JPH0717369B2 - Method for producing fibrous silicon / oxygen / carbon compound - Google Patents

Method for producing fibrous silicon / oxygen / carbon compound

Info

Publication number
JPH0717369B2
JPH0717369B2 JP62265750A JP26575087A JPH0717369B2 JP H0717369 B2 JPH0717369 B2 JP H0717369B2 JP 62265750 A JP62265750 A JP 62265750A JP 26575087 A JP26575087 A JP 26575087A JP H0717369 B2 JPH0717369 B2 JP H0717369B2
Authority
JP
Japan
Prior art keywords
gas
carbon
oxygen
mixture
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62265750A
Other languages
Japanese (ja)
Other versions
JPH01108108A (en
Inventor
勝義 下川
逸馬 関口
良和 鈴木
勝昌 矢部
芳信 植田
義明 山口
英郎 鵜沼
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP62265750A priority Critical patent/JPH0717369B2/en
Publication of JPH01108108A publication Critical patent/JPH01108108A/en
Publication of JPH0717369B2 publication Critical patent/JPH0717369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、X線回折図において約22〜23度の2θ付近に
ブロードのピークを有する繊維状の珪素・酸素・炭素系
化合物(以下サイオックと言う)の製造方法に関するも
のであり、更に詳しくは極めて簡便に、しかも高収率で
製造することを特徴としている。
Description: TECHNICAL FIELD The present invention relates to a fibrous silicon / oxygen / carbon compound (hereinafter referred to as “SIOC”) having a broad peak around 2θ of about 22 to 23 degrees in an X-ray diffraction pattern. In more detail, it is characterized in that it is manufactured very simply and in high yield.

本発明で得られるサイオックは、耐熱性、耐酸化性、耐
腐食性等の面で優れた特性を有し、軽量でアスペクト比
の大きな繊維であり、応用分野では耐食、高温及び高強
度の機能を有する構造材料として注目される有用な物質
である。
The siocc obtained in the present invention has excellent properties in terms of heat resistance, oxidation resistance, corrosion resistance, etc., is a fiber with a large aspect ratio, is lightweight, and has corrosion resistance, high temperature and high strength functions in the application field. It is a useful substance that attracts attention as a structural material having.

〔従来技術〕[Prior art]

従来の方法では、前記サイオックは、珪素酸化物又は珪
酸塩鉱物と、還元剤である炭素との混合物を、アルゴン
ガス又は窒素ガス等の不活性ガスの中性雰囲気中1300℃
以上、好ましくは1500℃以上の温度に加熱し、混合物を
気化させ、反応させることによって製造される(特公昭
61−152825号公報)。この従来の方法は、アルゴンガス
又は窒素ガスを流通もしくは封じ込めた中でサイオック
を製造することを特徴とするものであるが、気相反応に
寄与する各元素(珪素・酸素及び炭素)濃度の調整が難
しく、従って、サイオック繊維の生成速度も遅いため収
率が非常に低いという難点があった。
In the conventional method, the siocc is a mixture of a silicon oxide or silicate mineral and carbon, which is a reducing agent, at 1300 ° C. in a neutral atmosphere of an inert gas such as argon gas or nitrogen gas.
Above, preferably heated to a temperature of 1500 ℃ or more, to vaporize the mixture, to react by producing (Japanese Patent Publication Sho
61-152825). This conventional method is characterized in that a siocc is produced in a flow or containment of argon gas or nitrogen gas, but the concentration of each element (silicon, oxygen and carbon) that contributes to the gas phase reaction is adjusted. However, since the production rate of the Sioc fiber is slow, the yield is very low.

〔目的〕〔Purpose〕

本発明は、サイオック繊維を簡単かつ高収率で製造し得
る方法を提供することを目的とする。
It is an object of the present invention to provide a method capable of producing Siocc fiber simply and in high yield.

〔構成〕〔Constitution〕

本発明者らは、前記目的を達成すべく種々研究を重ねた
結果、使用原料の加熱によって生じる気相反応の速度を
高めるため、反応性の高い各種ガスを用い、さらにこれ
らのガスをゆっくりと連続的に流通する時に、反応に寄
与する元素の気相濃度の調整がはかられ、繊維状サイオ
ックの生成速度を上げるのに効果的であることを知り、
収率の低かった従来技術の問題点を解決するに至った。
The present inventors have conducted various studies to achieve the above-mentioned object, and as a result, in order to increase the rate of the gas phase reaction caused by heating of the raw materials used, various highly reactive gases are used, and these gases are slowly added. Knowing that the gas phase concentration of elements that contribute to the reaction can be adjusted during continuous circulation, and that it is effective in increasing the production rate of fibrous sioc,
The problem of the prior art that the yield was low was solved.

即ち、本発明によれば、X線回折図において約22〜23度
の2θ付近にブロードのピークを有する珪素酸化物又は
珪酸塩鉱物と炭素からなる混合物を、その混合物を包囲
する空間に、水素ガス、アンモニアガス、炭化水素ガ
ス、一酸化炭素ガス、二酸化炭素ガス及びアルコールガ
スの中から選ばれる少なくとも一種の反応性ガス又はこ
の反応性ガスを不活性ガスに混合したガスを線速度4.0c
m/秒以下の速度でゆっくりと連続的に流通させながら、
1300〜1550℃の温度に加熱し、その混合物を気化させ、
気相中で反応させることを特徴とする繊維状珪素・酸素
・炭素系化合物の製造方法が提供される。
That is, according to the present invention, a mixture of silicon oxide or silicate mineral and carbon having a broad peak in the vicinity of 2θ of about 22 to 23 degrees in an X-ray diffraction pattern is mixed with hydrogen in a space surrounding the mixture. Gas, ammonia gas, hydrocarbon gas, carbon monoxide gas, carbon dioxide gas and alcohol gas, at least one reactive gas or a gas obtained by mixing this reactive gas with an inert gas at a linear velocity of 4.0c.
While slowly and continuously circulating at a speed of m / sec or less,
Heating to a temperature of 1300 to 1550 ° C. to vaporize the mixture,
There is provided a method for producing a fibrous silicon-oxygen-carbon compound, which comprises reacting in a gas phase.

本発明で使用するガスは、水素ガス、アンモニアガス、
炭化水素ガス、一酸化炭素ガス、二酸化炭素ガス、アル
コールガスのいずれでもよく、これらのガス(以下、活
性ガスとも言う)を単独又は混合ガスとして用いても良
い。又、これらの反応性ガスを従来のアルゴンガスや窒
素ガス等の不活性ガスに混合して一定濃度に調整すれ
ば、繊維状サイオックの生成速度の調整に効果を有す
る。
The gas used in the present invention is hydrogen gas, ammonia gas,
It may be any of hydrocarbon gas, carbon monoxide gas, carbon dioxide gas, and alcohol gas, and these gases (hereinafter, also referred to as active gas) may be used alone or as a mixed gas. Further, if these reactive gases are mixed with a conventional inert gas such as argon gas or nitrogen gas and adjusted to a constant concentration, it is effective in adjusting the production rate of the fibrous sioc.

本発明では、繊維状のサイオック生成物が、連続的に析
出するようにするため、出発原料が気相化して生成物に
変化する間一定濃度の前記活性ガスを、原料混合物を包
囲する空間に、4.0cm/秒以下、好ましくは0.1〜2.0cm/
秒の線速度でゆっくりと連続的に流通させる。サイオッ
ク繊維の生成速度は反応温度と反応時間に密接に関係し
ており、4.0cm/秒を超える線速度では気相中における各
反応元素(珪素、酸素及び炭素)濃度のバランスをくず
し、収率の低下をもたらす恐れがある。また加熱温度は
1300〜1550℃の範囲で数分から2時間必要である。
In the present invention, the fibrous siocc product, in order to allow continuous precipitation, in order to allow the starting raw material to vaporize and change into a product, a constant concentration of the active gas, in the space surrounding the raw material mixture. , 4.0 cm / sec or less, preferably 0.1-2.0 cm /
Circulate slowly and continuously at a linear velocity of seconds. The production rate of sioic fiber is closely related to the reaction temperature and the reaction time. At linear velocities exceeding 4.0 cm / sec, the balance of the concentration of each reactive element (silicon, oxygen and carbon) in the gas phase is destroyed and the yield May result in a decrease in The heating temperature is
It takes several minutes to 2 hours in the range of 1300 to 1550 ° C.

さらに本発明では、これらの活性ガスの供給条件が一定
の状態で、原料の供給とサイオック生成物の取り出しを
連続的に行うこともできる。
Further, in the present invention, it is possible to continuously supply the raw material and take out the siocc product under the condition that these active gas supply conditions are constant.

〔実施例〕〔Example〕

以下、本発明を実施例により詳述する。 Hereinafter, the present invention will be described in detail with reference to examples.

実施例1 原料としてモミガラ炭化物を用いた。このものは、生の
モミガラを窒素ガス雰囲気中で500℃、1時間加熱処理
したものである。この物質の元素分析値は炭素49.62
%、水素2.10%、酸素5.43%および残りがアモルファス
な二酸化珪素である。この炭化物の約1gを磁性ボートに
入れ、抵抗式電気炉の中心部に挿入し、加熱した。この
時のガス雰囲気は水素50%を含んだ窒素ガスで、原料1g
に対し、線速度:0.35cm/秒で、毎分20mlで流した。反応
温度は1520℃で2時間保持した後、室温まで冷却した。
ボート内に生成した化合物のほとんどは結晶性の悪い炭
化珪素(β−SiC)であった。
Example 1 Rice husk carbide was used as a raw material. In this product, raw rice husks are heat-treated at 500 ° C. for 1 hour in a nitrogen gas atmosphere. The elemental analysis value of this substance is carbon 49.62.
%, Hydrogen 2.10%, oxygen 5.43% and the balance amorphous silicon dioxide. About 1 g of this carbide was put into a magnetic boat, inserted into the center of a resistance electric furnace, and heated. The gas atmosphere at this time was nitrogen gas containing 50% hydrogen, and 1 g of raw material
On the other hand, the linear velocity was 0.35 cm / sec and the flow rate was 20 ml / min. The reaction temperature was maintained at 1520 ° C. for 2 hours and then cooled to room temperature.
Most of the compounds formed in the boat were silicon carbide (β-SiC) with poor crystallinity.

本発明の繊維状サイオックはボートの反応位置より離れ
た1100〜1200℃付近の反応管壁にリング状に0.155g生成
した。このサイオック繊維の生成量は、出発原料(SiO2
換算)1.0gに対し、0.35gであった。さらに、水素90%
以上含んだ窒素ガス雰囲気中では、出発原料の85wt%が
サイオック繊維に転換した。
The fibrous siocc of the present invention formed 0.155 g in a ring shape on the wall of the reaction tube at a temperature of 1100 to 1200 ° C., which was separated from the reaction position of the boat. The amount of this Sioc fiber produced depends on the starting material (SiO 2
It was 0.35g against 1.0g. In addition, 90% hydrogen
In the nitrogen gas atmosphere containing the above, 85 wt% of the starting material was converted to Sioc fiber.

このサイオック繊維は走査電子顕微鏡観察によると、直
径が0.01〜0.1ミクロン程度であり、長さは100ミクロン
以上の長繊維である。また、X線回折分析結果では微量
の炭化珪素が認められる他に、2θが約22〜23度付近を
頂点とする幅広いピークが認められた。しかし、このサ
イオック繊維には透過型電子顕微鏡による電子線回折の
結果から、結晶又は微結晶の他に非晶質の存在が認めら
れた。
According to scanning electron microscope observation, the Sioc fiber is a long fiber having a diameter of about 0.01 to 0.1 μm and a length of 100 μm or more. In addition, in the X-ray diffraction analysis result, in addition to a trace amount of silicon carbide, a broad peak having a peak at 2θ of about 22 to 23 ° was recognized. However, from the results of electron diffraction using a transmission electron microscope, it was confirmed that in addition to crystals or microcrystals, the Sioc fiber was amorphous.

また、オージェ電子分光法による分析結果、さらにX線
光電子分光法による分析結果からも、本発明で得られる
繊維は珪素・酸素・炭素で構成されていることが確かめ
られた。
Also, from the analysis results by Auger electron spectroscopy and the analysis results by X-ray photoelectron spectroscopy, it was confirmed that the fiber obtained in the present invention was composed of silicon, oxygen and carbon.

実施例2 二酸化珪素と炭素を重量割合で1対1に混合したものを
出発原料とした。これを用いて、実施例1と同様の方法
によってサイオック繊維を合成した。この場合のガス雰
囲気はアンモニアガスで、その線速度は0.35cm/秒で、
その流量は毎分20mlである。
Example 2 A starting material was a mixture of silicon dioxide and carbon in a weight ratio of 1: 1. Using this, a Sioc fiber was synthesized by the same method as in Example 1. The gas atmosphere in this case is ammonia gas, and its linear velocity is 0.35 cm / sec.
Its flow rate is 20 ml / min.

反応管に固着したサイオック繊維の生成量は0.138gで、
出発原料(SiO2換算)1gに対し0.31gに相当した。
The production amount of Sioc fiber fixed to the reaction tube is 0.138 g,
Corresponding to 0.31 g for 1 g of the starting material (converted to SiO 2 ).

また、繊維のX線回折、走査型電子顕微鏡観察およびオ
ージェ電子分光法の分析結果はいずれも実施例1と全く
同様であった。
The X-ray diffraction, scanning electron microscope observation, and Auger electron spectroscopy analysis results of the fiber were all the same as in Example 1.

実施例3 原料としてモミガラ炭化物を用い、実施例1の方法に基
づいて、サイオック繊維を合成した。まず、試料1gを磁
性ボートにいれ、反応管の中央に置き、次にアルゴンガ
スで系内を十分置換した後、22℃/minの割合で昇温し、
約1000℃よりプロパンガスに切換え、線速度0.16cm/秒
で、10ml/minの流速で供給し、1500℃で1時間保持した
のち、再びアルゴンガスを流しながら徐々に冷却し、室
温になってからサイオック繊維を取り出した。サイオッ
ク繊維の生成量は0.2gで、出発原料(SiO2換算)1.0gに
対し、0.455gであり、その性状は実施例1と同様であっ
た。
Example 3 Siocc fibers were synthesized based on the method of Example 1 using chaffed charcoal as a raw material. First, put 1 g of a sample in a magnetic boat, place it in the center of the reaction tube, then sufficiently replace the inside of the system with argon gas, then raise the temperature at a rate of 22 ° C./min,
Switch to propane gas from about 1000 ° C, supply at a linear velocity of 0.16 cm / sec at a flow rate of 10 ml / min, hold at 1500 ° C for 1 hour, then gradually cool with argon gas flowing again to reach room temperature. The siocc fiber was removed from. The amount of siocc fiber produced was 0.2 g, which was 0.455 g with respect to 1.0 g of the starting material (converted to SiO 2 ), and the properties were the same as in Example 1.

実施例4 原料としてモミガラ炭化物を用い、実施例1と同様の方
法で、試料1gを磁性ボートに入れ反応管中央に置き、次
に水素ガスで系内を十分置換した後、線速度0.35cm/秒
で、20ml/minの流速で供給し、22℃/minの割合で昇温し
た。さらに、この系内に1000℃より炭酸ガス(又は一酸
化炭素)を線速度0.06cm/秒で、3.5ml/minの流速で供給
し、1520℃で30分間保持した。反応終了後、炭酸ガス
(又は一酸化炭素)の供給を止め、徐々に冷却し、室温
になってから生成物を取り出した。サイオック繊維の生
成量は、0.17gで、出発原料(SiO2換算)1.0gに対し、
0.40gであり、その性状は実施例1と同様であった。但
し、反応ボート中の生成物のほとんどは、β−SiCであ
るが、他に微量のα−クリストバライトも確認された。
Example 4 Using chaff charred as a raw material, in the same manner as in Example 1, 1 g of the sample was put in a magnetic boat and placed in the center of the reaction tube, and then the system was sufficiently replaced with hydrogen gas, and then the linear velocity was 0.35 cm / It was supplied at a flow rate of 20 ml / min for 2 seconds, and the temperature was raised at a rate of 22 ° C./min. Further, carbon dioxide gas (or carbon monoxide) was supplied into the system at 1000 ° C. at a linear velocity of 0.06 cm / sec at a flow rate of 3.5 ml / min and kept at 1520 ° C. for 30 minutes. After the reaction was completed, the supply of carbon dioxide (or carbon monoxide) was stopped, the mixture was gradually cooled, and the product was taken out after reaching room temperature. The production amount of siooc fiber is 0.17 g, which is 1.0 g compared to 1.0 g of the starting material (SiO 2 equivalent).
It was 0.40 g and its properties were the same as in Example 1. However, most of the products in the reaction boat were β-SiC, but a small amount of α-cristobalite was also confirmed.

実施例5 原料としてモミガラ炭化物を用い、実施例1と同様の方
法で、試料1gを磁性ボートに入れ、反応管の中央に置
き、次に窒素ガスで系内を十分置換した後、線速度0.16
cm/秒で、10ml/minの流速で供給し、22℃/minの割合で
昇温した。さらにこの系に、1200℃よりメチルアルコー
ル(CH3OH)を線速度0.0016cm/秒で、0.5g/hrの流速で
供給し、1520℃で2時間保持した。反応後、メチルアル
コールの供給を止め、徐々に冷却し、室温になってから
生成物を取り出した。
Example 5 In the same manner as in Example 1, using chaff charred carbide as a raw material, 1 g of the sample was put in a magnetic boat and placed in the center of the reaction tube, and then the system was sufficiently replaced with nitrogen gas, and then the linear velocity was 0.16.
It was supplied at a flow rate of 10 ml / min at cm / sec, and the temperature was raised at a rate of 22 ° C / min. Further, methyl alcohol (CH 3 OH) was supplied to this system from 1200 ° C. at a linear velocity of 0.0016 cm / sec at a flow rate of 0.5 g / hr, and the mixture was kept at 1520 ° C. for 2 hours. After the reaction, the supply of methyl alcohol was stopped, the mixture was gradually cooled, and after reaching room temperature, the product was taken out.

サイオック繊維の生成量は0.19gで、出発原料(SiO2
算)1.0gに対し、0.44gであり、その性状は実施例1と
同様であった。
The amount of siocc fiber produced was 0.19 g, which was 0.44 g based on 1.0 g of the starting material (converted to SiO 2 ), and the properties were the same as in Example 1.

〔効果〕〔effect〕

以上のように、本発明によれば、サイオック繊維を簡単
かつ収率よく製造することができる。
As described above, according to the present invention, it is possible to easily manufacture the Sioc fiber with high yield.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 良和 北海道札幌市豊平区月寒東二条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 矢部 勝昌 北海道札幌市豊平区月寒東二条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 植田 芳信 北海道札幌市豊平区月寒東二条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 山口 義明 北海道札幌市豊平区月寒東二条17丁目2番 1号 工業技術院北海道工業開発試験所内 (72)発明者 鵜沼 英郎 北海道札幌市豊平区月寒東二条17丁目2番 1号 工業技術院北海道工業開発試験所内 (56)参考文献 特開 昭57−101000(JP,A) 特開 昭57−111300(JP,A) 特開 昭61−152825(JP,A) 特公 昭49−22319(JP,B1) 特公 昭49−22320(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yoshikazu Suzuki Yoshikazu Suzuki 17-2-1, Nigisakanto, Toyohira-ku, Sapporo, Hokkaido Inside the Hokkaido Industrial Development Laboratory, Institute of Industrial Science and Technology (72) Katsumasa Yabe Tsukikanto, Sapporo-Hokkaido Nijo 17-2-12-1 Industrial Technology Institute Hokkaido Industrial Development Laboratory (72) Inventor Yoshinobu Ueda Tsukisanda, Toyohira-ku, Sapporo, Hokkaido Nijo 17-2-12-1 Industrial Technology Institute Hokkaido Industrial Development Laboratory (72) Inventor Yamaguchi Yoshiaki, 2-17-1, Tsukikanto Nijo 17-chome, Toyohira-ku, Sapporo-shi, Hokkaido Inside Industrial Research Institute, Hokkaido Industrial Development Laboratory (72) Inventor, Hideo Unuma 2-1-1, Tsukikanto 2-jo, Tsukikanto, Toyohira-ku, Sapporo, Hokkaido In the laboratory (56) Reference JP 57-101000 (JP, A) JP 57-111300 (JP, A) JP 61-152825 (JP, A) Japanese Patent Sho 49-22319 (JP, B1) Japanese Patent Sho 49-22320 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】X線回折図において約22〜23度の2θ付近
にブロードのピークを有する繊維状珪素・酸素・炭素系
化合物の製造方法において、珪素酸化物又は珪酸塩鉱物
と炭素からなる混合物を、その混合物を包囲する空間
に、水素ガス、アンモニアガス、炭化水素ガス、一酸化
炭素ガス、二酸化炭素ガス及びアルコールガスの中から
選ばれる少なくとも一種の反応性ガス又はこの反応性ガ
スを不活性ガスに混合したガスを線速度4.0cm/秒以下の
速度でゆっくりと連続的に流通させながら、1300〜1550
℃の温度に加熱し、その混合物を気化させ、気相中で反
応させることを特徴とする繊維状珪素・酸素・炭素系化
合物の製造方法。
1. A method for producing a fibrous silicon / oxygen / carbon compound having a broad peak in the vicinity of 2θ of about 22 to 23 degrees in an X-ray diffraction pattern, wherein a mixture of silicon oxide or silicate mineral and carbon is used. In the space surrounding the mixture, at least one reactive gas selected from hydrogen gas, ammonia gas, hydrocarbon gas, carbon monoxide gas, carbon dioxide gas and alcohol gas or this reactive gas is inert. 1300 to 1550 while slowly and continuously flowing the gas mixed with the gas at a linear velocity of 4.0 cm / sec or less.
A method for producing a fibrous silicon / oxygen / carbon compound, which comprises heating to a temperature of ℃, vaporizing the mixture, and reacting in a gas phase.
JP62265750A 1987-10-20 1987-10-20 Method for producing fibrous silicon / oxygen / carbon compound Expired - Lifetime JPH0717369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265750A JPH0717369B2 (en) 1987-10-20 1987-10-20 Method for producing fibrous silicon / oxygen / carbon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265750A JPH0717369B2 (en) 1987-10-20 1987-10-20 Method for producing fibrous silicon / oxygen / carbon compound

Publications (2)

Publication Number Publication Date
JPH01108108A JPH01108108A (en) 1989-04-25
JPH0717369B2 true JPH0717369B2 (en) 1995-03-01

Family

ID=17421484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265750A Expired - Lifetime JPH0717369B2 (en) 1987-10-20 1987-10-20 Method for producing fibrous silicon / oxygen / carbon compound

Country Status (1)

Country Link
JP (1) JPH0717369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090455A (en) * 2016-12-05 2018-06-14 大阪瓦斯株式会社 Manufacturing method for manufacturing carbon material containing carbon nano-tube and carbon material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213168B2 (en) * 1972-06-23 1977-04-12
JPS5213169B2 (en) * 1972-06-23 1977-04-12
JPS57101000A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Ind Ltd Preparation of ceramic whisker
JPS57111300A (en) * 1980-12-25 1982-07-10 Sumitomo Electric Ind Ltd Preparation of ceramic whisker
JPS61152825A (en) * 1984-12-27 1986-07-11 Agency Of Ind Science & Technol Production of fibrous silicon-oxygen-carbon compound

Also Published As

Publication number Publication date
JPH01108108A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
Sacco Jr et al. Carbon deposition and filament growth on Fe, Co, and Ni foils using CH4 H2 H2O CO CO2 gas mixtures
Jablonski et al. Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures: I. Morphology
Gorthy Production of silicon carbide from rice husks
US4525335A (en) Method of manufacturing crystalline silicon nitride and method of separation thereof
JPH0717369B2 (en) Method for producing fibrous silicon / oxygen / carbon compound
JPH08509946A (en) Method for producing diamond crystals from a metal-fullerite matrix and resulting product
JPH07505676A (en) Solid metal-carbon matrix of metal fullerite and its production method
Real et al. Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method
JPS59116238A (en) Methanol synthesization and catalyst therefor
EP0645466B1 (en) Catalyst material, based on a titanium-copper alloy and process for producing the same
JP4061378B2 (en) Potassium niobate crystal and method for producing the potassium niobate crystal
JPS5855315A (en) Manufacture of silicone nitride powder
JPS6278217A (en) Vapor-phase production of carbon fiber
US5106811A (en) Composition involving V2 O3 -FeO-SiO2 and process for making composition
JPS5930724A (en) Manufacture of fibrous potassium titanate
El-Shall et al. Characterization of Nanoscale Particles Produced by Laser Vaporization/Condensation in a Diffusion Cloud Chamber
JPH0244774B2 (en)
JP4604248B2 (en) Indium germanate submicron tube and manufacturing method thereof
JP2632816B2 (en) Method for producing silicon nitride
JPS59128300A (en) Manufacture of silicon carbide whisker after recovering silicon nitride whisker
JPS62269701A (en) Method for synthesizing needle-like diamond particle
Isah et al. Fe–Mo/Kaolin Catalyst Optimization and Characterization for the Production of Carbon Nanotube Using the Wet Impregnated Method
Muhammad Bakeko et al. Fe–Mo/Kaolin Catalyst Optimization and Characterization for the Production of Carbon Nanotube Using the Wet Impregnated Method
Muhammad Bakeko et al. Jordan Journal of Physics
RU972786C (en) Method of synthesis of diamonds

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term