JPH07156645A - Electric vehicle - Google Patents

Electric vehicle

Info

Publication number
JPH07156645A
JPH07156645A JP30299193A JP30299193A JPH07156645A JP H07156645 A JPH07156645 A JP H07156645A JP 30299193 A JP30299193 A JP 30299193A JP 30299193 A JP30299193 A JP 30299193A JP H07156645 A JPH07156645 A JP H07156645A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
cooling
distribution device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30299193A
Other languages
Japanese (ja)
Other versions
JP3223670B2 (en
Inventor
Hiroichi Sekino
博一 関野
Takeshi Seto
毅 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30299193A priority Critical patent/JP3223670B2/en
Publication of JPH07156645A publication Critical patent/JPH07156645A/en
Application granted granted Critical
Publication of JP3223670B2 publication Critical patent/JP3223670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To attain effective utilization with no waste of regenerative power by setting up a heat accumulating means for introducing a refrigerant in outlet side of an in-car room heat exchanger in the periphery of a refrigerant pipe of an out-car room heat exchanger. CONSTITUTION:In a four-way valve 3, a compressed refrigerant from a compressor 1, recirculated refrigerant to the compressor through an accumulator 9 and each pipe to in/out car room heat exchangers 4, 5 are switched, to connect both the heat exchangers 4, 5 through expansion valves 7a, 7b respectively juxtaposing check valves 8a, 8b. Further, a pipe from an in-room heat exchanger 5b is connected through three-way valves 15a, 15b and solenoid valves 16a, 16b to a heat accumulating means 14 provided in a refrigerant pipe of the out-room heat exchanger 4. A drive circuit 13 of the compressor 1 is connected through a power distribution device 11 to a storage battery 12 or a drive circuit 10 of a driving electric motor 6, to perform switching control in accordance with a charge condition by the power distribution device 11 having a regenerative power detecting device. Accordingly, regenerative power is effectively utilized to make in/out energy high efficient, and a running distance per one charge can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷暖房システムを備えた
電気自動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle equipped with an air conditioning system.

【0002】[0002]

【従来の技術】電気自動車は現行の内燃式エンジンから
の排気ガスによる二酸化炭素の大気中への排出による温
室効果および大気汚染問題を解決するものとして注目を
浴びつつある。従来電気自動車の暖房においては、駆動
源が駆動用電動機であるために内燃式エンジンのような
膨大な廃熱利用ができないことからヒートポンプ式の冷
暖房空調装置を採用しているため、暖房運転時に室内暖
房に要した冷媒はルームエアコンと同様に車室外熱交換
器で低温外気との熱交換により蒸発させて圧縮機に戻し
ている。
2. Description of the Related Art Electric vehicles are attracting attention as a solution to the problems of greenhouse effect and air pollution caused by the emission of carbon dioxide into the atmosphere by the exhaust gas from current internal combustion engines. In the conventional heating of electric vehicles, since the drive source is a driving electric motor, it is not possible to use a huge amount of waste heat like an internal combustion engine. Like the room air conditioner, the refrigerant required for heating is evaporated by heat exchange with the low temperature outside air in the heat exchanger outside the vehicle compartment and returned to the compressor.

【0003】また電気自動車では、内燃式エンジンのエ
ンジンブレーキに変わるものとして駆動用電動機を発電
機として使用し、蓄電池にエネルギーを回収することで
電気自動車の減速時や下り坂で補助ブレーキとするもの
が一般的であった。ところがコストや資源のバランスが
良く電気自動車で一般に使用されている鉛蓄電池は、電
池の容量がある程度以上残っている状態で大量の回生電
流による充電がおこなわれると端子電圧の上昇をおこし
寿命を著しく損なうという問題があった。そこで回生力
を弱め不足するブレーキ量は通常のフットブレーキで補
うことが一般的であった。また他の方法として回生電力
を車室外に置いた抵抗器で熱に変換し大気に放散する方
法や、回生電力を用いてフライホイールを駆動し機械エ
ネルギーとして蓄える方法もあった。
In an electric vehicle, a driving electric motor is used as a generator instead of the engine brake of an internal combustion engine, and energy is collected in a storage battery to provide an auxiliary brake when the electric vehicle decelerates or goes downhill. Was common. However, lead-acid batteries, which are well-balanced in cost and resources and are commonly used in electric vehicles, have a marked increase in terminal voltage when charged with a large amount of regenerative current while the battery capacity is above a certain level, resulting in a markedly long life. There was a problem of damage. Therefore, it is common to use a normal foot brake to supplement the insufficient amount of braking that weakens the regenerative power. In addition, as another method, there is a method of converting regenerated electric power into heat by a resistor placed outside the vehicle and dissipating it into the atmosphere, and a method of driving the flywheel using the regenerated electric power and storing it as mechanical energy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電気自動車の冷暖房空調装置の暖房運転時においては、
ルームエアコンに比べて熱交換容量の少ない車室内熱交
換器に冷えた外気を導入して十分な車室内暖房を行うた
めに、圧縮機から吐出される冷媒温度が高エンタルピ値
になるように運転条件を設定したり、圧縮機回転数を上
げて冷媒流量を増やす必要があり、その結果圧縮機の圧
縮負荷が増加し、かつ回転数を上げることにより消費電
力が著しく増加してしまう。また熱交換容量の少ない車
室外熱交換器では気液冷媒を蒸発させて完全なガス状態
にして圧縮機に戻すために、冷媒の蒸発温度が外気温度
よりも10数℃低い温度、例えば−10〜−15℃にな
るように極めて低い蒸発圧力値に設定し、さらに完全に
蒸発させるために加熱度を5〜10℃与えている。この
設定により気液冷媒の蒸発は完全に達成されるが、圧縮
機への吸入冷媒は所定の吸入圧力および吸入温度よりも
低い状態の冷媒となり、また加熱度分温度を上昇させる
ために冷媒の流れが絞られるため、結果的に冷凍サイク
ルの成績係数の低下を引き起こし、冷暖房空調装置全体
の効率の低下を招いていた。また冷房運転時においても
熱交換容量の少ない車室内熱交換器で30℃以上の外気
を導入して十分な車室内冷房をするためには冷媒の蒸発
温度と外気温度の差をできる限り大きくする必要があ
り、例えば蒸発温度が−10〜−15℃になるように極
めて低い蒸発圧力値に設定している。よって圧縮機での
圧縮比の増大により体積効率は低下し、さらに低圧力冷
媒の比体積の増加により冷媒流量が減少し、ある一定の
圧縮機回転数における冷凍能力が低下するため、冷暖房
空調装置の成績係数が大きく低下するという問題があ
る。
However, during the heating operation of the conventional cooling and heating air conditioner for an electric vehicle,
Operates so that the refrigerant temperature discharged from the compressor has a high enthalpy value in order to introduce cold outside air into the vehicle interior heat exchanger, which has a smaller heat exchange capacity than room air conditioners, and to perform sufficient vehicle interior heating. It is necessary to set the conditions and increase the compressor rotation speed to increase the refrigerant flow rate. As a result, the compression load of the compressor is increased, and the increase of the rotation speed significantly increases the power consumption. Further, in the exterior heat exchanger with a small heat exchange capacity, in order to evaporate the gas-liquid refrigerant and return it to the compressor in a complete gas state, the temperature at which the refrigerant evaporates is lower than the outside air temperature by several tens of degrees Celsius, for example, -10. An extremely low evaporation pressure value is set so as to be -15 ° C, and a heating degree of 5 to 10 ° C is applied for complete evaporation. Although vaporization of the gas-liquid refrigerant is completely achieved by this setting, the refrigerant sucked into the compressor becomes a refrigerant in a state lower than the predetermined suction pressure and suction temperature, and in order to raise the temperature by the heating degree, Since the flow is narrowed, the coefficient of performance of the refrigeration cycle is consequently lowered, and the efficiency of the cooling and heating air conditioning system as a whole is lowered. Further, even in the cooling operation, in order to sufficiently cool the inside of the vehicle by introducing the outside air of 30 ° C. or more in the vehicle interior heat exchanger having a small heat exchange capacity, the difference between the evaporation temperature of the refrigerant and the outside air temperature is made as large as possible. It is necessary to set an extremely low evaporation pressure value such that the evaporation temperature is -10 to -15 ° C. Therefore, the volumetric efficiency decreases due to the increase in the compression ratio in the compressor, and the refrigerant flow rate decreases due to the increase in the specific volume of the low-pressure refrigerant, and the refrigerating capacity at a certain compressor rotation speed decreases, so the cooling and heating air conditioner However, there is a problem that the coefficient of performance of

【0005】蓄電池についてはとりわけ冬季において充
放電能力の低下が激しく、さらには車室内の暖房負荷が
大きいために冷暖房空調装置の消費電力の増加に伴い、
一充電当りの走行距離が他の季節に比べ著しく減少して
しまうという課題があった。
With respect to the storage battery, especially in winter, the charging / discharging capacity is drastically lowered, and since the heating load in the passenger compartment is large, the power consumption of the cooling / heating air conditioner increases,
There was a problem that the mileage per charge would be significantly reduced compared to other seasons.

【0006】また、回生時にフットブレーキを併用する
従来の電気自動車、あるいは回生電力を車室外の抵抗器
で放散する電気自動車ではエネルギーを熱にして捨てて
しまうため、一充電走行距離が短くなるという課題があ
った。
Further, in a conventional electric vehicle that also uses a foot brake during regeneration, or in an electric vehicle in which regenerated electric power is dissipated by a resistor outside the vehicle compartment, energy is discarded as heat, and the one-charge traveling distance is shortened. There were challenges.

【0007】一方、フライホイール等を用いる従来の回
生システムは、電気自動車駆動用に近い容量の電動機が
別途に必要となるため高価となり、しかも装置が重いた
め一般化されるには問題があった。
On the other hand, a conventional regenerative system using a flywheel or the like is expensive because an electric motor having a capacity close to that for driving an electric vehicle is additionally required, and the device is heavy, so that there is a problem in being generalized. .

【0008】[0008]

【課題を解決するための手段】そこで本発明はこれらの
欠点を解決するもので電動機を駆動源とし、冷暖房空調
装置および電力分配装置を装備した電気自動車におい
て、車室外熱交換器外部の冷媒配管外周に車室内熱交換
器の出口側の冷媒を導入する蓄熱手段を設置し、前記蓄
熱手段への冷媒供給の制御装置を前記電力分配装置の回
生電力検出に応じて作動する冷媒流路制御弁としたこと
により、冷暖房空調装置運転中に回生ブレーキが作用し
た時には電力分配装置で電動機の回生電力を蓄電池と冷
暖房空調装置に分配し、回生電力のすべてあるいは一部
を冷暖房空調装置の圧縮機駆動動力として利用し、その
結果発生する熱交換されない余剰冷媒を過冷却度の増
加、すなわち車室内の冷房能力の向上に利用したり、冬
季の冷凍サイクルの冷媒蒸発熱として利用することで総
合的に消費電力の低減を実現し、よって回生電力の有効
利用による電気自動車の一充電走行距離の延長を達成す
るものである。
SUMMARY OF THE INVENTION Therefore, the present invention solves these drawbacks, and in an electric vehicle equipped with an electric motor as a drive source and equipped with a cooling and heating air conditioner and a power distribution device, a refrigerant pipe outside the vehicle exterior heat exchanger. A heat storage means for introducing refrigerant on the outlet side of the vehicle interior heat exchanger is installed on the outer periphery, and a refrigerant flow control valve that operates a control device for supplying refrigerant to the heat storage means in response to detection of regenerative power of the power distribution device. Therefore, when the regenerative brake is applied during operation of the heating / cooling air conditioning system, the power distribution device distributes the regenerative power of the electric motor to the storage battery and the cooling / heating air conditioning system, and all or part of the regenerative power is driven by the compressor of the cooling / heating air conditioning system. It is used as motive power, and the resulting excess refrigerant that is not heat-exchanged is used to increase the degree of supercooling, that is, to improve the cooling capacity in the passenger compartment, or to cool the refrigeration cycle in winter. Achieve overall reduction of power consumption by utilizing the heat of vaporization, thus it is to achieve an extension of the travel distance per charge of the electric vehicle through the effective use of regenerative power.

【0009】[0009]

【実施例】図1は本発明の電気自動車の冷暖房システム
の説明図である。冷暖房空調装置の冷凍サイクルは圧縮
機1、オイルセパレータ2、四方弁3、車室外熱交換器
4、車室内熱交換器5およびアキュムレータ9により主
幹が構成されている。圧縮機1の駆動回路13は電力分
配装置11を介して蓄電池12あるいは駆動用電動機6
の駆動回路10と接続可能とされている。電力分配装置
11は回生電力検出装置を備えており、冷暖房空調装置
が運転状態にあり、かつ回生ブレーキが作用して電力分
配装置11に備えられた回生電力検出装置が回生電力を
検出すると、電力分配装置11は蓄電池12と駆動用電
動機6の駆動回路10を蓄電池12への充電状態に応じ
て適時切り離す一方、圧縮機1の駆動回路12を適時接
続し、さらに圧縮機1の回転周波数を制御することによ
り、蓄電池12あるいは圧縮機1への回生電力の回収が
行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a cooling and heating system for an electric vehicle according to the present invention. The refrigeration cycle of the cooling and heating air conditioner is mainly composed of a compressor 1, an oil separator 2, a four-way valve 3, a vehicle exterior heat exchanger 4, a vehicle interior heat exchanger 5 and an accumulator 9. The drive circuit 13 of the compressor 1 includes a storage battery 12 or a drive motor 6 via the power distribution device 11.
Can be connected to the drive circuit 10. The power distribution device 11 includes a regenerative power detection device, and when the cooling and heating air conditioner is in the operating state and the regenerative brake acts and the regenerative power detection device provided in the power distribution device 11 detects the regenerative power, The distribution device 11 disconnects the storage battery 12 and the drive circuit 10 of the drive motor 6 in a timely manner according to the state of charge of the storage battery 12, while connecting the drive circuit 12 of the compressor 1 in a proper time and further controlling the rotation frequency of the compressor 1. By doing so, the regenerated electric power to the storage battery 12 or the compressor 1 is recovered.

【0010】まず冷房運転時の冷凍サイクルについて説
明する。圧縮機1により圧縮されオイルセパレータ2で
オイル分離された後の高温高圧状態の圧縮冷媒は四方弁
3により車室外熱交換器4に送られて、送風機17bに
より冷却されて液冷媒となる。その後冷媒は膨張弁7b
を迂回し、逆止弁8aにより膨張弁7aで減圧されて、
閉状態の電磁弁16bにより三方弁15bを通って車室
内熱交換器5に送られ、外気と熱交換を行って蒸発す
る。蒸発した冷媒は三方弁15aを通り、閉状態の電磁
弁16aにより四方弁3、アキュムレータ9を通り圧縮
機1に吸入される。一方回生ブレーキが作用して電力分
配装置11が回生電力を検出すると、駆動回路13では
蓄電池12の充電許容量に対する過剰容量に応じて圧縮
機1の回転周波数を増加させるような制御を行う。この
制御により冷凍サイクル中に循環される冷媒の流量が増
加するため冷房能力が増加する。ここで過冷房は避ける
ために送風機17aによる風量は一定のままとすること
により、冷媒流量の増加分が蒸発されずに気液状態のま
まで車室内熱交換器5から流出される。そこで三方弁1
5aにより冷媒流路を切り換えると、冷媒は車室外熱交
換器4外部の冷媒配管外周に設置した蓄熱手段14に導
入されて熱交換を行うことにより、残りの液冷媒の蒸発
潜熱が蓄熱手段14に蓄積される。ここで完全に蒸発さ
れた冷媒は開状態に切り換えた電磁弁16aを通り主幹
に戻され、四方弁3、アキュムレータ9を通り圧縮機1
に吸入される。以上の回生時の冷凍サイクルにより蓄熱
手段14は大容量の冷熱を保有し、かつ車室外熱交換器
4で空冷により凝縮された液冷媒と熱交換を行い、液冷
媒は更に冷却され温度が下がる。その結果図2の冷凍サ
イクルの説明図に示すように、過冷却度が通常運転時は
a−bであるのに対し、回生時にはa−cへと増大さ
れ、このようにより過冷却された冷媒を膨張弁で減圧す
ると、減圧後の気液冷媒の乾き度は通常運転時よりも小
さくなり液冷媒の比率が大きくなる。すなわち図2に示
すように通常運転時の冷媒の冷凍効果がエンタルピ差
(hd−hb)であるのに対し、回生時にはエンタルピ差
(hd−hc)へと増加するため、冷房能力が向上し車室
内の冷房が過剰気味となる。ここで冷暖房空調装置の圧
縮機1の回転周波数は通常車室内温度によって制御され
ているため、回生後の圧縮機1の運転周波数を下げるこ
とで過剰な冷房が防止でき、よって冷暖房空調装置の消
費電力の低減を図ることが可能となる。また回生後の蓄
電池12の出力値を下げることができるため、一充電当
りの走行距離および蓄電池12の寿命を向上させること
が可能となる。
First, the refrigeration cycle during the cooling operation will be described. The compressed refrigerant in a high temperature and high pressure state after being compressed by the compressor 1 and separated by the oil separator 2 is sent to the exterior heat exchanger 4 by the four-way valve 3 and cooled by the blower 17b to become a liquid refrigerant. After that, the refrigerant is expanded valve 7b.
And decompressed by the expansion valve 7a by the check valve 8a,
The electromagnetic valve 16b in the closed state is sent to the vehicle interior heat exchanger 5 through the three-way valve 15b to exchange heat with the outside air and evaporate. The evaporated refrigerant passes through the three-way valve 15a, and is sucked into the compressor 1 through the four-way valve 3 and the accumulator 9 by the electromagnetic valve 16a in the closed state. On the other hand, when the regenerative brake acts and the power distribution device 11 detects the regenerated power, the drive circuit 13 performs control such that the rotation frequency of the compressor 1 is increased according to the excess capacity with respect to the charge allowable amount of the storage battery 12. By this control, the flow rate of the refrigerant circulated in the refrigeration cycle increases, so that the cooling capacity increases. Here, in order to avoid overcooling, the amount of air blown by the blower 17a is kept constant, so that the increased amount of the refrigerant flow is not evaporated and is discharged from the vehicle interior heat exchanger 5 in a gas-liquid state. So three-way valve 1
When the refrigerant flow path is switched by 5a, the refrigerant is introduced into the heat storage means 14 installed on the outer circumference of the refrigerant pipe outside the vehicle exterior heat exchanger 4 to perform heat exchange, whereby the latent heat of vaporization of the remaining liquid refrigerant is stored in the heat storage means 14 Accumulated in. Here, the completely evaporated refrigerant is returned to the main trunk through the solenoid valve 16a switched to the open state, passes through the four-way valve 3 and the accumulator 9, and the compressor 1
Inhaled into. Due to the above refrigeration cycle during regeneration, the heat storage means 14 retains a large amount of cold heat and exchanges heat with the liquid refrigerant condensed by air cooling in the vehicle exterior heat exchanger 4, and the liquid refrigerant is further cooled and its temperature drops. . As a result, as shown in the explanatory diagram of the refrigeration cycle in FIG. 2, the degree of supercooling is ab during normal operation, but is increased to ac during regeneration, and the refrigerant thus subcooled. When the pressure is reduced by the expansion valve, the dryness of the gas-liquid refrigerant after depressurization becomes smaller than that in the normal operation, and the ratio of the liquid refrigerant increases. That is, as shown in FIG. 2, the refrigerating effect of the refrigerant during normal operation has an enthalpy difference (hd-hb), but during regeneration it increases to an enthalpy difference (hd-hc), which improves the cooling capacity. The air conditioning in the room becomes overloaded. Here, since the rotation frequency of the compressor 1 of the cooling and heating air conditioner is normally controlled by the vehicle interior temperature, excessive cooling can be prevented by lowering the operating frequency of the compressor 1 after regeneration, and thus the consumption of the cooling and heating air conditioner can be reduced. It is possible to reduce power consumption. Further, since the output value of the storage battery 12 after regeneration can be lowered, it becomes possible to improve the traveling distance per charge and the life of the storage battery 12.

【0011】次に暖房運転時の冷凍サイクルについて説
明する。圧縮機1により圧縮されオイルセパレータ2で
オイル分離された後の高温高圧状態の圧縮冷媒は、四方
弁3および閉状態の電磁弁16により三方弁15aを通
り車室内熱交換器5に送られる。車室内熱交換器5で圧
縮冷媒の凝縮熱と車室内の空気との間で熱交換を行って
車室内を暖房し、結果圧縮冷媒は冷却されて液冷媒とな
る。液冷媒は三方弁15bを通り、閉状態の電磁弁16
bと逆止弁8aにより膨張弁7aを迂回し、その後逆止
弁8bにより膨張弁7bで減圧されて車室外熱交換器4
に送られる。車室外熱交換器4で外気と熱交換し蒸発し
た冷媒は三方弁3、アキュムレータ9を通り圧縮機1に
吸入される。一方回生ブレーキが作用して電力分配装置
11が回生電力を検出すると、冷房運転時と同様の制御
により冷凍サイクル中に循環される冷媒の流量が増加す
るため暖房能力が増加する。ここで過暖房は避けるため
に送風機17aによる風量は一定のままとすることによ
り、冷媒流量の増加分が冷却されずにガス状態のままで
車室内熱交換器5から流出される。ここで冷媒流路が切
り換えられた三方弁15bにより冷媒は蓄熱手段14に
導入されて熱交換を行うことにより、残りのガス冷媒の
凝縮熱が蓄熱手段14に蓄積される。ここで完全に冷却
された冷媒は開状態に切り換えた電磁弁16bを通り主
幹に戻され、以後は通常の暖房運転時と同様の作用が行
われる。以上の回生時の冷凍サイクルにより蓄熱手段1
4は大容量の熱を保有し、かつ車室外熱交換器4の入口
配管を流れる液冷媒と熱交換を行い、液冷媒の一部を蒸
発させる。この作用により車室外熱交換器4に要求され
る蒸発能力が低減され、ファン17bによる送風量を著
しく低減できることにより消費電力が低減し、その結果
一充電当りの走行距離および蓄電池12の寿命を向上さ
せることが可能となる。
Next, the refrigeration cycle during the heating operation will be described. The compressed refrigerant in the high temperature and high pressure state after being compressed by the compressor 1 and separated by the oil separator 2 is sent to the vehicle interior heat exchanger 5 through the three-way valve 15a by the four-way valve 3 and the closed solenoid valve 16. The vehicle interior heat exchanger 5 exchanges heat between the condensation heat of the compressed refrigerant and the air in the vehicle compartment to heat the vehicle interior, and as a result, the compressed refrigerant is cooled to become a liquid refrigerant. The liquid refrigerant passes through the three-way valve 15b and the solenoid valve 16 in the closed state.
b and the check valve 8a bypasses the expansion valve 7a, and then the check valve 8b reduces the pressure in the expansion valve 7b, so that the exterior heat exchanger 4
Sent to. The refrigerant that has exchanged heat with the outside air in the vehicle exterior heat exchanger 4 and has evaporated passes through the three-way valve 3 and the accumulator 9 and is drawn into the compressor 1. On the other hand, when the regenerative brake acts and the power distribution device 11 detects the regenerative power, the heating capacity is increased because the flow rate of the refrigerant circulated in the refrigeration cycle is increased by the same control as during the cooling operation. Here, in order to avoid overheating, the air volume by the blower 17a is kept constant, so that the increased amount of the refrigerant flow is not cooled but is discharged from the vehicle interior heat exchanger 5 in a gas state. Here, the refrigerant is introduced into the heat storage means 14 by the three-way valve 15b whose refrigerant flow path is switched to perform heat exchange, whereby the heat of condensation of the remaining gas refrigerant is stored in the heat storage means 14. Here, the completely cooled refrigerant is returned to the main trunk through the solenoid valve 16b switched to the open state, and thereafter, the same operation as in the normal heating operation is performed. The heat storage means 1 by the above refrigeration cycle during regeneration.
Reference numeral 4 holds a large amount of heat and exchanges heat with the liquid refrigerant flowing through the inlet pipe of the vehicle exterior heat exchanger 4 to evaporate part of the liquid refrigerant. By this action, the evaporation capacity required for the vehicle exterior heat exchanger 4 is reduced, and the amount of air blown by the fan 17b can be significantly reduced to reduce power consumption, and as a result, the mileage per charge and the life of the storage battery 12 are improved. It becomes possible.

【0012】以上のように電動機を駆動源とし、冷暖房
空調装置および電力分配装置を装備した電気自動車にお
いて、車室外熱交換器外部の冷媒配管外周に車室内熱交
換器の出口側の冷媒を導入する蓄熱手段を設置し、前記
蓄熱手段への冷媒供給の制御装置を前記電力分配装置の
回生電力検出に応じて作動する冷媒流路制御弁としたこ
とにより、冷暖房空調装置運転中に回生ブレーキが作用
した時には電力分配装置で電動機の回生電力を蓄電池と
冷暖房空調装置に分配し、回生電力のすべてあるいは一
部を冷暖房空調装置の圧縮機駆動動力として利用し、そ
の結果発生する熱交換されない余剰冷媒を過冷却度の増
加、すなわち車室内の冷房能力の向上に利用したり、冬
季の冷凍サイクルの冷媒蒸発熱として利用することで、
回生電力を無駄なく有効に利用することが可能となり、
結果冷暖房空調装置の消費電力の低減を実現し、一充電
走行距離および蓄電池の寿命が延長される。
In an electric vehicle that uses the electric motor as a drive source and is equipped with a heating / cooling air conditioner and a power distributor as described above, the refrigerant on the outlet side of the vehicle interior heat exchanger is introduced into the outer periphery of the refrigerant pipe outside the vehicle exterior heat exchanger. By installing the heat storage means, the control device for the refrigerant supply to the heat storage means is a refrigerant flow path control valve that operates in response to the detection of regenerative power of the power distribution device, so that the regenerative brake operates during cooling and heating air conditioner operation. When activated, the electric power distribution device distributes the regenerative electric power of the motor to the storage battery and the heating / cooling air conditioning system, and uses all or part of the regenerative electric power as compressor driving power for the cooling / heating air conditioning system.The resulting surplus refrigerant that is not heat exchanged. Is used to increase the degree of supercooling, that is, to improve the cooling capacity of the vehicle interior, or by using it as the heat of vaporization of refrigerant in the refrigeration cycle in winter,
Regenerative power can be used effectively without waste,
As a result, the power consumption of the cooling and heating air conditioner is reduced, and the mileage of one charge and the life of the storage battery are extended.

【0013】[0013]

【発明の効果】本発明は以上説明したように電動機を駆
動源とし、冷暖房空調装置および電力分配装置を装備し
た電気自動車において、車室外熱交換器外部の冷媒配管
外周に車室内熱交換器の出口側の冷媒を導入する蓄熱手
段を設置し、前記蓄熱手段への冷媒供給の制御装置を前
記電力分配装置の回生電力検出に応じて作動する冷媒流
路制御弁としたことにより、冷暖房空調装置運転中に回
生ブレーキが作用した時には電力分配装置で電動機の回
生電力を蓄電池と冷暖房空調装置に分配し、回生電力の
すべてあるいは一部を冷暖房空調装置の圧縮機駆動動力
として利用し、その結果発生する熱交換されない余剰冷
媒を過冷却度の増加、すなわち車室内の冷房能力の向上
に利用したり、冬季の冷凍サイクルの冷媒蒸発熱として
利用することで車室外熱交換器での冷媒蒸発が容易かつ
完全に行われ、着霜および冷媒溜り等による蒸発能力の
低下が防げ、送風機の回転数が低減できる。以上の作用
によりこれまで蓄電池のみではほとんど回収できなかっ
た回生電力を無駄なく有効に利用することが可能となり
エネルギー収支の高効率化が達成される。よって蓄電池
の無駄な消耗が回避できるため、一充電当りの走行距離
が向上しかつ総合的にエネルギー効率の高い冷暖房シス
テムを装備した電気自動車とすることができる。
INDUSTRIAL APPLICABILITY As described above, the present invention uses an electric motor as a drive source and is equipped with a cooling and heating air conditioner and a power distribution device. In the electric vehicle, a heat exchanger for the passenger compartment is provided around the refrigerant pipe outside the heat exchanger for the passenger compartment. A heat storage means for introducing the refrigerant on the outlet side is installed, and the control device for supplying the heat to the heat storage means is a refrigerant flow path control valve that operates in response to detection of regenerative power of the power distribution device, thereby providing a cooling and heating air conditioner. When the regenerative brake is applied during operation, the electric power distribution device distributes the regenerative power of the electric motor to the storage battery and the heating / cooling air conditioning system, and uses all or part of the regenerative power as compressor driving power for the cooling / heating air conditioning system. The excess refrigerant that is not heat-exchanged is used to increase the degree of supercooling, that is, to improve the cooling capacity in the passenger compartment, and to use as refrigerant evaporation heat in the refrigeration cycle in winter. Refrigerant evaporation in the outer heat exchanger easily and completely performed, prevents a decrease in evaporation capacity due frosting and coolant reservoir, etc., can be reduced rotational speed of the blower. With the above operation, it is possible to effectively use the regenerated electric power, which could hardly be recovered only by the storage battery up to now, and achieve high efficiency of energy balance. Therefore, useless consumption of the storage battery can be avoided, so that an electric vehicle equipped with a cooling and heating system with improved traveling distance per charge and overall high energy efficiency can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電気自動車の冷暖房システムの実施
例1の説明図。
FIG. 1 is an explanatory diagram of a first embodiment of a cooling and heating system for an electric vehicle according to the present invention.

【図2】 本発明の電気自動車の冷暖房システムの冷凍
サイクルの説明図。
FIG. 2 is an explanatory diagram of a refrigeration cycle of an air conditioning system for an electric vehicle of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 オイルセパレータ 3 四方弁 4 車室外熱交換器 5 車室内熱交換器 6 駆動用電動機 7a 膨張弁 7b 膨張弁 8a 逆止弁 8b 逆止弁 9 アキュムレータ 10 駆動回路 11 電力分配装置 12 蓄電池 13 駆動回路 14 蓄熱手段 15a 三方弁 15b 三方弁 16a 電磁弁 16b 電磁弁 17a 送風機 17b 送風機 1 compressor 2 oil separator 3 four-way valve 4 vehicle exterior heat exchanger 5 vehicle interior heat exchanger 6 driving electric motor 7a expansion valve 7b expansion valve 8a check valve 8b check valve 9 accumulator 10 drive circuit 11 power distribution device 12 storage battery 13 drive circuit 14 heat storage means 15a three-way valve 15b three-way valve 16a solenoid valve 16b solenoid valve 17a blower 17b blower

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電動機を駆動源とし、冷暖房空調装置お
よび電力分配装置を装備した電気自動車において、車室
外熱交換器外部の冷媒配管外周に車室内熱交換器の出口
側の冷媒を導入する蓄熱手段を設置したことを特徴とす
る電気自動車。
1. An electric vehicle using an electric motor as a drive source and equipped with a cooling and heating air conditioner and a power distribution device, wherein heat storage for introducing refrigerant on the outlet side of a vehicle interior heat exchanger to the outer periphery of a refrigerant pipe outside the vehicle exterior heat exchanger. An electric vehicle characterized by having means installed.
【請求項2】 請求項1の蓄熱手段への冷媒供給の制御
装置が、前記電力分配装置の回生電力検出に応じて作動
する冷媒流路制御弁であることを特徴とする電気自動
車。
2. The electric vehicle according to claim 1, wherein the control device for supplying the refrigerant to the heat storage means is a refrigerant passage control valve that operates in response to detection of regenerative power of the power distribution device.
JP30299193A 1993-12-02 1993-12-02 Electric car Expired - Lifetime JP3223670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30299193A JP3223670B2 (en) 1993-12-02 1993-12-02 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30299193A JP3223670B2 (en) 1993-12-02 1993-12-02 Electric car

Publications (2)

Publication Number Publication Date
JPH07156645A true JPH07156645A (en) 1995-06-20
JP3223670B2 JP3223670B2 (en) 2001-10-29

Family

ID=17915622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30299193A Expired - Lifetime JP3223670B2 (en) 1993-12-02 1993-12-02 Electric car

Country Status (1)

Country Link
JP (1) JP3223670B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037901A (en) * 2001-07-25 2003-02-07 Toyota Motor Corp Regenerative control device for vehicle
JP2006002588A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Cooling device and vehicle carrying the same
JP2008062911A (en) * 2006-09-08 2008-03-21 Bsst Llc Energy management system for hybrid electric automobile
JP2011093528A (en) * 2010-12-16 2011-05-12 Bsst Llc Energy management system for hybrid electric automobile
JP2013071498A (en) * 2011-09-27 2013-04-22 Toshiba Corp Air conditioning system
US8445772B2 (en) 2005-06-28 2013-05-21 Bsst, Llc Thermoelectric power generator with intermediate loop
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
JP2019115124A (en) * 2017-12-21 2019-07-11 本田技研工業株式会社 Electric vehicle
JP2019115127A (en) * 2017-12-21 2019-07-11 本田技研工業株式会社 Electric vehicle
JP2020203615A (en) * 2019-06-18 2020-12-24 株式会社Subaru Air conditioner for vehicle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742462B2 (en) * 2001-07-25 2011-08-10 トヨタ自動車株式会社 Vehicle regeneration control device
JP2003037901A (en) * 2001-07-25 2003-02-07 Toyota Motor Corp Regenerative control device for vehicle
JP2006002588A (en) * 2004-06-15 2006-01-05 Toyota Motor Corp Cooling device and vehicle carrying the same
US8445772B2 (en) 2005-06-28 2013-05-21 Bsst, Llc Thermoelectric power generator with intermediate loop
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
JP2008062911A (en) * 2006-09-08 2008-03-21 Bsst Llc Energy management system for hybrid electric automobile
US10464391B2 (en) 2007-05-25 2019-11-05 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US9366461B2 (en) 2007-05-25 2016-06-14 Gentherm Incorporated System and method for climate control within a passenger compartment of a vehicle
US9310112B2 (en) 2007-05-25 2016-04-12 Gentherm Incorporated System and method for distributed thermoelectric heating and cooling
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
US9276188B2 (en) 2009-07-24 2016-03-01 Gentherm Incorporated Thermoelectric-based power generation systems and methods
JP2011093528A (en) * 2010-12-16 2011-05-12 Bsst Llc Energy management system for hybrid electric automobile
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
JP2013071498A (en) * 2011-09-27 2013-04-22 Toshiba Corp Air conditioning system
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
JP2019115124A (en) * 2017-12-21 2019-07-11 本田技研工業株式会社 Electric vehicle
JP2019115127A (en) * 2017-12-21 2019-07-11 本田技研工業株式会社 Electric vehicle
US10889161B2 (en) 2017-12-21 2021-01-12 Honda Motor Co., Ltd. Electric vehicle
JP2020203615A (en) * 2019-06-18 2020-12-24 株式会社Subaru Air conditioner for vehicle

Also Published As

Publication number Publication date
JP3223670B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
US10821801B2 (en) Air conditioner for vehicle
CN106985632B (en) Multi-connected multifunctional heat pump type electric air conditioning system and working method thereof
CN110549817B (en) Heat flow management device and method for operating a heat flow management device
JP3353299B2 (en) Electric car
JP5892774B2 (en) Control method of heat pump system for vehicle
JP5949522B2 (en) Temperature control device
CN106938601B (en) Electric automobile heat pump air conditioning system and control method thereof
KR20200085217A (en) Air conditioning and battery cooling arrangement and method for operating an air conditioning and battery cooling arrangement
KR20120108078A (en) Heat pump system for vehicle
CN110435390A (en) A kind of thermal management system of whole suitable for new-energy automobile under worst cold case
JPH07156645A (en) Electric vehicle
KR20120140101A (en) Heat pump system for vehicle
CN109760484B (en) Electric automobile thermal management system
US20170120725A1 (en) Absorption-based system for automotive waste heat recovery
CN209111895U (en) Integrated heat management system
CN215971023U (en) Vehicle thermal management system and vehicle
CN108317766A (en) A kind of air-conditioning system and electric bus of electric bus
JPH05344606A (en) Cooling system of electric automobile
CN112810402A (en) Electric automobile thermal management system
CN208615672U (en) Thermal management system of electric automobile
JP2014020675A (en) Refrigeration cycle device for cell temperature adjustment
CN110126584B (en) Electric automobile air conditioning system, defrosting method, operation method and control system thereof
JPH06293210A (en) Electric vehicle
CN215295458U (en) Vehicle-mounted air conditioning system
WO2021192761A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

EXPY Cancellation because of completion of term