is, the operational amplifier 1
It was not possible to construct the target operational amplifier circuit with only one unit. In the second conventional example, the target operational amplifier circuit can be constructed only when the impedance Z3 is a resistance and the amplification degree A is 1, that is, when Z3 = R1.
That is, the amplification factor at the time of inverting amplification is G i = Z 3 / R 1 (1), assuming an ideal amplification means having an extremely large input impedance and amplification factor. The degree of amplification during non-inverting amplification is also the same.

【0004】[0004]

【数1】 [Equation 1]

【0005】であるが、演算増幅器の増幅度Aが非常に
大きいので、 Gn =1 (3) となる。(1)式と(3)式より、反転増幅時と非反転
増幅時とで演算特性が全く異なることがわかる。上記の
ように、従来技術では、反転増幅時と非反転増幅時で同
一の機能(増幅、積分あるいは不完全積分等)を持った
演算増幅回路を構成することができないという問題点が
あった。そこで本発明は、1個の演算増幅器によって、
反転増幅時と非反転増幅時で同一の機能(増幅、積分あ
るいは不完全積分等)を持った演算増幅回路を構成する
ことを目的とする。
However, since the amplification degree A of the operational amplifier is very large, G n = 1 (3). From the equations (1) and (3), it can be seen that the operational characteristics are completely different between the inverting amplification and the non-inverting amplification. As described above, the conventional technique has a problem in that it is not possible to configure an operational amplifier circuit having the same function (amplification, integration, incomplete integration, etc.) during inverting amplification and non-inverting amplification. Therefore, the present invention uses one operational amplifier to
It is an object to configure an operational amplifier circuit having the same function (amplification, integration, incomplete integration, etc.) during inverting amplification and non-inverting amplification.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
めに、本発明では、演算増幅回路を、反転入力部と非反
転入力部を備えた演算増幅器と、信号入力端と前記反転
入力部および前記非反転入力部とをそれぞれ接続する第
1、第2の抵抗器と、一端を前記演算増幅器の出力部に
接続し、他端を接地する可変抵抗器と、前記可変抵抗器
の摺動端と前記演算増幅器の反転入力部を接続する第3
の抵抗器と、前記非反転入力部を接地あるいは非接地と
する開閉手段とを備え、前記第1、第3の抵抗器の抵抗
値を等しくする。あるいは、演算増幅回路を、反転入力
部と非反転入力部を備えた演算増幅器と、入力信号を一
端あるいは他端に切り換える切換手段と、前記切換手段
の一端と前記反転入力部とを接続する第1の抵抗器と、
前記切換手段の他端と前記非反転入力部とを接続する第
2の抵抗器と、一端を前記反転入力部に接続し他端を接
地する第3の抵抗器と、一端を前記演算増幅器の出力部
に接続し、他端を接地する可変抵抗器と、前記可変抵抗
器の摺動端と前記演算増幅器の反転入力部とを接続する
第1のインピーダンスと、前記演算増幅器の非反転入力
部に一端を接続し他端を接地する第2のインピーダンス
とを備え、前記第1、第2、第3の抵抗器の抵抗値を等
しくするとともに、前記第1のインピーダンスと第2の
インピーダンスの値を等しくする。
In order to solve the above problems, in the present invention, an operational amplifier circuit includes an operational amplifier having an inverting input section and a non-inverting input section, a signal input terminal and the inverting input section. And first and second resistors respectively connecting the non-inverting input section, a variable resistor having one end connected to the output section of the operational amplifier and the other end grounded, and sliding of the variable resistor. A third connecting the end and the inverting input of the operational amplifier
And the opening / closing means for grounding or non-grounding the non-inverting input section, and the resistance values of the first and third resistors are made equal. Alternatively, the operational amplifier circuit includes an operational amplifier having an inverting input section and a non-inverting input section, switching means for switching an input signal to one end or the other end, and one end for connecting the one end of the switching means and the inverting input section. 1 resistor,
A second resistor connecting the other end of the switching means to the non-inverting input unit, a third resistor having one end connected to the inverting input unit and the other end grounded, and one end of the operational amplifier. A variable resistor connected to the output part and having the other end grounded, a first impedance connecting the sliding end of the variable resistor and the inverting input part of the operational amplifier, and a non-inverting input part of the operational amplifier. A second impedance having one end connected to the other end and the other end grounded, the resistance values of the first, second, and third resistors being equalized, and the values of the first impedance and the second impedance. Are equal.

【0007】[0007]

【作用】第1の手段によると、可変抵抗器の一端を前記
増幅手段の出力部に接続し、他端を接地し、摺動端と前
記増幅手段の反転入力部を第3の抵抗器で接続するの
で、反転増幅時と非反転増幅時とで増幅度が同一とな
る。また、第2の手段によると、反転増幅時には演算増
幅器の反転入力と非反転入力が共にゼロ電位となるの
で、第1の抵抗器と第1のインピーダンスと可変抵抗器
とで演算機能が定まり、非反転増幅時には第2、第3の
抵抗器および第1、第2のインピーダンスと可変抵抗器
で演算機能が定まり、前記各抵抗器の抵抗値を等しく、
前記各インピーダンスの値を等しくすることにより、非
反転増幅時と反転増幅時とで同一の演算機能が実現でき
る。
According to the first means, one end of the variable resistor is connected to the output part of the amplifying means, the other end is grounded, and the sliding end and the inverting input part of the amplifying means are connected by the third resistor. Since they are connected, the amplification degree is the same during inverting amplification and during non-inverting amplification. Further, according to the second means, since the inverting input and the non-inverting input of the operational amplifier both become zero potential during the inverting amplification, the computing function is determined by the first resistor, the first impedance and the variable resistor. At the time of non-inverting amplification, the arithmetic function is determined by the second and third resistors and the first and second impedances and the variable resistor, and the resistance values of the respective resistors are equal,
By making the values of the impedances equal, the same arithmetic function can be realized during non-inverting amplification and during inverting amplification.

【0008】[0008]

【実施例】以下、本発明の具体的実施例を説明する。本
発明の第1の実施例を図1に示す。図1において、入力
端と増幅手段1の反転入力部(以下−で示す)とを抵抗
R1で接続し、入力端と増幅手段の非反転入力部(以下
+で示す)とを抵抗R2で接続し、増幅手段1の出力に
可変抵抗器VR1の一端を接続し、他端を接地し、可変
抵抗器VR1の摺動端と増幅手段1の反転入力−とを抵
抗器R3で接続し、非反転入力を開閉手段Kを通して接
地する。この演算増幅回路は、開閉手段Kが短絡状態で
は、反転増幅器となり、開閉手段Kが開状態では、非反
転増幅器となる。増幅度は可変抵抗器VR1で自由に増
減できる。可変抵抗器VR1の摺動端の電圧Vαは Vα=αV0 (4) となる。ここで、αは可変抵抗器VR1の摺動片の位置
に関して定まり、0≦α≦1である。V0 は出力電圧で
ある。反転増幅時は非反転入力がゼロ電位となるため増
幅度は、入力インピーダンスと増幅度が非常に大きい理
想的な増幅手段を仮定すると、 Gi =(−1/α)(R3 /R1 ) (5) となる。非反転時は非反転入力の電位が入力電圧Vi
等しくなるので、増幅度は
EXAMPLES Specific examples of the present invention will be described below. A first embodiment of the present invention is shown in FIG. In FIG. 1, the input end and the inverting input portion (hereinafter indicated by −) of the amplifying means 1 are connected by a resistor R1, and the input end and the non-inverting input portion of the amplifying means (hereinafter indicated by +) are connected by a resistor R2. Then, one end of the variable resistor VR1 is connected to the output of the amplifying means 1, the other end is grounded, and the sliding end of the variable resistor VR1 and the inverting input-of the amplifying means 1 are connected by the resistor R3, and The inverting input is grounded through the opening / closing means K. This operational amplifier circuit serves as an inverting amplifier when the opening / closing means K is short-circuited, and serves as a non-inverting amplifier when the opening / closing means K is open. The amplification degree can be freely increased or decreased by the variable resistor VR1. The voltage Vα at the sliding end of the variable resistor VR1 is Vα = αV 0 (4). Here, α is determined with respect to the position of the sliding piece of the variable resistor VR1, and 0 ≦ α ≦ 1. V 0 is the output voltage. Since the non-inverting input has a zero potential during inverting amplification, the amplification factor is G i = (− 1 / α) (R 3 / R 1 supposing an ideal amplification means having a very large input impedance and amplification factor. ) (5) At the time of non-inverting, the potential of the non-inverting input becomes equal to the input voltage V i , so the amplification degree is

【0009】[0009]

【数2】 [Equation 2]

【0010】であるが、増幅手段1の増幅度Aが非常に
大きいので、 Gn =1/α (7) となる。(5)式と(7)式より、R1=R3のとき、
反転増幅時と非反転増幅時で符号の反転以外の演算機能
(増幅度の設定)が一致する。本発明の第2の実施例を
図2に示す。図2において、切換手段Sは入力電圧Vi
を一端aあるいは他端bに切り換える。前記切換手段S
の一端aと演算増幅器1の反転入力部とを抵抗R1で接
続し、前記切換手段Sの他端bと演算増幅器1の非反転
入力部とを抵抗R2で接続し、前記演算増幅器1の出力
側に可変抵抗器VR1の一端を接続し、他端を接地し、
可変抵抗器VR1の摺動端と演算増幅器1の反転入力部
とをインピーダンスZ1で接続し、演算増幅器1の非反
転入力部をインピーダンスZ2を通して接地する。切換
手段Sがaの時は、演算増幅器1の非反転入力部がゼロ
電位となるので、出力電圧V0 は、入力インピーダンス
と増幅度が非常に大きい理想的な演算増幅器を仮定する
と、 V0 =(−1/α)(Z1・Vi /R1) (8) となる。切換手段Sがbの時は、非反転入力部の電位が
入力電位と等しくなるので、演算増幅器1の増幅度をA
とすると出力電圧V0 は、
However, since the amplification degree A of the amplifying means 1 is very large, G n = 1 / α (7). From equations (5) and (7), when R1 = R3,
The arithmetic functions (setting of the amplification degree) other than the inversion of the sign are the same during the inverting amplification and the non-inverting amplification. The second embodiment of the present invention is shown in FIG. In FIG. 2, the switching means S has an input voltage V i.
Is switched to one end a or the other end b. The switching means S
Of the operational amplifier 1 is connected to the inverting input of the operational amplifier 1 by a resistor R1, and the other end b of the switching means S is connected to the non-inverting input of the operational amplifier 1 by a resistor R2. Connect one end of the variable resistor VR1 to the side and ground the other end,
The sliding end of the variable resistor VR1 and the inverting input portion of the operational amplifier 1 are connected by the impedance Z1, and the non-inverting input portion of the operational amplifier 1 is grounded through the impedance Z2. When switching means S is a, since the non-inverting input of the operational amplifier 1 becomes the zero potential, the output voltage V 0 is the amplification of the input impedance is assumed very large ideal operational amplifier, V 0 = (− 1 / α) (Z1 · V i / R1) (8) When the switching means S is b, the potential of the non-inverting input section becomes equal to the input potential, so the amplification degree of the operational amplifier 1 is set to A.
Then, the output voltage V 0 is

【0011】[0011]

【数3】 [Equation 3]

【0012】となる。ここで、演算増幅器1の増幅度A
が非常に大きいので、出力V0 は、
[0012] Here, the amplification degree A of the operational amplifier 1
Is very large, the output V 0 is

【0013】[0013]

【数4】 [Equation 4]

【0014】となる。(8)式と(10)式において R=R1=R2=R3、Z=Z1=Z2 とおくと、(8)式と(10)式はそれぞれ V0 =(−1/α)(Z/R)Vi (12a) V0 =(1/α)(Z/R)Vi (12b) となる。(12a)、(12b)式より、反転増幅時と
非反転増幅時で符号の反転以外は同一の機能を持つこと
が説明できる。なお、反転時、非反転時にかかわらずゲ
インはαで可変できる。なお、(12a)、(12b)
式のインピーダンスを抵抗とすれば、増幅回路は、反転
/非反転の増幅回路となり、インピーダンスを容量性Z
=1/jωcとすれば、増幅回路は反転/非反転の積分
器となる。また、Z=R+1/jωcとすると増幅回路
は反転/非反転の不完全積分器に、誘導性インピーダン
スZ=jωLとすると、反転/非反転の微分器となる。
[0014] When R = R1 = R2 = R3 and Z = Z1 = Z2 in the equations (8) and (10), the equations (8) and (10) are respectively V 0 = (− 1 / α) (Z / R) V i (12a) V 0 = (1 / α) (Z / R) V i (12b). From equations (12a) and (12b), it can be explained that the same function is provided during inverting amplification and during non-inverting amplification except for inverting the sign. The gain can be changed by α regardless of whether it is inverted or not. Note that (12a) and (12b)
If the impedance of the equation is taken as a resistance, the amplifier circuit becomes an inverting / non-inverting amplifier circuit, and the impedance becomes a capacitive Z
= 1 / jωc, the amplifier circuit becomes an inverting / non-inverting integrator. Further, when Z = R + 1 / jωc, the amplifier circuit becomes an inverting / non-inverting incomplete integrator, and when inductive impedance Z = jωL, the amplifier circuit becomes an inverting / non-inverting differentiator.

【0015】[0015]

【発明の効果】以上述べたように、本発明によれば、増
幅手段が一個であっても、反転増幅時と非反転増幅時で
符号の反転以外は同一の機能(増幅、積分あるいは不完
全積分等)を持った演算増幅回路を構成することができ
る。
As described above, according to the present invention, even if there is only one amplifying means, the same function (amplification, integration or incompleteness) is obtained during inverting amplification and non-inverting amplification except for inverting the sign. It is possible to configure an operational amplifier circuit having integration (or the like).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明する図。FIG. 1 is a diagram illustrating a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明する図。FIG. 2 is a diagram illustrating a second embodiment of the present invention.

【図3】第1の従来技術を説明する図。FIG. 3 is a diagram illustrating a first conventional technique.

【図4】第2の従来技術を説明する図。FIG. 4 is a diagram illustrating a second conventional technique.

【符号の説明】[Explanation of symbols]

1 演算装置 R1、R2、R3 抵抗 A 増幅度 VR1 可変抵抗器 Z1、Z2、Z3 インピーダンス K 開閉手段 S 切換手段 Vi 入力電圧 V0 出力電圧1 arithmetic unit R1, R2, R3 resistor A amplification degree VR1 variable resistor Z1, Z2, Z3 impedance K closing means S switching means V i input voltage V 0 Output voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反転入力部と非反転入力部を備えた演算
増幅器と、信号入力端と前記反転入力部および前記非反
転入力部とをそれぞれ接続する第1、第2の抵抗器と、
一端を前記演算増幅器の出力部に接続し、他端を接地す
る可変抵抗器と、前記可変抵抗器の摺動端と前記演算増
幅器の反転入力部を接続する第3の抵抗器と、前記非反
転入力部を接地あるいは非接地とする開閉手段とを備
え、前記第1、第3の抵抗器の抵抗値を等しくしたこと
を特徴とする演算増幅回路。
1. An operational amplifier having an inverting input section and a non-inverting input section, and first and second resistors for connecting a signal input terminal to the inverting input section and the non-inverting input section, respectively.
A variable resistor having one end connected to the output of the operational amplifier and the other end grounded; a third resistor connecting a sliding end of the variable resistor and an inverting input of the operational amplifier; An operational amplifier circuit comprising: an opening / closing means for grounding or non-grounding the inverting input portion, wherein the resistance values of the first and third resistors are made equal.
【請求項2】 反転入力部と非反転入力部を備えた演算
増幅器と、入力信号を一端あるいは他端に切り換える切
換手段と、前記切換手段の一端と前記反転入力部とを接
続する第1の抵抗器と、前記切換手段の他端と前記非反
転入力部とを接続する第2の抵抗器と、一端を前記反転
入力部に接続し他端を接地する第3の抵抗器と、一端を
前記演算増幅器の出力部に接続し、他端を接地する可変
抵抗器と、前記可変抵抗器の摺動端と前記演算増幅器の
反転入力部とを接続する第1のインピーダンスと、前記
演算増幅器の非反転入力部に一端を接続し他端を接地す
る第2のインピーダンスとを備え、前記第1、第2、第
3の抵抗器の抵抗値を等しくするとともに、前記第1の
インピーダンスと第2のインピーダンスの値を等しくし
たことを特徴とする演算増幅回路。
2. An operational amplifier having an inverting input section and a non-inverting input section, switching means for switching an input signal to one end or the other end, and a first connecting the one end of the switching means and the inverting input section. A resistor, a second resistor connecting the other end of the switching means and the non-inverting input unit, a third resistor having one end connected to the inverting input unit and the other end grounded, and one end A variable resistor connected to the output part of the operational amplifier and having the other end grounded; a first impedance connecting the sliding end of the variable resistor and the inverting input part of the operational amplifier; A second impedance having one end connected to the non-inverting input part and the other end grounded, the resistance values of the first, second, and third resistors being made equal, and the first impedance and the second impedance being equal to each other. Characterized by equalizing the impedance values of Operational amplifier circuit.
JP5346718A 1993-12-21 1993-12-21 Operational amplifier circuit Pending JPH07183740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5346718A JPH07183740A (en) 1993-12-21 1993-12-21 Operational amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5346718A JPH07183740A (en) 1993-12-21 1993-12-21 Operational amplifier circuit

Publications (1)

Publication Number Publication Date
JPH07183740A true JPH07183740A (en) 1995-07-21

Family

ID=18385349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5346718A Pending JPH07183740A (en) 1993-12-21 1993-12-21 Operational amplifier circuit

Country Status (1)

Country Link
JP (1) JPH07183740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008942A (en) * 2000-06-16 2002-01-11 Fujitsu Ltd Capacitor device, method of manufacturing the same, and module mounted with the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008942A (en) * 2000-06-16 2002-01-11 Fujitsu Ltd Capacitor device, method of manufacturing the same, and module mounted with the device

Similar Documents

Publication Publication Date Title
JP3431077B2 (en) Line driver with adaptive output impedance
US6335655B1 (en) Filter circuit
JPH07183740A (en) Operational amplifier circuit
JPH04148388A (en) Differentiator for time constant variable
JPS5949723B2 (en) Amplifier
KR0170777B1 (en) Loudness control circuit
JP2748145B2 (en) Differential amplifier circuit
JPH0691387B2 (en) Charge amplifier
US6466089B2 (en) Control circuit for increasing the output inpedance of a transconductor
US4437069A (en) Low noise tuned amplifier
JP2638823B2 (en) Output circuit
JP2744354B2 (en) Constant amplitude phase shift circuit
JPS6225503A (en) Signal emphasis device
JP4691753B2 (en) Sound quality adjustment circuit
JPH0630426B2 (en) Variable gain circuit
JPH05259806A (en) Primary high pass filter
JP2744355B2 (en) Constant amplitude phase shift circuit
JPS623937Y2 (en)
JPH0677332U (en) Amplifier
JPS6123855Y2 (en)
JPS6324655Y2 (en)
JPH0246107Y2 (en)
JPS6336567B2 (en)
JPH0686381A (en) Speaker driving device
JPS58175313A (en) Signal emphasizing device