JP3223670B2 - Electric car - Google Patents

Electric car

Info

Publication number
JP3223670B2
JP3223670B2 JP30299193A JP30299193A JP3223670B2 JP 3223670 B2 JP3223670 B2 JP 3223670B2 JP 30299193 A JP30299193 A JP 30299193A JP 30299193 A JP30299193 A JP 30299193A JP 3223670 B2 JP3223670 B2 JP 3223670B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
vehicle
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30299193A
Other languages
Japanese (ja)
Other versions
JPH07156645A (en
Inventor
博一 関野
毅 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP30299193A priority Critical patent/JP3223670B2/en
Publication of JPH07156645A publication Critical patent/JPH07156645A/en
Application granted granted Critical
Publication of JP3223670B2 publication Critical patent/JP3223670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は冷暖房システムを備えた
電気自動車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle having a cooling and heating system.

【0002】[0002]

【従来の技術】電気自動車は現行の内燃式エンジンから
の排気ガスによる二酸化炭素の大気中への排出による温
室効果および大気汚染問題を解決するものとして注目を
浴びつつある。従来電気自動車の暖房においては、駆動
源が駆動用電動機であるために内燃式エンジンのような
膨大な廃熱利用ができないことからヒートポンプ式の冷
暖房空調装置を採用しているため、暖房運転時に室内暖
房に要した冷媒はルームエアコンと同様に車室外熱交換
器で低温外気との熱交換により蒸発させて圧縮機に戻し
ている。
2. Description of the Related Art Electric vehicles are attracting attention as a solution to the greenhouse effect and air pollution caused by the emission of carbon dioxide from the exhaust gas from existing internal combustion engines to the atmosphere. Conventionally, in electric vehicle heating, a heat pump type air-conditioning air-conditioning system is adopted because a huge amount of waste heat such as an internal combustion engine cannot be used because the driving source is a driving motor, so that the room is not heated during heating operation. The refrigerant required for heating is vaporized by heat exchange with low-temperature outside air in a vehicle exterior heat exchanger and returned to the compressor, similarly to the room air conditioner.

【0003】また電気自動車では、内燃式エンジンのエ
ンジンブレーキに変わるものとして駆動用電動機を発電
機として使用し、蓄電池にエネルギーを回収することで
電気自動車の減速時や下り坂で補助ブレーキとするもの
が一般的であった。ところがコストや資源のバランスが
良く電気自動車で一般に使用されている鉛蓄電池は、電
池の容量がある程度以上残っている状態で大量の回生電
流による充電がおこなわれると端子電圧の上昇をおこし
寿命を著しく損なうという問題があった。そこで回生力
を弱め不足するブレーキ量は通常のフットブレーキで補
うことが一般的であった。また他の方法として回生電力
を車室外に置いた抵抗器で熱に変換し大気に放散する方
法や、回生電力を用いてフライホイールを駆動し機械エ
ネルギーとして蓄える方法もあった。
In an electric vehicle, a drive motor is used as a generator instead of an engine brake of an internal combustion engine, and energy is recovered in a storage battery to be used as an auxiliary brake when the electric vehicle decelerates or goes downhill. Was common. However, lead-acid batteries, which are well-balanced in cost and resources and are commonly used in electric vehicles, have a significant increase in terminal voltage when charged with a large amount of regenerative current while the battery capacity is still above a certain level, resulting in a marked increase in service life. There was a problem of spoiling. Therefore, it was common to reduce the regenerative power and compensate for the insufficient brake amount with a normal foot brake. Other methods include converting regenerative electric power into heat with a resistor placed outside the vehicle and dissipating it to the atmosphere, and driving flywheel using regenerative electric power and storing it as mechanical energy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電気自動車の冷暖房空調装置の暖房運転時においては、
ルームエアコンに比べて熱交換容量の少ない車室内熱交
換器に冷えた外気を導入して十分な車室内暖房を行うた
めに、圧縮機から吐出される冷媒温度が高エンタルピ値
になるように運転条件を設定したり、圧縮機回転数を上
げて冷媒流量を増やす必要があり、その結果圧縮機の圧
縮負荷が増加し、かつ回転数を上げることにより消費電
力が著しく増加してしまう。また熱交換容量の少ない車
室外熱交換器では気液冷媒を蒸発させて完全なガス状態
にして圧縮機に戻すために、冷媒の蒸発温度が外気温度
よりも10数℃低い温度、例えば−10〜−15℃にな
るように極めて低い蒸発圧力値に設定し、さらに完全に
蒸発させるために加熱度を5〜10℃与えている。この
設定により気液冷媒の蒸発は完全に達成されるが、圧縮
機への吸入冷媒は所定の吸入圧力および吸入温度よりも
低い状態の冷媒となり、また加熱度分温度を上昇させる
ために冷媒の流れが絞られるため、結果的に冷凍サイク
ルの成績係数の低下を引き起こし、冷暖房空調装置全体
の効率の低下を招いていた。また冷房運転時においても
熱交換容量の少ない車室内熱交換器で30℃以上の外気
を導入して十分な車室内冷房をするためには冷媒の蒸発
温度と外気温度の差をできる限り大きくする必要があ
り、例えば蒸発温度が−10〜−15℃になるように極
めて低い蒸発圧力値に設定している。よって圧縮機での
圧縮比の増大により体積効率は低下し、さらに低圧力冷
媒の比体積の増加により冷媒流量が減少し、ある一定の
圧縮機回転数における冷凍能力が低下するため、冷暖房
空調装置の成績係数が大きく低下するという問題があ
る。
However, at the time of heating operation of a conventional air conditioning and cooling air conditioner for an electric vehicle,
Operates so that the temperature of the refrigerant discharged from the compressor becomes a high enthalpy value, in order to introduce cold outside air into the heat exchanger with a smaller heat exchange capacity than the room air conditioner and perform sufficient heating inside the vehicle. It is necessary to set conditions or increase the compressor rotation speed to increase the refrigerant flow rate. As a result, the compression load of the compressor increases, and power consumption increases significantly by increasing the rotation speed. Further, in a vehicle exterior heat exchanger having a small heat exchange capacity, in order to evaporate the gas-liquid refrigerant into a complete gas state and return it to the compressor, the evaporation temperature of the refrigerant is lower than the outside air temperature by several tens of degrees Celsius, for example, -10. An extremely low evaporation pressure value is set so as to be -15C, and a heating degree of 5-10C is provided for complete evaporation. With this setting, evaporation of the gas-liquid refrigerant is completely achieved, but the refrigerant sucked into the compressor becomes a refrigerant having a state lower than a predetermined suction pressure and a predetermined suction temperature. Since the flow is restricted, the coefficient of performance of the refrigeration cycle is reduced as a result, and the efficiency of the entire cooling and heating air conditioner is reduced. Also, even during cooling operation, the difference between the evaporation temperature of the refrigerant and the outside air temperature is made as large as possible in order to introduce the outside air of 30 ° C. or more with the heat exchanger having a small heat exchange capacity and to sufficiently cool the cabin. It is necessary to set the evaporation pressure to an extremely low value so that the evaporation temperature is, for example, -10 to -15C. Therefore, the volumetric efficiency is reduced by increasing the compression ratio in the compressor, the refrigerant flow rate is reduced by increasing the specific volume of the low-pressure refrigerant, and the refrigeration capacity at a certain compressor rotation speed is reduced. There is a problem that the coefficient of performance of is greatly reduced.

【0005】蓄電池についてはとりわけ冬季において充
放電能力の低下が激しく、さらには車室内の暖房負荷が
大きいために冷暖房空調装置の消費電力の増加に伴い、
一充電当りの走行距離が他の季節に比べ著しく減少して
しまうという課題があった。
[0005] Regarding the storage battery, the charge / discharge capacity is greatly reduced especially in winter, and the heating load in the vehicle compartment is large.
There was a problem that the mileage per charge was significantly reduced compared to other seasons.

【0006】また、回生時にフットブレーキを併用する
従来の電気自動車、あるいは回生電力を車室外の抵抗器
で放散する電気自動車ではエネルギーを熱にして捨てて
しまうため、一充電走行距離が短くなるという課題があ
った。
In a conventional electric vehicle that uses a foot brake at the time of regeneration or an electric vehicle that regenerates regenerative power through a resistor outside the vehicle compartment, energy is dissipated as heat, so that the travel distance per charge is reduced. There were challenges.

【0007】一方、フライホイール等を用いる従来の回
生システムは、電気自動車駆動用に近い容量の電動機が
別途に必要となるため高価となり、しかも装置が重いた
め一般化されるには問題があった。
On the other hand, a conventional regenerative system using a flywheel or the like requires a separate electric motor having a capacity close to that for driving an electric vehicle, and is expensive. .

【0008】[0008]

【課題を解決するための手段】そこで本発明はこれらの
欠点を解決するもので 蓄電池を装備し、電動機を駆動
源とし、冷媒を圧縮する圧縮機と、冷媒を冷却又は蒸発
させる車室外熱交換器と、冷媒を蒸発又は冷却する車室
内熱交換器と、を冷媒配管により接続してなる冷暖房空
調装置と、 回生電力を検出する回生電力検出装置と、
の回生電力検出装置により回生電力が検出されたとき
に、前記蓄電池の充電状態に応じて前記圧縮機の回転周
波数を変化させる電力分配装置と、を装備した電気自動
車において、前記車室外熱交換器に接続された冷媒配管
のうちこの車室外熱交換器の近傍の冷媒配管の外周に
前記車室内熱交換器の出口側の冷媒を導入するための冷
媒配管を施した蓄熱手段を設置し、前記蓄熱手段へ冷媒
供給する制御装置が、前記電力分配装置が検出した回
生電力が前記蓄電池の充電許容量以上である場合に、前
記圧縮機の回転周波数を増加させたことにより発生する
余剰冷媒を前記蓄熱手段へ供給可能となるように作動す
る冷媒流路制御弁としたことにより、冷暖房空調装置運
転中に回生ブレーキが作用した時には電力分配装置で電
動機の回生電力を蓄電池と冷暖房空調装置に分配し、回
生電力のすべてあるいは一部を冷暖房空調装置の圧縮機
駆動動力として利用し、その結果発生する熱交換されな
い余剰冷媒を過冷却度の増加、すなわち車室内の冷房能
力の向上に利用したり、冬季の冷凍サイクルの冷媒蒸発
熱として利用することで総合的に消費電力の低減を実現
し、よって回生電力の有効利用による電気自動車の一充
電走行距離の延長を達成するものである。
SUMMARY OF THE INVENTION Accordingly, the present invention solves these drawbacks. The present invention is provided with a storage battery, an electric motor as a drive source, a compressor for compressing a refrigerant, and cooling or evaporating the refrigerant.
A heat exchanger outside the cabin, and a cabin for evaporating or cooling the refrigerant
Cooling and heating air connected to the internal heat exchanger by refrigerant piping
And the control apparatus, and the regenerative power detection device for detecting the regenerative power, this
When regenerative power is detected by the regenerative power detector
The rotational frequency of the compressor depends on the state of charge of the storage battery.
A power distribution device for varying the wavenumber, in equipped with an electric vehicle, and connected to the refrigerant pipe on the vehicle exterior heat exchanger
Of the outer circumference of the refrigerant pipe near the heat exchanger outside the vehicle ,
Cold for introducing the outlet side of the refrigerant of the inner heat exchanger
A heat storage means provided with a medium pipe is installed, and a refrigerant is supplied to the heat storage means.
Supplying a control device, times of the power distribution device detects
If the raw power is equal to or greater than the chargeable amount of the storage battery,
This is caused by increasing the rotation frequency of the compressor.
By using a refrigerant flow path control valve that operates so that surplus refrigerant can be supplied to the heat storage means, when a regenerative brake is applied during operation of the air conditioning and air conditioning system, the electric power distribution device uses the regenerative electric power of the electric motor with the storage battery and the air conditioning system. All or part of the regenerative power is used as compressor drive power for air conditioning and air conditioning systems, and the resulting excess refrigerant that does not exchange heat is used to increase the degree of supercooling, that is, to improve the cooling capacity of the cabin. By using it or by using it as refrigerant evaporation heat in the winter refrigeration cycle, power consumption can be reduced overall, thereby extending the charging range of an electric vehicle through effective use of regenerative power. .

【0009】[0009]

【実施例】図1は本発明の電気自動車の冷暖房システム
の説明図である。冷暖房空調装置の冷凍サイクルは圧縮
機1、オイルセパレータ2、四方弁3、車室外熱交換器
4、車室内熱交換器5およびアキュムレータ9により主
幹が構成されている。圧縮機1の駆動回路13は電力分
配装置11を介して蓄電池12あるいは駆動用電動機6
の駆動回路10と接続可能とされている。電力分配装置
11は回生電力検出装置を備えており、冷暖房空調装置
が運転状態にあり、かつ回生ブレーキが作用して電力分
配装置11に備えられた回生電力検出装置が回生電力を
検出すると、電力分配装置11は蓄電池12と駆動用電
動機6の駆動回路10を蓄電池12への充電状態に応じ
て適時切り離す一方、圧縮機1の駆動回路12を適時接
続し、さらに圧縮機1の回転周波数を制御することによ
り、蓄電池12あるいは圧縮機1への回生電力の回収が
行われる。
FIG. 1 is an explanatory diagram of a cooling and heating system for an electric vehicle according to the present invention. The main cycle of the refrigeration cycle of the air conditioner is composed of a compressor 1, an oil separator 2, a four-way valve 3, a vehicle exterior heat exchanger 4, a vehicle interior heat exchanger 5, and an accumulator 9. The drive circuit 13 of the compressor 1 is connected to the storage battery 12 or the drive motor 6 via the power distribution device 11.
Can be connected to the drive circuit 10. The power distribution device 11 includes a regenerative power detection device. When the air conditioner is in an operating state, and the regenerative brake operates to detect the regenerative power, the power distribution device 11 detects power. The distribution device 11 disconnects the storage battery 12 and the drive circuit 10 of the drive motor 6 in a timely manner according to the state of charge of the storage battery 12, connects the drive circuit 12 of the compressor 1 in a timely manner, and further controls the rotation frequency of the compressor 1. By doing so, the regenerative power to the storage battery 12 or the compressor 1 is recovered.

【0010】まず冷房運転時の冷凍サイクルについて説
明する。圧縮機1により圧縮されオイルセパレータ2で
オイル分離された後の高温高圧状態の圧縮冷媒は四方弁
3により車室外熱交換器4に送られて、送風機17bに
より冷却されて液冷媒となる。その後冷媒は膨張弁7b
を迂回し、逆止弁8aにより膨張弁7aで減圧されて、
閉状態の電磁弁16bにより三方弁15bを通って車室
内熱交換器5に送られ、外気と熱交換を行って蒸発す
る。蒸発した冷媒は三方弁15aを通り、閉状態の電磁
弁16aにより四方弁3、アキュムレータ9を通り圧縮
機1に吸入される。一方回生ブレーキが作用して電力分
配装置11が回生電力を検出すると、駆動回路13では
蓄電池12の充電許容量に対する過剰容量に応じて圧縮
機1の回転周波数を増加させるような制御を行う。この
制御により冷凍サイクル中に循環される冷媒の流量が増
加するため冷房能力が増加する。ここで過冷房は避ける
ために送風機17aによる風量は一定のままとすること
により、冷媒流量の増加分が蒸発されずに気液状態のま
まで車室内熱交換器5から流出される。そこで三方弁1
5aにより冷媒流路を切り換えると、冷媒は車室外熱交
換器4外部の冷媒配管外周に設置した蓄熱手段14に導
入されて熱交換を行うことにより、残りの液冷媒の蒸発
潜熱が蓄熱手段14に蓄積される。ここで完全に蒸発さ
れた冷媒は開状態に切り換えた電磁弁16aを通り主幹
に戻され、四方弁3、アキュムレータ9を通り圧縮機1
に吸入される。以上の回生時の冷凍サイクルにより蓄熱
手段14は大容量の冷熱を保有し、かつ車室外熱交換器
4で空冷により凝縮された液冷媒と熱交換を行い、液冷
媒は更に冷却され温度が下がる。その結果図2の冷凍サ
イクルの説明図に示すように、過冷却度が通常運転時は
a−bであるのに対し、回生時にはa−cへと増大さ
れ、このようにより過冷却された冷媒を膨張弁で減圧す
ると、減圧後の気液冷媒の乾き度は通常運転時よりも小
さくなり液冷媒の比率が大きくなる。すなわち図2に示
すように通常運転時の冷媒の冷凍効果がエンタルピ差
(hd−hb)であるのに対し、回生時にはエンタルピ差
(hd−hc)へと増加するため、冷房能力が向上し車室
内の冷房が過剰気味となる。ここで冷暖房空調装置の圧
縮機1の回転周波数は通常車室内温度によって制御され
ているため、回生後の圧縮機1の運転周波数を下げるこ
とで過剰な冷房が防止でき、よって冷暖房空調装置の消
費電力の低減を図ることが可能となる。また回生後の蓄
電池12の出力値を下げることができるため、一充電当
りの走行距離および蓄電池12の寿命を向上させること
が可能となる。
First, the refrigeration cycle during the cooling operation will be described. The compressed refrigerant in a high-temperature and high-pressure state after being compressed by the compressor 1 and separated by the oil separator 2 is sent to the exterior heat exchanger 4 by the four-way valve 3 and is cooled by the blower 17b to become a liquid refrigerant. Thereafter, the refrigerant is supplied to the expansion valve 7b.
Is depressurized by the expansion valve 7a by the check valve 8a,
It is sent to the vehicle interior heat exchanger 5 through the three-way valve 15b by the closed electromagnetic valve 16b, and exchanges heat with the outside air to evaporate. The evaporated refrigerant passes through the three-way valve 15a and is sucked into the compressor 1 through the four-way valve 3 and the accumulator 9 by the electromagnetic valve 16a in the closed state. On the other hand, when the regenerative brake operates and the power distribution device 11 detects regenerative power, the drive circuit 13 performs control to increase the rotation frequency of the compressor 1 in accordance with the excess capacity of the storage battery 12 with respect to the allowable charging amount. This control increases the flow rate of the refrigerant circulated in the refrigeration cycle, thereby increasing the cooling capacity. Here, in order to avoid overcooling, by keeping the air volume by the blower 17a constant, the increased amount of the refrigerant flow is discharged from the vehicle interior heat exchanger 5 in a gas-liquid state without being evaporated. So three-way valve 1
When the refrigerant flow path is switched by 5a, the refrigerant is introduced into the heat storage means 14 installed on the outer periphery of the refrigerant pipe outside the vehicle exterior heat exchanger 4 and performs heat exchange, so that the latent heat of evaporation of the remaining liquid refrigerant is stored in the heat storage means 14 Is accumulated in Here, the completely evaporated refrigerant is returned to the master through the solenoid valve 16a switched to the open state, passes through the four-way valve 3, the accumulator 9, and the compressor 1
Inhaled. The heat storage means 14 retains a large amount of cold heat by the refrigerating cycle during regeneration as described above, and performs heat exchange with the liquid refrigerant condensed by air cooling in the exterior heat exchanger 4, and the liquid refrigerant is further cooled and its temperature falls. . As a result, as shown in the explanatory diagram of the refrigeration cycle in FIG. 2, the degree of supercooling is ab during normal operation, but is increased to ac during regeneration, and the refrigerant thus supercooled is Is reduced by the expansion valve, the dryness of the gas-liquid refrigerant after the pressure reduction becomes smaller than in the normal operation, and the ratio of the liquid refrigerant increases. That is, as shown in FIG. 2, the refrigeration effect of the refrigerant during the normal operation is the enthalpy difference (hd−hb), while the regenerative effect increases to the enthalpy difference (hd−hc). Cooling in the room becomes excessive. Here, since the rotation frequency of the compressor 1 of the air conditioner is normally controlled by the temperature inside the vehicle, excessive cooling can be prevented by lowering the operating frequency of the compressor 1 after regeneration, and thus the consumption of the air conditioner is reduced. Power can be reduced. Further, since the output value of the storage battery 12 after regeneration can be reduced, the traveling distance per charge and the life of the storage battery 12 can be improved.

【0011】次に暖房運転時の冷凍サイクルについて説
明する。圧縮機1により圧縮されオイルセパレータ2で
オイル分離された後の高温高圧状態の圧縮冷媒は、四方
弁3および閉状態の電磁弁16により三方弁15aを通
り車室内熱交換器5に送られる。車室内熱交換器5で圧
縮冷媒の凝縮熱と車室内の空気との間で熱交換を行って
車室内を暖房し、結果圧縮冷媒は冷却されて液冷媒とな
る。液冷媒は三方弁15bを通り、閉状態の電磁弁16
bと逆止弁8aにより膨張弁7aを迂回し、その後逆止
弁8bにより膨張弁7bで減圧されて車室外熱交換器4
に送られる。車室外熱交換器4で外気と熱交換し蒸発し
た冷媒は三方弁3、アキュムレータ9を通り圧縮機1に
吸入される。一方回生ブレーキが作用して電力分配装置
11が回生電力を検出すると、冷房運転時と同様の制御
により冷凍サイクル中に循環される冷媒の流量が増加す
るため暖房能力が増加する。ここで過暖房は避けるため
に送風機17aによる風量は一定のままとすることによ
り、冷媒流量の増加分が冷却されずにガス状態のままで
車室内熱交換器5から流出される。ここで冷媒流路が切
り換えられた三方弁15bにより冷媒は蓄熱手段14に
導入されて熱交換を行うことにより、残りのガス冷媒の
凝縮熱が蓄熱手段14に蓄積される。ここで完全に冷却
された冷媒は開状態に切り換えた電磁弁16bを通り主
幹に戻され、以後は通常の暖房運転時と同様の作用が行
われる。以上の回生時の冷凍サイクルにより蓄熱手段1
4は大容量の熱を保有し、かつ車室外熱交換器4の入口
配管を流れる液冷媒と熱交換を行い、液冷媒の一部を蒸
発させる。この作用により車室外熱交換器4に要求され
る蒸発能力が低減され、ファン17bによる送風量を著
しく低減できることにより消費電力が低減し、その結果
一充電当りの走行距離および蓄電池12の寿命を向上さ
せることが可能となる。
Next, the refrigeration cycle during the heating operation will be described. The high-temperature and high-pressure compressed refrigerant after being compressed by the compressor 1 and separated by the oil separator 2 is sent to the vehicle interior heat exchanger 5 through the three-way valve 15 a by the four-way valve 3 and the closed electromagnetic valve 16. The heat exchange between the condensed heat of the compressed refrigerant and the air in the passenger compartment is performed in the passenger compartment heat exchanger 5 to heat the passenger compartment. As a result, the compressed refrigerant is cooled to become a liquid refrigerant. The liquid refrigerant passes through the three-way valve 15b and closes the solenoid valve 16
b and the check valve 8a bypass the expansion valve 7a, and then the pressure is reduced by the expansion valve 7b by the check valve 8b,
Sent to The refrigerant that has exchanged heat with the outside air in the exterior heat exchanger 4 and evaporates is drawn into the compressor 1 through the three-way valve 3 and the accumulator 9. On the other hand, when the regenerative brake operates and the power distribution device 11 detects the regenerative electric power, the flow rate of the refrigerant circulated in the refrigeration cycle increases by the same control as in the cooling operation, so that the heating capacity increases. Here, in order to avoid overheating, by keeping the air volume by the blower 17a constant, the increased amount of the refrigerant flow is discharged from the vehicle interior heat exchanger 5 in a gaseous state without being cooled. Here, the refrigerant is introduced into the heat storage means 14 and heat-exchanged by the three-way valve 15b whose refrigerant flow path is switched, so that the heat of condensation of the remaining gas refrigerant is accumulated in the heat storage means 14. Here, the completely cooled refrigerant is returned to the master through the solenoid valve 16b switched to the open state, and thereafter, the same operation as in the normal heating operation is performed. Heat storage means 1 by the refrigerating cycle during regeneration
The heat exchanger 4 has a large amount of heat and exchanges heat with the liquid refrigerant flowing through the inlet pipe of the external heat exchanger 4 to evaporate a part of the liquid refrigerant. By this action, the evaporation capacity required for the exterior heat exchanger 4 is reduced, and the amount of air blown by the fan 17b can be significantly reduced, so that the power consumption is reduced. As a result, the mileage per charge and the life of the storage battery 12 are improved. It is possible to do.

【0012】以上のように、蓄電池を装備し、電動機を
駆動源とし、冷媒を圧縮する圧縮機と、冷媒を冷却又は
蒸発させる車室外熱交換器と、冷媒を蒸発又は冷却する
車室内熱交換器と、を冷媒配管により接続してなる冷暖
房空調装置と、回生電力を検出する回生電力検出装置
と、この回生電力検出装置により回生電力が検出された
ときに、前記蓄電池の充電状態に応じて前記圧縮機の回
転周波数を変化させる電力分配装置と、を装備した電気
自動車において、前記車室外熱交換器に接続された冷媒
配管のうちこの車室外熱交換器の近傍の冷媒配管の外周
、前記車室内熱交換器の出口側の冷媒を導入するため
の冷媒配管を施した蓄熱手段を設置し、前記蓄熱手段へ
冷媒供給する制御装置が、前記電力分配装置が検出し
た回生電力が前記蓄電池の充電許容量以上である場合
に、前記圧縮機の回転周波数を増加させたことにより発
生する余剰冷媒を前記蓄熱手段へ供給可能となるように
作動する冷媒流路制御弁としたことにより、冷暖房空調
装置運転中に回生ブレーキが作用した時には電力分配装
置で電動機の回生電力を蓄電池と冷暖房空調装置に分配
し、回生電力のすべてあるいは一部を冷暖房空調装置の
圧縮機駆動動力として利用し、その結果発生する熱交換
されない余剰冷媒を過冷却度の増加、すなわち車室内の
冷房能力の向上に利用したり、冬季の冷凍サイクルの冷
媒蒸発熱として利用することで、回生電力を無駄なく有
効に利用することが可能となり、結果冷暖房空調装置の
消費電力の低減を実現し、一充電走行距離および蓄電池
の寿命が延長される。
As described above, the compressor equipped with the storage battery, using the electric motor as a drive source , compresses the refrigerant, and cools or cools the refrigerant.
A heat exchanger outside the vehicle compartment for evaporating, and evaporating or cooling the refrigerant
Cooling and heating by connecting the vehicle interior heat exchanger with refrigerant piping
Chamber air conditioner and regenerative power detector that detects regenerative power
And the regenerative power was detected by this regenerative power detector.
Sometimes, the compressor is operated in accordance with the state of charge of the storage battery.
A power distribution device for rolling varies the frequency, an electric vehicle equipped with, connected to said vehicle exterior heat exchanger refrigerant
In order to introduce the refrigerant on the outlet side of the heat exchanger inside the vehicle , to the outer periphery of the refrigerant pipe near the heat exchanger outside the vehicle among the pipes.
Of the heat storage means which has been subjected to a refrigerant pipe installed, a control device for supplying a coolant to the thermal storage means, the power distribution device detects
When the regenerated power is equal to or greater than the allowable charge of the storage battery
In addition, by increasing the rotation frequency of the compressor,
By using a refrigerant flow control valve that operates so that surplus refrigerant generated can be supplied to the heat storage means, when a regenerative brake is applied during operation of the air conditioning / heating air conditioner, the electric power distribution device regenerates the electric motor. The electric power is distributed to the storage battery and the air conditioner, and all or part of the regenerative electric power is used as the drive power for the compressor of the air conditioner. By using it to improve the cooling capacity of the refrigeration cycle or by using it as the refrigerant evaporation heat in the winter refrigeration cycle, it is possible to use the regenerative power effectively without wasting it. In addition, the mileage per charge and the life of the storage battery are extended.

【0013】[0013]

【発明の効果】本発明は以上説明したように、蓄電池を
装備し、電動機を駆動源とし、冷媒を圧縮する圧縮機
と、冷媒を冷却又は蒸発させる車室外熱交換器と、冷媒
を蒸発又は冷却する車室内熱交換器と、を冷媒配管によ
り接続してなる冷暖房空調装置と、回生電力を検出する
回生電力検出装置と、この回生電力検出装置により回生
電力が検出されたときに、前記蓄電池の充電状態に応じ
て前記圧縮機の回転周波数を変化させる電力分配装置
と、を装備した電気自動車において、前記車室外熱交換
に接続された冷媒配管のうちこの車室外熱交換器の近
傍の冷媒配管の外周に、前記車室内熱交換器の出口側の
冷媒を導入するための冷媒配管を施した蓄熱手段を設置
し、前記蓄熱手段へ冷媒供給する制御装置が、前記電
力分配装置が検出した回生電力が前記蓄電池の充電許容
量以上である場合に、前記圧縮機の回転周波数を増加さ
せたことにより発生する余剰冷媒を前記蓄熱手段へ供給
可能となるように作動する冷媒流路制御弁としたことに
より、冷暖房空調装置運転中に回生ブレーキが作用した
時には電力分配装置で電動機の回生電力を蓄電池と冷暖
房空調装置に分配し、回生電力のすべてあるいは一部を
冷暖房空調装置の圧縮機駆動動力として利用し、その結
果発生する熱交換されない余剰冷媒を過冷却度の増加、
すなわち車室内の冷房能力の向上に利用したり、冬季の
冷凍サイクルの冷媒蒸発熱として利用することで車室外
熱交換器での冷媒蒸発が容易かつ完全に行われ、着霜お
よび冷媒溜り等による蒸発能力の低下が防げ、送風機の
回転数が低減できる。以上の作用によりこれまで蓄電池
のみではほとんど回収できなかった回生電力を無駄なく
有効に利用することが可能となりエネルギー収支の高効
率化が達成される。よって蓄電池の無駄な消耗が回避で
きるため、一充電当りの走行距離が向上しかつ総合的に
エネルギー効率の高い冷暖房システムを装備した電気自
動車とすることができる。
According to the present invention, as described above, the storage battery
Equipped, the electric motor as a drive source, a compressor for compressing a refrigerant
And an external heat exchanger for cooling or evaporating the refrigerant, and the refrigerant
And a vehicle heat exchanger for evaporating or cooling
Air conditioner and regenerative power
The regenerative power detector and the regenerative power detector
When power is detected, the state of charge of the storage battery is
Power distribution device for changing the rotation frequency of the compressor
When, in an electric vehicle equipped with a near the outer heat exchanger of the attached refrigerant pipe on the vehicle exterior heat exchanger
The outer circumference of the refrigerant pipe beside the vehicle thermal storage means which has been subjected to a refrigerant pipe for introducing the refrigerant at the outlet side of the indoor heat exchanger is installed, the control device for supplying a coolant to the thermal storage means, the power distribution The regenerative power detected by the device allows charging of the storage battery.
If the amount is equal to or greater than the amount, the rotational frequency of the compressor is increased.
Surplus refrigerant generated by the heat storage is supplied to the heat storage means.
When the regenerative brake is applied during operation of the air conditioning and air conditioning system, the power distribution device distributes the regenerative electric power of the motor to the storage battery and the air conditioning and air conditioning system by operating the refrigerant flow control valve so that it can operate. All or a part of the refrigerant is used as the driving power for the compressor of the air-conditioning air-conditioning system.
That is, the refrigerant is easily and completely evaporated in the heat exchanger outside the vehicle by using it for improving the cooling capacity of the vehicle interior or using it as the refrigerant evaporation heat of the winter refrigeration cycle, and the frost formation and the refrigerant accumulation etc. A decrease in the evaporating capacity can be prevented, and the rotation speed of the blower can be reduced. By the above operation, the regenerative electric power, which could hardly be recovered by the storage battery alone, can be effectively used without waste, and the efficiency of the energy balance can be improved. As a result, wasteful consumption of the storage battery can be avoided, so that an electric vehicle equipped with a cooling and heating system having an improved energy-efficient traveling distance per charge and overall energy efficiency can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電気自動車の冷暖房システムの実施
例1の説明図。
FIG. 1 is an explanatory diagram of Embodiment 1 of a cooling and heating system for an electric vehicle according to the present invention.

【図2】 本発明の電気自動車の冷暖房システムの冷凍
サイクルの説明図。
FIG. 2 is an explanatory diagram of a refrigeration cycle of the cooling and heating system for an electric vehicle according to the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 オイルセパレータ 3 四方弁 4 車室外熱交換器 5 車室内熱交換器 6 駆動用電動機 7a 膨張弁 7b 膨張弁 8a 逆止弁 8b 逆止弁 9 アキュムレータ 10 駆動回路 11 電力分配装置 12 蓄電池 13 駆動回路 14 蓄熱手段 15a 三方弁 15b 三方弁 16a 電磁弁 16b 電磁弁 17a 送風機 17b 送風機 DESCRIPTION OF SYMBOLS 1 Compressor 2 Oil separator 3 Four-way valve 4 Outside heat exchanger 5 Inside heat exchanger 6 Drive motor 7a Expansion valve 7b Expansion valve 8a Check valve 8b Check valve 9 Accumulator 10 Drive circuit 11 Power distribution device 12 Storage battery 13 drive circuit 14 heat storage means 15a three-way valve 15b three-way valve 16a solenoid valve 16b solenoid valve 17a blower 17b blower

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B60H 1/32 613 B60H 1/22 671 B60L 1/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B60H 1/32 613 B60H 1/22 671 B60L 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蓄電池を装備し、電動機を駆動源とし、冷媒を圧縮する圧縮機と、冷媒を冷却又は蒸発させる車
室外熱交換器と、冷媒を蒸発又は冷却する車室内熱交換
器と、を冷媒配管により接続してなる冷暖房空調装置
と、 回生電力を検出する回生電力検出装置と、 この回生電力検出装置により回生電力が検出されたとき
に、前記蓄電池の充電状態に応じて前記圧縮機の回転周
波数を変化させる電力分配装置と、 を装備した電気自動車において、前記 車室外熱交換器に接続された冷媒配管のうちこの車
室外熱交換器の近傍の冷媒配管外周に、前記車室内熱
交換器の出口側の冷媒を導入するための冷媒配管を施し
蓄熱手段を設置したことを特徴とする電気自動車。
1. A compressor equipped with a storage battery and using a motor as a drive source to compress a refrigerant, and a vehicle to cool or evaporate the refrigerant.
Outdoor heat exchanger and heat exchange inside the vehicle to evaporate or cool the refrigerant
Heating and cooling air conditioner, which is connected to a heater by refrigerant piping
When the regenerative power detector for detecting regenerative power when the regenerative power is detected by the regenerative electric power detector
The rotational frequency of the compressor depends on the state of charge of the storage battery.
And a power distribution device for changing a wave number , wherein the vehicle includes a refrigerant pipe connected to the exterior heat exchanger.
The outer circumference of the refrigerant pipe in the vicinity of the outdoor heat exchanger, subjected to refrigerant pipe for introducing the outlet side of the refrigerant of the inner heat exchanger
An electric vehicle, wherein the heat storage means is installed.
【請求項2】 前記蓄熱手段へ冷媒供給する制御装置
が、前記電力分配装置が検出した回生電力が前記蓄電池
の充電許容量以上である場合に、前記圧縮機の回転周波
数を増加させたことにより発生する余剰冷媒を前記蓄熱
手段へ供給可能となるように作動する冷媒流路制御弁で
あることを特徴とする請求項1に記載の電気自動車。
2. A control apparatus for supplying refrigerant to the heat storage means, the regenerative power that the power distribution device detects the storage battery
The charging frequency of the compressor is greater than
The excess refrigerant generated by increasing the number
The electric vehicle according to claim 1, wherein the electric vehicle is a refrigerant flow control valve that operates so as to be supplied to the means .
JP30299193A 1993-12-02 1993-12-02 Electric car Expired - Lifetime JP3223670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30299193A JP3223670B2 (en) 1993-12-02 1993-12-02 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30299193A JP3223670B2 (en) 1993-12-02 1993-12-02 Electric car

Publications (2)

Publication Number Publication Date
JPH07156645A JPH07156645A (en) 1995-06-20
JP3223670B2 true JP3223670B2 (en) 2001-10-29

Family

ID=17915622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30299193A Expired - Lifetime JP3223670B2 (en) 1993-12-02 1993-12-02 Electric car

Country Status (1)

Country Link
JP (1) JP3223670B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742462B2 (en) * 2001-07-25 2011-08-10 トヨタ自動車株式会社 Vehicle regeneration control device
JP4382584B2 (en) * 2004-06-15 2009-12-16 トヨタ自動車株式会社 Cooling device and vehicle equipped with the same
JP4891318B2 (en) 2005-06-28 2012-03-07 ビーエスエスティー エルエルシー Thermoelectric generator with intermediate loop
JP2008062911A (en) * 2006-09-08 2008-03-21 Bsst Llc Energy management system for hybrid electric automobile
CN101720414B (en) 2007-05-25 2015-01-21 Bsst有限责任公司 System and method for distributed thermoelectric heating and colling
WO2011011795A2 (en) 2009-07-24 2011-01-27 Bsst Llc Thermoelectric-based power generation systems and methods
JP2011093528A (en) * 2010-12-16 2011-05-12 Bsst Llc Energy management system for hybrid electric automobile
WO2012170443A2 (en) 2011-06-06 2012-12-13 Amerigon Incorporated Cartridge-based thermoelectric systems
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
JP5670853B2 (en) * 2011-09-27 2015-02-18 株式会社東芝 Air conditioning system
JP2015524894A (en) 2012-08-01 2015-08-27 ゲンサーム インコーポレイテッド High efficiency thermoelectric power generation
JP6584019B2 (en) 2017-12-21 2019-10-02 本田技研工業株式会社 Electric vehicle
JP6584020B2 (en) * 2017-12-21 2019-10-02 本田技研工業株式会社 Electric vehicle
JP7312617B2 (en) * 2019-06-18 2023-07-21 株式会社Subaru vehicle air conditioner

Also Published As

Publication number Publication date
JPH07156645A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
US10821801B2 (en) Air conditioner for vehicle
JP3353299B2 (en) Electric car
EP3480040B1 (en) Thermal management system
CN106440499B (en) Utilize the pure electric automobile air conditioning system and its refrigerating and heating method of battery heat dissipation
CN106985632B (en) Multi-connected multifunctional heat pump type electric air conditioning system and working method thereof
JP3223670B2 (en) Electric car
JP7034220B2 (en) Thermal management system
JP2013023210A (en) Vehicular heat pump system, and method of controlling the same
CN106379133A (en) Energy storage device of heat pump type double-energy storage electric vehicle air conditioner
JP2013212829A (en) Temperature adjustment device
JP2013220712A (en) Onboard device temperature-adjusting apparatus
CN108317766A (en) A kind of air-conditioning system and electric bus of electric bus
JP2014020675A (en) Refrigeration cycle device for cell temperature adjustment
JP4321043B2 (en) Automotive air conditioning system
CN109720165A (en) Vehicle heat pump system
CN110126584B (en) Electric automobile air conditioning system, defrosting method, operation method and control system thereof
JPH06293210A (en) Electric vehicle
CN207910032U (en) A kind of electric vehicle independence refrigerating medium battery cooling apparatus
CN215295458U (en) Vehicle-mounted air conditioning system
CN211416890U (en) Heat pump air conditioner and battery heat management device
CN2598783Y (en) Energy-storing type air conditioner for car
JP2003136946A (en) Air-conditioner device for vehicle
CN201875831U (en) Cold energy storage air conditioner
JP2011110951A (en) Air conditioner for vehicle
KR20150049007A (en) Vehicle air-conditioning apparatus using ventilation heat recovery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070824

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100824

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110824

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 12

EXPY Cancellation because of completion of term