JPH0714275B2 - Vibration wave motor device - Google Patents

Vibration wave motor device

Info

Publication number
JPH0714275B2
JPH0714275B2 JP61091515A JP9151586A JPH0714275B2 JP H0714275 B2 JPH0714275 B2 JP H0714275B2 JP 61091515 A JP61091515 A JP 61091515A JP 9151586 A JP9151586 A JP 9151586A JP H0714275 B2 JPH0714275 B2 JP H0714275B2
Authority
JP
Japan
Prior art keywords
phase
mechanical energy
vibration
electric
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61091515A
Other languages
Japanese (ja)
Other versions
JPS62247773A (en
Inventor
一郎 奥村
和弘 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61091515A priority Critical patent/JPH0714275B2/en
Publication of JPS62247773A publication Critical patent/JPS62247773A/en
Publication of JPH0714275B2 publication Critical patent/JPH0714275B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は振動波モータの振動体駆動用印加電圧と振動セ
ンサ出力との位相差に基づく振動波モータ装置に関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration wave motor device based on a phase difference between an applied voltage for driving a vibration body of a vibration wave motor and a vibration sensor output.

〔発明の背景〕[Background of the Invention]

進行性振動波を利用して移動体を摩擦駆動する振動波モ
ータは最近実用化されつつあり、その概要は下記のよう
なものである。
A vibration wave motor that frictionally drives a moving body using a progressive vibration wave has recently been put into practical use, and its outline is as follows.

全周長が或る長さλの整数倍であるような弾性材料製の
リング状の振動板の片面に、周方向に配列された二群の
複数個の圧電素子を固着したものをステータとする。こ
れら圧電素子は各群内では のピッチにて且つ交互に逆の伸縮極性となるように配列
されており、また両群間には の奇数倍のずれがあるように配置されている。圧電素子
の両群には夫々電極膜が施されている。いずれかの一群
のみに交流電圧を印加すれば、上記振動板には、該群の
各圧電素子の中央点およびそこから おきの点が腹の位置、また該腹の位置間の中央点が節の
位置であるような曲げ振動の定在波(波長λ)が該振動
板の全周に亘って発生する。他の一群のみに交流電圧を
印加すれば、同様に定在波が生ずるが、その腹および節
の位置は前記定在波に対して ずれたものとなる。両群に、周波数が同じで且つ時間的
位相差が の交流電圧を同時に印加すると両者の定在波の合成の結
果、振動板には周方向に進行する曲げ振動の進行波(波
長λ)が発生し、このとき、厚みを有する上記振動板の
他面上の各点は一種の楕円運動をする。よって、振動板
の該他面にロータとしてリング状移動体を加圧接触させ
ておけば、該移動体は振動板から周方向の摩擦力を受
け、回転駆動される。その回転方向は、両圧電素子群に
印加する交流電圧の位相差を正負に切換えることによ
り、反転できる。以上がこの種の振動波モータの概要で
ある。
A stator is obtained by fixing two groups of piezoelectric elements arranged in the circumferential direction on one surface of a ring-shaped vibrating plate made of an elastic material having a total perimeter of an integer multiple of a certain length λ. To do. These piezoelectric elements are They are arranged at a pitch of and alternately with opposite expansion and contraction polarities, and between the two groups. They are arranged so that there is an odd multiple of. Both groups of piezoelectric elements are provided with electrode films respectively. If an AC voltage is applied to only one of the groups, the diaphragm will have a center point of each piezoelectric element of the group and A standing wave (wavelength λ) of bending vibration is generated around the entire circumference of the diaphragm such that every other point is the antinode position, and the center point between the antinode positions is the node position. If an AC voltage is applied only to the other group, a standing wave is generated in the same manner, but the positions of its antinodes and nodes are relative to the standing wave. It will be shifted. Both groups have the same frequency and temporal phase difference When the AC voltage is simultaneously applied, as a result of the synthesis of both standing waves, a progressive wave (wavelength λ) of bending vibration that propagates in the circumferential direction is generated in the diaphragm. Each point on the surface has a kind of elliptic motion. Therefore, if a ring-shaped moving body is brought into pressure contact with the other surface of the diaphragm as a rotor, the moving body receives a frictional force in the circumferential direction from the diaphragm and is rotationally driven. The rotation direction can be reversed by switching the phase difference of the AC voltage applied to both piezoelectric element groups to positive or negative. The above is the outline of this type of vibration wave motor.

従来、この種の振動波モータは上記二群の圧電素子(こ
れを駆動用圧電素子という)の他に、前記リング状振動
板の一部分に振動センサとして電極付きの圧電素子を設
け、このセンサ出力と駆動印加電圧(駆動用圧電素子へ
の印加電圧)との位相差を一定にする条件を満たす周波
数で駆動して振動板の振動状態を一定に保ち、モータ出
力を安定させる駆動方法がとられている。
Conventionally, in this type of vibration wave motor, in addition to the above two groups of piezoelectric elements (this is referred to as a driving piezoelectric element), a piezoelectric element with electrodes as a vibration sensor is provided in a part of the ring-shaped diaphragm, and the sensor output And a drive applied voltage (voltage applied to the driving piezoelectric element) are driven at a frequency that satisfies a constant phase difference to keep the vibration state of the diaphragm constant and the motor output is stabilized. ing.

上記のような駆動方法において、従来は、第3図に示す
ような電極配置となっていた。即ち、センサ電極Sを二
群(これをA相およびB相という)の駆動用電極A1〜A5
およびB1〜B5のうちの1群(例えば第1図ではA相)と
空間的に同位相の位置に設け、A相印加電圧とセンサ出
力との時間的位相差がある一定値を保つような条件で駆
動し、この場合、位相差は回転方向によらず常に一定と
していた。しかし、このように振動センサの電極Sを一
方の群の駆動用電極と空間的に同位相(第3図の場合、
A相電極と同相)の位置に設けると、A相駆動の振動モ
ードの共振周波数が、B相駆動の振動モードの共振周波
数より高くなってしまい、A相で駆動される定在波とB
相で駆動される定在波の振幅を一致させることが困難と
なる。従って、A,B各相の定在波の合成である進行波が
乱れ、モータの駆動効率を損うことになる。
In the driving method as described above, conventionally, the electrodes are arranged as shown in FIG. That is, the sensor electrodes S are divided into two groups (referred to as A phase and B phase) for driving electrodes A 1 to A 5
And one of B 1 to B 5 (for example, the A phase in FIG. 1) is provided at a position spatially in the same phase, and the time phase difference between the A phase applied voltage and the sensor output maintains a constant value. Driving was performed under such conditions, and in this case, the phase difference was always constant regardless of the rotation direction. However, in this way, the electrode S of the vibration sensor is spatially in phase with the driving electrode of one group (in the case of FIG. 3,
If it is provided at a position of the same phase as the A-phase electrode, the resonance frequency of the vibration mode of A-phase drive becomes higher than the resonance frequency of the vibration mode of B-phase drive, and the standing wave and B
It becomes difficult to match the amplitudes of the standing waves driven by the phases. Therefore, the traveling wave, which is a combination of the standing waves of the A and B phases, is disturbed, and the driving efficiency of the motor is impaired.

上記欠点を補うため、振動センサの位置をA,B両相の駆
動電極の中間の位置、あるいは、それと等価の位置(A
相による定在波の腹の位置とB相による定在波の腹の位
置との中間点、あるいは、A相による定在波の節の位置
とB相による定在波の節の位置との中間点)とし、A相
駆動による振動モードとB相駆動による振動モードの共
振周波数を一致させる方法も行われている。
In order to make up for the above-mentioned drawback, the position of the vibration sensor is set at an intermediate position between the drive electrodes of both A and B phases, or a position equivalent to that (A
Between the position of the antinode of the standing wave due to the phase and the position of the antinode of the standing wave due to the B phase, or the position of the node of the standing wave due to the A phase and the position of the node of the standing wave due to the B phase Another method is to make the resonance frequency of the vibration mode by the A-phase drive and the resonance frequency of the vibration mode by the B-phase drive coincide with each other.

しかし、この方法では、モータの回転方向によりモータ
の出力が変わるという欠点があった。即ちセンサ出力と
A相駆動電圧との位相差を一定として駆動した場合、回
転方向によって、共振点付近での“振動状態”が変わっ
てしまうためである。ここで“振動状態”とは各駆動圧
電素子の電極間のアドミタンスのループ上の位置のこと
を言う。第4図に示すように、駆動電極間のアドミタン
スY=G+jBの周波数特性は共振点付近では、ループを
描く。点rが振動体の機械的共振点で、そのときのア
ドミタンスがYrである。この場合、例えば、振動波モー
タの回転方向が時計方向回り(CW)では1の“振動状
態”となり、振動波モータの回転方向が反時計方向回り
(CCW)では2の“振動状態”となる。従って、振動波
モータの回転方向により振動体のアドミタンスがY1,Y2
と変わってしまい、定電圧(定電圧振幅)で駆動した場
合、回転方向で入力が変わり出力もそれに応じて変化し
てしまう。
However, this method has a drawback that the output of the motor changes depending on the rotation direction of the motor. That is, when driving is performed with the phase difference between the sensor output and the A-phase drive voltage being constant, the "vibration state" near the resonance point changes depending on the rotation direction. Here, the "vibration state" refers to the position on the admittance loop between the electrodes of each driving piezoelectric element. As shown in FIG. 4, the frequency characteristic of the admittance Y = G + jB between the drive electrodes draws a loop near the resonance point. The point r is the mechanical resonance point of the vibrating body, and the admittance at that time is Y r . In this case, for example, when the rotation direction of the vibration wave motor is clockwise (CW), the "vibration state" is 1 , and when the rotation direction of the vibration wave motor is counterclockwise (CCW), the "vibration state" is 2. . Therefore, the admittance of the vibrating body is Y 1 , Y 2 depending on the rotation direction of the vibration wave motor.
When driven with a constant voltage (constant voltage amplitude), the input changes in the rotation direction and the output changes accordingly.

以上述べたように、従来の駆動方法では、A相B相の振
幅バランスが悪くて効率が低くなるか、あるいは回転方
向による出力の差が大きいなどの欠点があった。
As described above, the conventional driving method has a drawback that the A-phase and B-phase amplitude balance is poor and the efficiency is low, or the output difference depending on the rotation direction is large.

〔発明の目的〕[Object of the Invention]

本発明は、上述の点に鑑みなされたもので、モータの正
転・逆転に応じてA相印加電圧とセンサ出力との共振状
態を表す位相差を所定量変更させ、回転方向によらず正
確に共振点からのずれ状態検知が行なえる振動波モータ
装置を提供せんとするものである。
The present invention has been made in view of the above points, and changes the phase difference representing the resonance state between the A-phase applied voltage and the sensor output by a predetermined amount in accordance with the forward / reverse rotation of the motor, and accurately adjusts regardless of the rotation direction. Another object of the present invention is to provide a vibration wave motor device capable of detecting a deviation state from a resonance point.

〔発明の概要〕[Outline of Invention]

振動体に複数の電気−機械エネルギー変換素子区画から
成る駆動用電気−機械エネルギー変換素子部を複数設
け、該各駆動用電気−機械エネルギー変換素子部に位相
の異なる周波電圧を夫々印加することによって、該振動
体に進行性振動波を生ぜしめ、駆動力を得る振動波モー
タ装置において、上記駆動用電気−機械エネルギー変換
素子部間に振動検出用電気−機械エネルギー変換素子部
を設けるとともに、駆動用電気−機械エネルギー変換素
子部に印加する周波電圧と振動検出用電気−機械エネル
ギー変換素子部の検出電圧との位相を比較し、該周波電
圧と検出電圧間の位相差を予め決められた位相差との間
のずれ量に応じて前記周波電圧の周波数と共振周波数と
のずれ状態に対応する比較出力を発生する比較回路と、
振動波モータの回転方向に応じて前記予め決められた位
相差を駆動用電気−機械エネルギー変換素子部の最端部
に位置する電気−機械エネルギー変換素子区画と振動検
出用電気−機械エネルギー変換素子部との間隔に応じた
量変更させる変更手段を設けたことを特徴とする振動波
モータ装置。
By providing a plurality of driving electric-mechanical energy conversion element units consisting of a plurality of electric-mechanical energy conversion element section in the vibrating body, by applying different frequency voltage of each phase to each driving electric-mechanical energy conversion element unit In a vibration wave motor device that produces a progressive vibration wave in the vibrating body and obtains a driving force, a vibration detection electric-mechanical energy conversion element unit is provided between the drive electric-mechanical energy conversion element units, The phase difference between the frequency voltage applied to the electro-mechanical energy conversion element unit for vibration and the detection voltage of the vibration-detection electric-mechanical energy conversion element unit is compared, and the phase difference between the frequency voltage and the detection voltage is determined by a predetermined value. A comparison circuit that generates a comparison output corresponding to the deviation state between the frequency of the frequency voltage and the resonance frequency according to the deviation amount between the phase difference,
An electric-mechanical energy conversion element section and a vibration-detection electric-mechanical energy conversion element which are located at the end of the driving electric-mechanical energy conversion element part and have the predetermined phase difference according to the rotation direction of the vibration wave motor. A vibration wave motor device, characterized in that a changing means for changing the amount according to the distance to the section is provided.

〔発明の実施例〕Example of Invention

第1図は本発明の実施例における振動板の駆動用電極と
センサ用電極の配置を示した平面図で、A1〜A5はA相駆
動電極で、B1〜B5はB相駆動電極である。A1,A3,A5,B1,
B3,B5の部分の圧電素子は同極性例えば+に分極処理さ
れ、A2,A4,B2,B4の部分の圧電素子はそれと逆の極性例
えば−に分極処理されている。Sは振動検出用電極で、
この部分の圧電素子も+又は−に分極処理されている。
a′は振動板の反対側に圧接された不図示のロータ(移
動体)がロータ側から見て時計方向(CW)に回るときの
ロータの回転方向に示し、aはそのときの振動板の波の
進行方向を示す。b′およびbは同様に反時計方向(CC
W)に回るときのロータの回転方向と波の進行方向を夫
々示す。
FIG. 1 is a plan view showing an arrangement of a drive electrode and a sensor electrode of a diaphragm in an embodiment of the present invention, A 1 to A 5 are A phase drive electrodes, and B 1 to B 5 are B phase drive. It is an electrode. A 1 , A 3 , A 5 , B 1 ,
The piezoelectric elements in the portions B 3 and B 5 are polarized to the same polarity, for example, +, and the piezoelectric elements in the portions A 2 , A 4 , B 2 , and B 4 are polarized to the opposite polarity, for example, −. S is an electrode for vibration detection,
The piezoelectric element in this portion is also polarized to + or-.
a'represents the rotation direction of the rotor (moving body) (not shown) pressed against the opposite side of the diaphragm when turning clockwise (CW) when viewed from the rotor side, and a is the diaphragm of the diaphragm at that time. Indicates the direction of wave travel. b'and b are also counterclockwise (CC
The rotation direction of the rotor and the traveling direction of the wave are shown respectively when it goes around W).

第2図は第1図のセンサ電極付近の電極および振動体の
波の位置関係を示す図でWA,WBは、それぞれA相、B相
による定在波の振幅分布を示す。aおよびbは夫々CW回
転およびCCW回転の場合の波の進行方向を示す。θはA
相電極A5の中央点即ちA相による定在波の腹の位置を原
点としたときの空間的位相座標を示す。この図では振動
検出電極Sの位置がθ=315°であり、この位置はA相
による定在波の腹の位置とB相による定在波の腹の位置
の中間にあり、A相の振動モードとB相の振動モードの
共振点が振動検出電極Sの設置によりずれることがな
い。これはθ=135°又は225°に振動検出電極Sを設け
た場合でも同様である。その他の位置に振動検出電極S
を設けた場合には、A相、B相の振動モードの共振点が
ずれて効率は多少低下するが、後述するような駆動条件
を満たせば、回転方向による出力差は防ぐことができ
る。
FIG. 2 is a diagram showing the positional relationship of the waves of the electrode and the vibrating body in the vicinity of the sensor electrode of FIG. 1, and W A and W B respectively represent the amplitude distribution of the standing wave due to the A phase and the B phase. a and b show the traveling directions of waves in the CW rotation and the CCW rotation, respectively. θ is A
The spatial phase coordinates when the center point of the phase electrode A 5 , that is, the position of the antinode of the standing wave due to the A phase is the origin, are shown. In this figure, the position of the vibration detection electrode S is θ = 315 °, and this position is midway between the position of the antinode of the standing wave due to the A phase and the position of the antinode of the standing wave due to the B phase. The resonance point between the mode and the B-phase vibration mode does not shift due to the installation of the vibration detection electrode S. This is the same even when the vibration detection electrode S is provided at θ = 135 ° or 225 °. Vibration detection electrode S at other positions
In the case where the above is provided, the resonance points of the vibration modes of the A phase and the B phase are deviated and the efficiency is slightly lowered. However, if the driving condition as described later is satisfied, the output difference due to the rotation direction can be prevented.

第5図は機械的共振点、即ち、第4図のアドミタンスの
ループ上の点である周波数rで駆動する場合のA相駆
動電圧と振動検出電極Sの出力交流電圧との時間的位相
関係をA相駆動電圧VAを基準として示した図である。第
5図(a)は振動波モータの回転方向が時計回り(CW)
のときの位相関係でVS(180゜)はθ=180°の位置に駆動
用電極A5と逆極性に分極処理された振動検出電極Sがあ
る場合(従来のもの)の振動検出電極Sの出力交流電圧
の位相を示す。VS(180゜)はVAに対し90°進んでいる。V
S(315゜)はθ=315°の位置に振動検出電極Sがある場合
(本発明実施例のもの)の振動検出電極Sの出力交流電
圧の位相を示す。振動波モータの回転方向が時計方向
(CW)のときは第1図、第2図に示すように振動波の進
行方向は矢印aであるため、VS(315゜)はVS(180゜)に対し
135°の位相遅れがあり、結局、VAに対し、45°遅れ
る。第5図(b)はCCW駆動の場合であり、VS(180゜)とV
Aの位相関係は変わらないが、第1図、、第2図に示す
ように波の進行方向が矢印bであるため、VS(315゜)は、
VS(180゜)に対し135°進み、結局VAに対し135°遅れる。
FIG. 5 shows the mechanical resonance point, that is, the temporal phase relationship between the A-phase drive voltage and the output AC voltage of the vibration detection electrode S when driven at the frequency r , which is the point on the admittance loop in FIG. It is the figure shown on the basis of A-phase drive voltage V A. In Fig. 5 (a), the rotation direction of the vibration wave motor is clockwise (CW).
With respect to the phase relationship when Vs (180 °) is θ = 180 °, there is a vibration detecting electrode S polarized in the opposite polarity to the driving electrode A 5 (conventional one) when there is a vibration detecting electrode S. Shows the phase of the output AC voltage of. V S (180 °) is 90 ° ahead of V A. V
S (315 °) represents the phase of the output AC voltage of the vibration detecting electrode S when the vibration detecting electrode S is at the position of θ = 315 ° (the one according to the embodiment of the present invention). When the rotation direction of the vibration wave motor is clockwise (CW), the traveling direction of the vibration wave is the arrow a as shown in FIGS. 1 and 2, so V S (315 °) is V S (180 °). ) For
There is a 135 ° phase lag, which is 45 ° behind V A. Fig. 5 (b) shows the case of CCW drive, V S (180 °) and V
Although the phase relationship of A does not change, V S (315 °) is
It advances 135 ° against V S (180 °) and eventually lags 135 ° against V A.

以上の関係があるため、θ=315°の位置にセンサを配
置した場合、回転方向により同じ“振動状態”(この場
合、第4図のアドミタンスのループ上の点である周波数
r)とするためには、回転方向に応じて駆動電圧VA
センサ出力VS(315゜)との時間的位相関係を−45°と−13
5°に変えなければならない。この場合この位相差変化
量Δは90°である。Δの値は“振動状態”にはよら
ない。例えば第4図の1の点で駆動したい場合でも、
Δ=90°であれば、回転方向によらず第4図のアドミ
タンスのループ上の点である周波数1の状態で駆動さ
れる。しかし、センサ相の位置θがθ=135°又はそれ
から90°おきの位置以外の位置のときはΔも変えなけ
ればならない。この場合、Δ=2θ−360°の条件を
満たせば、回転方向により振動体のアドミタンスが変わ
ることがなく、常に第4図のアドミタンスのループ上の
点である周波数r(すなわち振動波モータの機械的共
振点)で駆動することができる。
Because of the above relationship, when the sensor is arranged at the position of θ = 315 °, the same “vibration state” is generated depending on the rotation direction (in this case, the frequency at the point on the admittance loop in FIG. 4).
r ), the time phase relationship between the drive voltage V A and the sensor output V S (315 °) depends on the direction of rotation.
Must change to 5 °. In this case, this phase difference change amount Δ is 90 °. The value of Δ does not depend on the “vibration state”. For example, if you want to drive at point 1 in Figure 4,
If Δ = 90 °, it is driven at the frequency 1 which is a point on the admittance loop of FIG. 4 regardless of the rotation direction. However, if the sensor phase position θ is a position other than θ = 135 ° or every 90 °, then Δ must be changed. In this case, if the condition of Δ = 2θ−360 ° is satisfied, the admittance of the vibrating body does not change depending on the rotation direction, and the frequency r (that is, the machine of the vibration wave motor) is always the point on the admittance loop in FIG. It can be driven at a dynamic resonance point).

第6図は上述したように回転方向によって駆動電圧と振
動検出用電極Sの出力交流電圧との位相関係を−45°と
−135°に変えるという駆動条件を満足させるための駆
動回路の実施例である。第6図において、6,18,24はコ
ンパレータ、7,12,19は位相比較器(PC)、8,13,20は抵
抗、9,14,21はコンデンサ、10,15,22は電圧制御発振器
(V.C.0.)、11,23は増幅器、16はn分周回路、17はn
段シフトレジスタ、17a〜dはn段シフトレジスタ17の
出力端子、25は回転方向切換用二連スイッチである。
FIG. 6 shows an embodiment of a drive circuit for satisfying the drive condition that the phase relationship between the drive voltage and the output AC voltage of the vibration detecting electrode S is changed to −45 ° and −135 ° depending on the rotation direction as described above. Is. In Fig. 6, 6,18,24 are comparators, 7,12,19 are phase comparators (PC), 8,13,20 are resistors, 9,14,21 are capacitors, 10,15,22 are voltage control Oscillator (VC0.), 11,23 are amplifiers, 16 is an n divider circuit, 17 is n
Stage shift registers, 17a to 17d are output terminals of the n stage shift register 17, and 25 is a double switch for rotation direction switching.

振動検出用電極Sからの信号(S相信号)をコンパレー
タ6により論理レベルに変換し、エッジトリガ型位相比
較器7に入力すると共に、エッジトリガ型位相比較器7
にはn段シフトレジスタの出力17a又は17bを正転逆転切
換用二連スイッチ25により入力する。エッジトリガ型位
相比較器7へのこれら二つの入力は同位相、同周波数で
ある。
A signal (S-phase signal) from the vibration detection electrode S is converted into a logic level by the comparator 6 and input to the edge trigger type phase comparator 7, and at the same time, the edge trigger type phase comparator 7
The output 17a or 17b of the n-stage shift register is input by the double switch 25 for forward / reverse rotation switching. These two inputs to the edge trigger type phase comparator 7 have the same phase and the same frequency.

エッジトリガ型位相比較器12、積分用抵抗13、積分用コ
ンデンサ14、電圧制御型発振器15、n分周回路を図示の
如く接続することによりA相駆動周波数のn倍の周波数
の信号を作ることができ、これをn段シフトレジスタ17
のクロック信号として入力する。またn段シフトレジス
タ17へのデータは、A相駆動用電圧をコンパレータ18に
より入力する。
An edge trigger type phase comparator 12, an integrating resistor 13, an integrating capacitor 14, a voltage controlled oscillator 15, and an n divider circuit are connected as shown in the drawing to produce a signal having a frequency n times as high as the phase A drive frequency. Can be done, and this is the n-stage shift register 17
Input as the clock signal of. As the data to the n-stage shift register 17, the A-phase driving voltage is input by the comparator 18.

この様な回路構成により、A相駆動用電圧は振動検出用
電極SからのS相信号とn段シフトレジスタの出力端子
17a又は17bからの信号とが同位相になるため、シフトレ
ジスタ17により移相した分だけ位相がS相信号に対して
ずれる。
With such a circuit configuration, the A-phase drive voltage is the S-phase signal from the vibration detection electrode S and the output terminal of the n-stage shift register.
Since the signal from 17a or 17b has the same phase, the phase shifts by the shift register 17 from the S-phase signal.

n=8,16,24,32,…の様に(360°/45°=8)、nを8
の倍数にとれば、シフトレジスタ17の出力からはA相駆
動電圧に対して45°刻みの位相ずれを発生させることが
できる。B相駆動用電圧は二連スイッチ25を介してn段
シフトレジスタ17の出力17c又は17dから図示の回路構成
によって与えられる。
n = 8,16,24,32, ... (360 ° / 45 ° = 8), n = 8
If it is a multiple of, the output of the shift register 17 can generate a phase shift in 45 ° increments with respect to the A-phase drive voltage. The B-phase driving voltage is given from the output 17c or 17d of the n-stage shift register 17 via the double switch 25 by the circuit configuration shown in the figure.

第2図の実施例の場合には、第6図のシフトレジスタ17
の出力端子17aに−45°、17bに−135°、17eに−90°、
17dに−270°の位相ずれを持つ出力を発生させ、回転方
向切換えSW25を、CW駆動のときは17aと17cに、またCCW
駆動のときは17bと17dにつなぐようにするのである。
In the case of the embodiment of FIG. 2, the shift register 17 of FIG.
Output terminal 17a -45 °, 17b -135 °, 17e -90 °,
An output with a phase shift of −270 ° is generated on 17d, and the rotation direction switching SW25 is set to 17a and 17c for CW drive, and CCW
When driving, connect to 17b and 17d.

以上説明したような条件を満たすように位相差の設定、
切換えを行えば効率良く、回転方向による差もなく、駆
動できる。しかし実際は、前述の条件を厳密に満足させ
ることは困難である。第1図および第2図に示した前述
の実施例の場合のA相駆動電圧VAとセンサ出力電圧V
S(315゜)の位相差と入力電力の関係を第7図に示す。こ
の図より、回転方向による入力差をなるべく少なくする
ためには、CW駆動の場合上記位相差が−45°、またCCW
駆動の場合上記位相差が−135°のとき電力カーブがピ
ークを示すので、この付近に該位相差を設定すれば、設
定誤差に対し入力差が少なく、且つ、低電圧で大きな入
力即ち大きな出力が取り出せることになる。又、通常の
実用上、回転方向による出力差10%程度が許されるとす
ると、位相差設定誤差の限界は±20°とするのがよい。
Setting the phase difference so as to satisfy the conditions described above,
If it is switched, it can be driven efficiently and there is no difference depending on the rotation direction. However, in reality, it is difficult to strictly satisfy the above conditions. A-phase drive voltage V A and sensor output voltage V A in the case of the above-described embodiment shown in FIGS. 1 and 2.
The relationship between the phase difference of S (315 °) and the input power is shown in FIG. From this figure, in order to reduce the input difference due to the rotation direction as much as possible, in the case of CW drive, the above phase difference is -45 °, and CCW
In the case of driving, the power curve shows a peak when the phase difference is −135 °. Therefore, if the phase difference is set in this vicinity, the input difference is small with respect to the setting error, and the large input, that is, the large output at low voltage. Can be taken out. In addition, if the output difference due to the rotation direction of about 10% is allowed in normal practice, the limit of the phase difference setting error should be ± 20 °.

なお、以上の実施例では圧電素子を用いたが、他の電気
−機械エネルギー変換素子たとえば電歪素子を用いるこ
ともできる。
Although the piezoelectric element is used in the above embodiments, other electro-mechanical energy conversion element such as an electrostrictive element may be used.

以上は実施例として、面外曲げ振動モードを利用する振
動波モータについて説明したが、本発明は伸縮モードあ
るいは面内曲げモード、さらにはリニアタイプの振動波
モータにも同様に適用可能である。
Although the vibration wave motor utilizing the out-of-plane bending vibration mode has been described above as an example, the present invention is similarly applicable to the expansion / contraction mode or the in-plane bending mode, and also to the linear type vibration wave motor.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば振動波モータの回
転方向により、共振周波数を表す振動検出用電極の出力
交流電圧と駆動電圧との位相差を所定量変更したもので
あるので、モータの回転方向によらず、位相差検知にて
正確に共振点からのずれ量の検知が可能となり、検知効
果に基づいてモータを駆動する場合、常に適正な駆動を
行なうことができるものである。
As described above, according to the present invention, the phase difference between the output AC voltage of the vibration detection electrode and the drive voltage, which represents the resonance frequency, is changed by a predetermined amount depending on the rotation direction of the vibration wave motor. The amount of deviation from the resonance point can be accurately detected by detecting the phase difference regardless of the rotation direction, and when the motor is driven based on the detection effect, proper driving can always be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例の圧電素子の電極パターンを示す
図、 第2図は同実施例における振動センサの位置を表示する
位相座標軸およびA,B両相定在波を示す図、 第3図は従来の振動波モータの圧電素子の電極パターン
を示す図、 第4図は振動体の共振点付近のアドミタンス特性を示す
図、 第5図(a),(b)は駆動電圧に対するセンサ出力の
位相関係を示す図、 第6図は本発明を実現するための駆動回路の構成図、 第7図は振動波モータの駆動電圧に対するセンサ出力の
位相差と入力電力の関係を示す図である。 A1〜A5…A相電極、B1〜B5…B相電極、S…振動検出電
極、6,18,24…コンパレータ、7,12,19…位相比較器、1
0,15,22…電圧制御発振器、11,23…増幅器、16…n分周
器、17…n段シフトレジスタ、25…正転逆転切換えスイ
ッチ。
FIG. 1 is a diagram showing an electrode pattern of a piezoelectric element according to an embodiment of the present invention, and FIG. 2 is a diagram showing a phase coordinate axis for displaying the position of a vibration sensor in the embodiment and both A and B phase standing waves. FIG. 4 is a diagram showing an electrode pattern of a piezoelectric element of a conventional vibration wave motor, FIG. 4 is a diagram showing admittance characteristics near the resonance point of a vibrating body, and FIGS. 5 (a) and 5 (b) are sensor outputs with respect to drive voltage. FIG. 6 is a configuration diagram of a drive circuit for realizing the present invention, and FIG. 7 is a diagram showing a relation between a phase difference of a sensor output and an input power with respect to a drive voltage of an oscillatory wave motor. . A 1 to A 5 ... A phase electrode, B 1 to B 5 ... B phase electrode, S ... Vibration detection electrode, 6, 18, 24 ... Comparator, 7, 12, 19 ... Phase comparator, 1
0,15,22 ... Voltage control oscillator, 11,23 ... Amplifier, 16 ... n frequency divider, 17 ... n stage shift register, 25 ... Forward / reverse rotation changeover switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】振動体に複数の電気−機械エネルギー変換
素子区画から成る駆動用電気−機械エネルギー変換素子
部を複数設け、該各駆動用電気−機械エネルギー変換素
子部に位相の異なる周波電圧を夫々印加することによっ
て、該振動体に進行性振動波を生ぜしめ、駆動力を得る
振動波モータ装置において、上記駆動用電気−機械エネ
ルギー変換素子部間に振動検出用電気−機械エネルギー
変換素子部を設けるとともに、駆動用電気−機械エネル
ギー変換素子部に印加する周波電圧と振動検出用電気−
機械エネルギー変換素子部の検出電圧との位相を比較
し、該周波電圧と検出電圧間の位相差と予め決められた
位相差との間のずれ量に応じて前記周波電圧の周波数と
共振周波数とのずれ状態に対応する比較出力を発生する
比較回路と、振動波モータの回転方向に応じて前記予め
決められた位相差を駆動用電気−機械エネルギー変換素
子部の最端部に位置する電気−機械エネルギー変換素子
区画と振動検出用電気−機械エネルギー変換素子部との
間隔に応じた量変更させる変更手段を設けたことを特徴
とする振動波モータ装置。
1. A vibrating body is provided with a plurality of driving electric-mechanical energy converting element sections each of which is composed of a plurality of electric-mechanical energy converting element sections, and the driving electric-mechanical energy converting element sections are supplied with frequency voltages having different phases. In the vibration wave motor device that applies progressive force to the vibrating body to obtain a driving force by applying each of them, the vibration detection electric-mechanical energy conversion element section is provided between the driving electric-mechanical energy conversion element section. In addition to the above, the drive electric-frequency voltage applied to the mechanical energy conversion element section and the vibration detection electric-
The phase of the mechanical energy conversion element is compared with the detected voltage, and the frequency of the frequency voltage and the resonance frequency are determined according to the amount of deviation between the phase difference between the frequency voltage and the detected voltage and the predetermined phase difference. And a comparison circuit that generates a comparison output corresponding to the shift state of the electric wave, and an electric circuit located at the end of the driving electro-mechanical energy conversion element section that has the predetermined phase difference according to the rotation direction of the vibration wave motor. A vibration wave motor device comprising a changing means for changing an amount according to a distance between a mechanical energy conversion element section and a vibration detecting electric-mechanical energy conversion element section.
JP61091515A 1986-04-21 1986-04-21 Vibration wave motor device Expired - Lifetime JPH0714275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61091515A JPH0714275B2 (en) 1986-04-21 1986-04-21 Vibration wave motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61091515A JPH0714275B2 (en) 1986-04-21 1986-04-21 Vibration wave motor device

Publications (2)

Publication Number Publication Date
JPS62247773A JPS62247773A (en) 1987-10-28
JPH0714275B2 true JPH0714275B2 (en) 1995-02-15

Family

ID=14028544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61091515A Expired - Lifetime JPH0714275B2 (en) 1986-04-21 1986-04-21 Vibration wave motor device

Country Status (1)

Country Link
JP (1) JPH0714275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255482A (en) * 1988-04-04 1989-10-12 Wako Electric Co Ltd Power source for ultrasonic motor
JP2752105B2 (en) * 1988-10-21 1998-05-18 キヤノン株式会社 Vibration wave device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072023B2 (en) * 1985-04-26 1995-01-11 株式会社ニコン Ultrasonic motor drive circuit

Also Published As

Publication number Publication date
JPS62247773A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
JP2589698B2 (en) Vibration type actuator device
JPH0477553B2 (en)
JP2003319668A (en) Oscillating wave driving device and driving circuit thereof
US5416374A (en) Ultrasonic motor and electronic apparatus equipped with ultrasonic motor
JPH0714275B2 (en) Vibration wave motor device
JPS61221584A (en) Drive circuit of vibration wave motor
JP3043124B2 (en) Traveling wave type motor device
JPH0828986B2 (en) Vibration wave motor
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
JPH072022B2 (en) Ultrasonic motor driving method
JP2509310B2 (en) Control method of ultrasonic motor
JP2601268B2 (en) Ultrasonic motor
JPH01264579A (en) Control method of progressive-wave type ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JPH1189255A (en) Driving device for vibration actuator
JP4208627B2 (en) Control device, operation device, and control method for vibration type drive device
JPS63268477A (en) Drive circuit for oscillatory wave motor
JPH03135382A (en) Oscillatory wave motor
JPS61224879A (en) Drive circuit of surface wave motor
JP2551412B2 (en) Ultrasonic motor driving method
JPS63262070A (en) Drive circuit of ultrasonic motor
JPS63268476A (en) Oscillatory wave motor
JPH09215352A (en) Speed controller of ultrasonic motor
JPH01238476A (en) Vibration wave motor
JPH04347588A (en) Circuit for driving single-phase resonance mode ultrasonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term