JPS63262070A - Drive circuit of ultrasonic motor - Google Patents

Drive circuit of ultrasonic motor

Info

Publication number
JPS63262070A
JPS63262070A JP62094584A JP9458487A JPS63262070A JP S63262070 A JPS63262070 A JP S63262070A JP 62094584 A JP62094584 A JP 62094584A JP 9458487 A JP9458487 A JP 9458487A JP S63262070 A JPS63262070 A JP S63262070A
Authority
JP
Japan
Prior art keywords
frequency
signal
drive
output
ultrasonic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62094584A
Other languages
Japanese (ja)
Inventor
Junji Okada
淳二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62094584A priority Critical patent/JPS63262070A/en
Publication of JPS63262070A publication Critical patent/JPS63262070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/145Large signal circuits, e.g. final stages
    • H02N2/147Multi-phase circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To reduce the size, the weight and the cost of an ultrasonic motor by obtaining two AC application voltages having different phases of 90 deg. for driving the motor by a digital circuit network which mainly contains shift registers. CONSTITUTION:A voltage control oscillator (VCO) 1 in a drive circuit of an ultrasonic motor oscillates a rectangular signal of 4 times of frequency as high as the optimum frequency (f) of motor application voltages A, B. This output signal is input as a clock signal to a shift register 2 in which 4 bits are input in serial and output in parallel, and also input to driving wave shaping means 3. Then, it is supplied through 1/2 and 1/4 frequency dividers 4-5, an AND gate 6, push-pull circuits 7A-7B, and output transformers 8A-8B to the piezoelectric elements 11a-11b of the motor. Thus, the oscillation frequency of a VCO1 becomes high, and even if a duty ratio is collapsed, it is not affect by a drive signal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波モータの駆動回路、更に詳しくは、圧
電体素子の超音波振動を利用した屈曲または板波進行波
タイプの超音波モータの駆動回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a drive circuit for an ultrasonic motor, and more particularly, to an ultrasonic motor of a bending or plate wave type that utilizes ultrasonic vibration of a piezoelectric element. The present invention relates to a drive circuit.

[従来の技術] 近年、従来の電磁駆動モータと異なる原理で、圧電素子
の超音波振動を駆動源とする超音波モータが種々提供さ
れている。この超音波モータは、構成が簡単で小形化が
容易、且つ発生トルクが大きく、また回転数が小さいた
め減速ギヤー等による効率低下が少ない等の多くの特徴
を有しており、そのアクチュエータとしての利用が期待
されている。
[Prior Art] In recent years, various ultrasonic motors have been provided that use ultrasonic vibrations of piezoelectric elements as a driving source, based on a principle different from that of conventional electromagnetic drive motors. This ultrasonic motor has many features such as a simple configuration, easy miniaturization, large generated torque, and low rotational speed, so there is little loss of efficiency due to reduction gears, etc., and it is suitable as an actuator. It is expected that it will be used.

この屈曲または板波進行波タイプの超音波モータは、第
4図(A)に示すように、隣接する多数の素子が互いに
逆極性になるよう分極処理の施された圧電体素子20を
、空間的にλ/4 + nλ(λは進行波の波長、nは
整数)の位置関係になるように両7i’f20A、20
Bに分け、各素子の電極21を、一方の正電極端子Aと
他方の負電極端子Bにまとめ、第4図(C)に示すよう
に時間的に90° (−π/2)位相の異なる同振幅・
同周波数の交流電圧A、Bを、第4図(B)に示すよう
に、交流電源24より端子aOには直接に、端子boに
は90°移相器25を介して印加するようになっており
、この電圧が印加されると、各圧電体索子20の伸縮運
動により、ステータ22の表面に進行波の進行方向とは
逆向きの楕円振動波が発生する。この振動しているステ
ータ22にロータ23を加圧接触させることにより、ス
テータ22とロータ23の摩擦力でコータ23を進行波
の進行方向とは逆向きに移動させ、モータは駆動される
ようになっている。また、駆動周波数は、超音波モータ
の持つ共振周波数の近傍に設定する必要がある。
As shown in FIG. 4(A), this bending or plate-wave traveling wave type ultrasonic motor moves piezoelectric elements 20, which are polarized so that a large number of adjacent elements have opposite polarities, into a space. Both 7i'f20A, 20 so that the positional relationship is λ/4 + nλ (λ is the wavelength of the traveling wave, n is an integer)
The electrodes 21 of each element are grouped into one positive electrode terminal A and the other negative electrode terminal B, and as shown in FIG. Different same amplitude
As shown in FIG. 4(B), AC voltages A and B of the same frequency are applied from the AC power supply 24 directly to the terminal aO and to the terminal bo via the 90° phase shifter 25. When this voltage is applied, an elliptical vibration wave in the opposite direction to the traveling direction of the traveling wave is generated on the surface of the stator 22 due to the expansion and contraction movement of each piezoelectric cord 20. By bringing the rotor 23 into pressure contact with the vibrating stator 22, the frictional force between the stator 22 and the rotor 23 moves the coater 23 in the opposite direction to the traveling direction of the traveling wave, and the motor is driven. It has become. Further, the driving frequency needs to be set near the resonance frequency of the ultrasonic motor.

そして、このように超音波モータを駆動する従来の交流
電源は、例えばV  sinωt、l!:V  cos
m              m ωtのように時間的に90°位相の異なる2種類の印加
電圧A、Bを得るため、正弦波信号をフィルタや積分器
等のアナログ回路で構成した移相器を通じて所望する9
0°位相のずれた信号を得ていた。
The conventional AC power supply that drives the ultrasonic motor in this way is, for example, V sinωt,l! :V cos
In order to obtain two types of applied voltages A and B with temporally 90° phase differences such as m
I was getting a signal with a 0° phase shift.

[発明が解決しようとする問題点〕 ところが、従来のもののようにアナログ回路による移相
器によって位相回転角90″の交流7ヒ圧を得ようとす
ると、移相器の回路規模が大きくなり、また位相の回転
と共に出力レベルが減少するので、同振幅の印加電圧を
得ることかで難かしく、振幅の補正を行なう増幅器が必
要となる。さらに、超音波モータの最適駆動周波数は、
モータの負荷変動やロータ・ステータ間の押圧力の変化
、および温度等外部環境の変化等により、その周波数が
ずれていく傾向がある。このような条件下で、周波数特
性を持つフィルタや積分器で移相器を構成しても、正確
な90°位相差を維持することが難しいという問題点が
あった。
[Problems to be Solved by the Invention] However, when trying to obtain AC 7H pressure with a phase rotation angle of 90'' using a phase shifter using an analog circuit as in the conventional one, the circuit scale of the phase shifter becomes large. Furthermore, since the output level decreases as the phase rotates, it is difficult to obtain an applied voltage of the same amplitude, and an amplifier is required to correct the amplitude.Furthermore, the optimal driving frequency of an ultrasonic motor is
The frequency tends to shift due to changes in the motor load, changes in the pressing force between the rotor and stator, and changes in the external environment such as temperature. Under such conditions, even if a phase shifter is configured using a filter or an integrator having frequency characteristics, there is a problem in that it is difficult to maintain an accurate 90° phase difference.

そこで、本発明の目的は、上記問題点を解消し、簡単な
回路構成で、且つ駆動周波数に依存せず、正確に90°
の位相差を有する交流印加信号が得られる超音波モータ
の駆動回路を提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide accurate 90° control with a simple circuit configuration and independent of drive frequency.
An object of the present invention is to provide a driving circuit for an ultrasonic motor that can obtain an AC applied signal having a phase difference of .

[問題点を解決するための手段および作用コ本発明は、
上記問題点を解決するために、弾性体に固着された圧電
素子に駆動周波数電圧を印加して」二記弾性体の表面に
進行波を発生させ、この弾性体の表面に摩擦接触させた
移動体を駆動する超音波モータの駆動回路を、上記駆動
周波数の4倍の周波数の矩形波信号を出力する発振器と
、この矩形波信号から上記超音波モータの駆動周波数の
矩形波信号を作り出す駆動波整形手段と、上記発振器の
出力に同+1jl して上記駆動波整形手段からの出力
信号をシフトさせ、90°ずつ位相のずれた4つの駆動
矩形波信号を出力するシフトレジスタと、このシフトレ
ジスタからの駆動矩形波信号のうちそれぞれ180°ず
つ位相のずれた2つの矩形波信号を各々人力し、一方の
矩形波信号を反転させて交流信号として出力する2つの
プッシュプル回路とを具備して構成したことを特徴とす
るものである。
[Means and effects for solving the problems] The present invention has the following features:
In order to solve the above problems, a driving frequency voltage is applied to a piezoelectric element fixed to an elastic body to generate a traveling wave on the surface of the elastic body, and the movement is brought into frictional contact with the surface of the elastic body. The driving circuit of the ultrasonic motor that drives the body includes an oscillator that outputs a rectangular wave signal with a frequency four times the driving frequency, and a driving wave that generates a rectangular wave signal of the driving frequency of the ultrasonic motor from this rectangular wave signal. a shaping means, a shift register for shifting the output signal from the driving wave shaping means by the same +1jl as the output of the oscillator and outputting four driving rectangular wave signals whose phases are shifted by 90 degrees; Two push-pull circuits each manually input two rectangular wave signals with a phase difference of 180 degrees out of the drive rectangular wave signals, and invert one of the rectangular wave signals and output it as an alternating current signal. It is characterized by the fact that

[実 施 例コ 以下、図面を参照して本発明の詳細な説明する。[Implementation example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す超音波モータの駆動
回路であって、電圧制御発振器(以下、VCOと略記す
る)1は、超音波モータ印加電圧AおよびBの最適周波
数fに対し、4倍の周波数の矩形波信号を発振するよう
に可変抵抗器vR1で調整される。VCOlから出力さ
れた周波数4fの信号は、クロック信号として4ビツト
でシリアルイン・パラレルアウトするシフトレジスタ2
のクロック入力端子CKに入力されると共に、駆動波整
形手段3にも人力される。この駆動波整形手段3は、そ
れぞれフリップフロップ回路(以下、FFと略記する)
で構成されていて、l/2分周およびl/4分周する周
波数分周器4および5と、アンドゲート6とからなり、
アンドゲート6の出力が駆動波整形手段3の出力となっ
て上記シフトレジスタ2のシリアルデータ入力端子S、
 INに入力される。シフトレジスタ2は周波数4fの
クロック信号に同期して、そのシフト出力をパラレル出
力として第3図に示すようなQ1〜Q4のスイッチング
素子ドライブ信号を出す。このパラレル信号Q  、Q
  、Q  、Q  のうちのQl、Q3の信号は、第
2図に示すトランジスタ” rl’ Tr2と抵抗Rt
 、  R2からなるプッシュプル回路7Aに供給され
、その出力は出カドランス8Aに供給される。また、シ
フトレジスタ2の出力Q2.Q4の信号は、プッシュプ
ル回路7Bに供給され、その出力は出カドランス8Bに
供給される。そして、出カドランス8Aの2次側から交
流印加電圧Aが、また出カドランス8Bの2次側から交
流印加電圧Bがそれぞれ取り出され、超音波モータの圧
電体素子11aおよびllbに供給される。なお、出カ
ドランス8Aの2次側には出力信号Q1.Q3でそれぞ
れ逆方向の誘起電圧が発生するようなプッシュプル回路
7Aと出カドランス8Aの1次側は接続されている。
FIG. 1 shows an ultrasonic motor drive circuit showing an embodiment of the present invention, in which a voltage controlled oscillator (hereinafter abbreviated as VCO) 1 is configured to adjust the optimum frequency f of the ultrasonic motor applied voltages A and B. On the other hand, the variable resistor vR1 is adjusted so as to oscillate a rectangular wave signal of four times the frequency. A signal with a frequency of 4f output from the VCOl is used as a clock signal by a shift register 2 that performs serial in/parallel out with 4 bits.
The signal is inputted to the clock input terminal CK of , and also inputted to the drive wave shaping means 3 . This drive wave shaping means 3 is a flip-flop circuit (hereinafter abbreviated as FF).
It consists of frequency dividers 4 and 5 that divide the frequency by 1/2 and 1/4, and an AND gate 6,
The output of the AND gate 6 becomes the output of the drive wave shaping means 3, and the serial data input terminal S of the shift register 2,
It is input to IN. The shift register 2 outputs switching element drive signals Q1 to Q4 as shown in FIG. 3 by using its shift output as a parallel output in synchronization with a clock signal having a frequency of 4f. This parallel signal Q,Q
, Q, and Q, the signals of Ql and Q3 are transmitted by the transistor "rl' Tr2 and the resistor Rt shown in FIG.
, R2, and its output is supplied to an output transformer 8A. Also, the output Q2 of the shift register 2. The signal of Q4 is supplied to push-pull circuit 7B, and its output is supplied to output transformer 8B. Then, an AC applied voltage A is taken out from the secondary side of the output lance 8A, and an AC applied voltage B is taken out from the secondary side of the output lance 8B, and supplied to the piezoelectric elements 11a and llb of the ultrasonic motor. Note that the output signal Q1. The primary side of the push-pull circuit 7A and the output transformer 8A are connected so that induced voltages in opposite directions are generated at Q3.

このように構成された本実施例の作動を第3図のタイミ
ングチャートに基づいて説明する。クロック周波数4f
に同期したクロックパルスCPは、駆動波整形手段3の
FF4に供給され、該FF4にて172分周され、同F
F4の出力信号aはアンドゲート6の一方の入力端子に
供給される。またこの信号aは、FF5で1/2分周さ
れてその出力信号すは上記アンドゲート6の他方の入力
端子に供給される。従って、このアンドゲート6からは
そ′の論理積が信号Cとして出力せられ、シフトレジス
タ2にシリアルインプットとして供給される。
The operation of this embodiment configured as described above will be explained based on the timing chart of FIG. 3. clock frequency 4f
The clock pulse CP synchronized with
The output signal a of F4 is supplied to one input terminal of AND gate 6. Further, this signal a is frequency-divided by 1/2 by the FF 5 and its output signal is supplied to the other input terminal of the AND gate 6. Therefore, the AND gate 6 outputs the logical product as a signal C, which is supplied to the shift register 2 as a serial input.

この信号Cは、クロックパルスCPに同期してシフトレ
ジスタ2のパラレル出力Q1.Q2.Q3゜Q4に順次
90″の位相差を持って出力される。
This signal C is applied to the parallel output Q1. of the shift register 2 in synchronization with the clock pulse CP. Q2. Q3 and Q4 are sequentially outputted with a phase difference of 90''.

このようにシフトレジスタ2は、906移相器としての
機能を果し、しかもディジタル的に処理されるので位相
誤差を生ずる余地がない。
In this way, the shift register 2 functions as a 906 phase shifter, and since it is processed digitally, there is no room for phase errors.

バレル出力Q とQ 1あるいはQ2.Q4に告口する
と、それぞれ180°の位相差を有するので、プッシュ
プル回路?A、7Bにそれぞれ人力し、該回路?A、7
Bのスイッチングトランジスタ” rl’  Tr2を
スイッチングすれば、出カドランス8A、8Bの2次側
にトランスの巻線比に比例した矩形波状交流電圧が発生
する。この矩形波状交流電圧は圧電体素子11a、ll
bの持つ容量成分により積分されるので、超音波モータ
を駆動する正弦波状交流印加電圧A、Bが発生する。
Barrel output Q and Q1 or Q2. Q4 has a phase difference of 180°, so is it a push-pull circuit? Manually connect A and 7B to the corresponding circuit? A.7
When the switching transistor "rl' Tr2 of B is switched, a rectangular wave AC voltage proportional to the winding ratio of the transformer is generated on the secondary side of the output transformers 8A and 8B. This rectangular wave AC voltage is applied to the piezoelectric element 11a, ll
Since it is integrated by the capacitance component of b, sinusoidal AC applied voltages A and B are generated to drive the ultrasonic motor.

ところで、この交流印加電圧AとBとの位相差が90’
であることは、シフトレジスタ2の出力Q とQ  あ
るいはQ3とQ4とを比較すれば1   2 ゛ 明白である。また、交流印加電圧AとBの振幅は、プッ
シュプル回路?A、7Bと出カドランス8A。
By the way, the phase difference between the AC applied voltages A and B is 90'.
It is clear that 1 2 ゛ by comparing the outputs Q and Q or Q3 and Q4 of the shift register 2. Also, are the amplitudes of AC applied voltages A and B in a push-pull circuit? A, 7B and output 8A.

8Bの定数が変わらないかぎり同一である。従って、こ
の超音波モータの駆動回路によれば、移相器による信号
レベルの変動や、移相誤差の影響を受けることなく、簡
単な回路構成で90°位相の異なる2つの交流印加電圧
を得ることができる。
They are the same unless the constant of 8B is changed. Therefore, according to this ultrasonic motor drive circuit, two AC applied voltages with a 90° phase difference can be obtained with a simple circuit configuration without being affected by signal level fluctuations caused by a phase shifter or phase shift errors. be able to.

上記実施例では、VCOlが発振される発振周波数4f
のパルスのデユーティ−比を50%として説明したが、
これは50%のデユーティ−比である必要はない。何故
なら、駆動波整形手段3のFF4およびFF5で分周す
れば、必然的にデユーティ−比50%の駆動周波数fを
得られるからである。このことは何らかの原因でVCO
lの発振周波数が高くなり、デユーティ−比がくずれて
きても、駆動信号には同等影響はなく、広い発振範囲を
、1個のVCOでカバーすることができる。
In the above embodiment, the oscillation frequency 4f at which the VCOl is oscillated
The explanation was given assuming that the duty ratio of the pulse is 50%, but
This need not be a 50% duty ratio. This is because if the frequency is divided by FF4 and FF5 of the drive wave shaping means 3, a drive frequency f with a duty ratio of 50% can be inevitably obtained. This is due to some reason that the VCO
Even if the oscillation frequency of 1 becomes high and the duty ratio deteriorates, the drive signal is not affected to the same extent, and a wide oscillation range can be covered by one VCO.

〔発明の効果コ 以上述べたように本発明によれば、超音波モータを駆動
するに必要な90°位相の異なる2つの交流印加電圧を
得るに際し、従来のアナログ回路によらず、シフトレジ
スタを主体としたディジタル回路網で90″の位相量を
得ているので、駆動周波数に関係なく正確な位相差が得
られ、位相誤差の生ずる欠点がない。また、プッシュプ
ル回路や出カドランスの定数が変動しない限り振幅も一
定であり、しかも、矩形波信号から正弦波信号に嚢換す
るのに、圧電体素子の有する容量成分を利用しているの
で、負荷部品を同等必要とせず、簡単な回路構成で小型
、軽量、低コスト化が可能となる等の顕著な効果を有す
る。
[Effects of the Invention] As described above, according to the present invention, when obtaining two applied AC voltages with a 90° phase difference required to drive an ultrasonic motor, a shift register is used instead of a conventional analog circuit. Since a phase amount of 90" is obtained using the digital circuit network, an accurate phase difference can be obtained regardless of the drive frequency, and there is no drawback of phase error. Also, the constant of the push-pull circuit and output The amplitude is constant as long as it does not fluctuate, and since the capacitive component of the piezoelectric element is used to convert the rectangular wave signal into a sine wave signal, no load components are required and the circuit is simple. The structure has remarkable effects such as being able to be made smaller, lighter, and lower in cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す超音波モータの駆動
回路のブロック図、 第2図は、第1図におけるプッシュプル回路と出カドラ
ンスの回路図、 第3図は、第1図に示す駆動回路のタイミングチャート
、 第4図(A) (B) (C)は、屈曲または板波進行
波タイプの超音波モータの圧電体素子とその駆動信号と
の関係を示す説明図である。 1・・・・・・・・・VCO(発振器)2・・・・・・
・・・シフトレジスタ 3・・・・・・・・・駆動波整形手段 7A、7B・・・・・・・・・プッンユプル回路8A、
8B・・・・・・・・・出カドランス(プッシュプル回
路)
FIG. 1 is a block diagram of an ultrasonic motor drive circuit showing an embodiment of the present invention. FIG. 2 is a circuit diagram of a push-pull circuit and an output transformer in FIG. 1. The timing charts of the drive circuit shown in FIGS. 4A, 4B, and 4C are explanatory diagrams showing the relationship between the piezoelectric element of a bending or plate wave traveling wave type ultrasonic motor and its drive signal. . 1......VCO (oscillator) 2...
...Shift register 3...Drive wave shaping means 7A, 7B...Punyu pull circuit 8A,
8B・・・・・・Output Lance (Push-Pull Circuit)

Claims (2)

【特許請求の範囲】[Claims] (1)弾性体に固着された圧電素子に駆動周波数電圧を
印加して上記弾性体の表面に進行波を発生させ、この弾
性体の表面に摩擦接触させた移動体を駆動する超音波モ
ータの駆動回路において、上記駆動周波数の4倍の周波
数の矩形波信号を出力する発振器と、 この矩形波信号から上記超音波モータの駆動周波数の矩
形波信号を作り出す駆動波整形手段と、上記発振器の出
力に同期して上記駆動波整形手段からの出力信号をシフ
トさせ、90°ずつ位相のずれた4つの駆動矩形波信号
を出力するシフトレジスタと、 このシフトレジスタからの駆動矩形波信号のうちそれぞ
れ180°ずつ位相のずれた2つの矩形波信号を各々入
力し、一方の矩形波信号を反転させて交流信号として出
力する2つのプッシュプル回路と、 を具備したことを特徴とする超音波モータの駆動回路。
(1) A driving frequency voltage is applied to a piezoelectric element fixed to an elastic body to generate a traveling wave on the surface of the elastic body, and an ultrasonic motor drives a moving body that is brought into frictional contact with the surface of the elastic body. The drive circuit includes: an oscillator that outputs a rectangular wave signal with a frequency four times higher than the drive frequency; a drive wave shaping means that generates a rectangular wave signal with a drive frequency of the ultrasonic motor from the rectangular wave signal; and an output of the oscillator. a shift register that shifts the output signal from the drive wave shaping means in synchronization with the output signal and outputs four drive rectangular wave signals whose phases are shifted by 90 degrees; Driving an ultrasonic motor characterized by comprising: two push-pull circuits that input two rectangular wave signals with a phase difference of 1°, invert one of the rectangular wave signals, and output the inverted alternating current signal as an alternating current signal. circuit.
(2)上記駆動波整形手段は、発振器からの矩形波信号
を1/2および1/4に分周する分周器と、これら分周
器からの1/2分周信号および1/4分周信号の論理積
をとるゲート回路とからなることを特徴とする特許請求
の範囲第1項記載の超音波モータの駆動回路。
(2) The driving wave shaping means includes a frequency divider that divides the frequency of the rectangular wave signal from the oscillator into 1/2 and 1/4, and a 1/2 frequency divided signal from these frequency dividers and a 1/4 frequency divided signal. 2. The ultrasonic motor drive circuit according to claim 1, further comprising a gate circuit that takes an AND of frequency signals.
JP62094584A 1987-04-17 1987-04-17 Drive circuit of ultrasonic motor Pending JPS63262070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62094584A JPS63262070A (en) 1987-04-17 1987-04-17 Drive circuit of ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62094584A JPS63262070A (en) 1987-04-17 1987-04-17 Drive circuit of ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS63262070A true JPS63262070A (en) 1988-10-28

Family

ID=14114325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094584A Pending JPS63262070A (en) 1987-04-17 1987-04-17 Drive circuit of ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS63262070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608426B2 (en) 1998-12-10 2003-08-19 Canon Kabushiki Kaisha Driving device of a vibration type actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608426B2 (en) 1998-12-10 2003-08-19 Canon Kabushiki Kaisha Driving device of a vibration type actuator

Similar Documents

Publication Publication Date Title
US6255760B1 (en) Driving apparatus of piezoelectric vibrator
JP2004304887A (en) Oscillatory drive unit
JPH06237584A (en) Speed control method and speed controller for ultrasonic motor
JPS63262070A (en) Drive circuit of ultrasonic motor
JP2683237B2 (en) Ultrasonic motor drive circuit
JPS61221584A (en) Drive circuit of vibration wave motor
JPS63268473A (en) Drive circuit for ultrasonic motor
JPH0714275B2 (en) Vibration wave motor device
JP2509310B2 (en) Control method of ultrasonic motor
JP6811369B1 (en) Drive device, modulated wave resolver device, and rotation angle detection method
JP2843392B2 (en) Ultrasonic motor drive circuit
JP2650952B2 (en) Drive circuit for vibration type motor
JP2938628B2 (en) Ultrasonic motor drive circuit
JPS62247771A (en) Oscillatory-wave motor
KR100267710B1 (en) Digital frequency phase control apparatus for driving ultrasonic motor
JPH1189255A (en) Driving device for vibration actuator
JP2606651B2 (en) 4-phase signal generation circuit
JP2601268B2 (en) Ultrasonic motor
JP2683210B2 (en) Vibration wave motor
JPH0365079A (en) Drive controller of ultrasonic motor
JP3006037B2 (en) Wave step motor
JPH04252502A (en) Voltage controlled piezoelectric oscillator
JPH06197562A (en) Progressive-wave motor driving device
JP2004194363A (en) Driver and actuator
JPH04217880A (en) Controller for motor