JPH01264579A - Control method of progressive-wave type ultrasonic motor - Google Patents

Control method of progressive-wave type ultrasonic motor

Info

Publication number
JPH01264579A
JPH01264579A JP63090902A JP9090288A JPH01264579A JP H01264579 A JPH01264579 A JP H01264579A JP 63090902 A JP63090902 A JP 63090902A JP 9090288 A JP9090288 A JP 9090288A JP H01264579 A JPH01264579 A JP H01264579A
Authority
JP
Japan
Prior art keywords
voltage
frequency
elastic body
piezoelectric body
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63090902A
Other languages
Japanese (ja)
Inventor
Yukimi Hiroshima
廣嶋 幸美
Yasuhiro Shibata
柴田 泰寛
Kunio Kondo
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foster Electric Co Ltd
Original Assignee
Foster Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foster Electric Co Ltd filed Critical Foster Electric Co Ltd
Priority to JP63090902A priority Critical patent/JPH01264579A/en
Publication of JPH01264579A publication Critical patent/JPH01264579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To correct the displacement of a resonance point automatically by installing a temperature sensor to an annular-speed elastic body, etc., and turning the elastic body by frequency lowering in reverse proportion to the rise of output voltage from the sensor. CONSTITUTION:A temperature sensor 62 being mounted to an annular-shaped elastic body 11 and measuring the temperature of a vibrator including an annular-shaped piezoelectric body 12 is set up to an ultrasonic motor 61 in which a rotor 13 is turned by progressive-waves generated from the piezoelectric body 12 and the elastic body 11. Output voltage from the sensor 62 is input to a voltage-frequency converter(VFC) 63, and AC voltage V0 sinomegat generated and AC voltage V0 cosomegat, phase of which is phase-shifted by 90 deg. by a phase shifter 64, are applied to the ultrasonic motor 61. Consequently, the temperature sensor 62 generates voltage proportional to an elevating temperature owing to heat generation by the revolution of the motor 61, and transmits voltage over the VFC 63 as a voltage signal. Accordingly, frequency alters in response to a temperature change, thus oscillating the piezoelectric body 12 at frequency coinciding with resonance frequency varying by a temperature rise at all times.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多数の電極に分割された圧電体を未分極処理
電極を介して2領域に分割し、それぞれに圧電体の共振
周波数に等しい周波数で位相差のある交流電圧を入力し
、前記圧電体に接着により一体化された弾性体に生ずる
進行波によって回転体を駆ffi!+ i−る進行波形
超音波モー夕の制御方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention divides a piezoelectric material divided into a large number of electrodes into two regions via unpolarized electrodes, and each region has a frequency equal to the resonant frequency of the piezoelectric material. An alternating current voltage with a phase difference in frequency is input, and the rotating body is driven by a traveling wave generated in an elastic body that is integrated with the piezoelectric body by adhesive. The present invention relates to a method of controlling a traveling waveform ultrasonic wave motor.

(従来の技術) 従来、磁石と、コイルに電流を流づことによって生ずる
電磁石との相互作用によって、電気エネルギーを回転運
動どしての機械エネルギーに変換するモータは広く用い
られている。この電磁力を応用したモータに代る装置と
して超音波エネルギーを利用するモータが提案されてい
る。第4図はこの種のモータの=例の進行波形超音波モ
ータ(以下進行波モータという)の動作原理の説明図で
ある。図において、1は弾性体で、その表面1′上に進
行波が形成された状態を示している。
(Prior Art) Conventionally, motors have been widely used that convert electrical energy into mechanical energy such as rotational motion through interaction between a magnet and an electromagnet generated by passing a current through a coil. A motor that uses ultrasonic energy has been proposed as an alternative to a motor that uses electromagnetic force. FIG. 4 is an explanatory diagram of the operating principle of a traveling wave ultrasonic motor (hereinafter referred to as a traveling wave motor) as an example of this type of motor. In the figure, 1 is an elastic body, and a traveling wave is formed on the surface 1' of the elastic body.

弾性体1の表面1′上には楕円振動が形成される。今、
表面1′の質点△に着目すると、横振幅a (上下方向
)と縦振幅b (左右方向)の楕円軌跡Q上を矢印Mの
方向に運動しており、この状態の下で運動が自由な動体
2の表面を弾性体1の表面上に加圧接触さぼると動体2
は弾性体1の進行波の頂点へ及びA′の部分でのみ接触
しており、且つ、頂点A、A’ は矢印Mの方向に運動
しているので、動体2は弾性体1との摩擦ににって矢印
Nの方向に駆動される。
Elliptical vibrations are formed on the surface 1' of the elastic body 1. now,
Focusing on the mass point △ on the surface 1', it is moving in the direction of the arrow M on an elliptical locus Q with a horizontal amplitude a (vertical direction) and a longitudinal amplitude b (horizontal direction), and in this state, it can move freely. When the surface of the moving body 2 is brought into pressure contact with the surface of the elastic body 1, the moving body 2
is in contact with the apex of the traveling wave of the elastic body 1 only at the part A', and since the apexes A and A' are moving in the direction of the arrow M, the moving body 2 has no friction with the elastic body 1. is driven in the direction of arrow N.

上記の動作原理に基づく進行波モータの一例の断面図を
第2図に示す。図において、円環状弾性体11は導電体
で作られ、その表面に円環状圧電体12を接着し、円環
状圧電体12が円環状弾性体11を励振して一体として
振動するようになっている。13は円環状弾性体11に
圧接されて円環状弾性体11に生ずる駆動力により回転
J−る回転子である。回転子13はばね14により適度
な加圧力で円環状弾性体11に圧接されていて、出力軸
15から回転エネルギーを出力している。
FIG. 2 shows a sectional view of an example of a traveling wave motor based on the above operating principle. In the figure, an annular elastic body 11 is made of a conductive material, and an annular piezoelectric body 12 is bonded to the surface of the annular elastic body 11, and the annular piezoelectric body 12 excites the annular elastic body 11 so that the annular elastic body 11 vibrates as a unit. There is. A rotor 13 is pressed against the annular elastic body 11 and rotated by a driving force generated in the annular elastic body 11. The rotor 13 is pressed against the annular elastic body 11 by a spring 14 with an appropriate pressure, and outputs rotational energy from an output shaft 15.

円環状圧電体12の構成の一例を第3図に示す。An example of the configuration of the annular piezoelectric body 12 is shown in FIG.

図において、(イ)図は円環状圧電体12の表面の図で
、(ロ)図は裏面の図である。(イ)図に示すように円
環状圧電体12は例えば20°毎に分割された16個の
互いに隣接する部分が交互に厚み方向に分極処理された
電極21〜28及び31〜38と未分極処理電極40及
び41で構成される。電極21〜28の8個の電極より
成る領域をAとし、電極31〜38の8個の電極から成
る領域をBとする。領域Aと領域Bの各構成電極部は成
る瞬間の入力に対して奇数番号の素子が伸長J−ると偶
数番号の素子は収縮するものである。図においては≠の
瞬間において伸長する素子を+°″、′収縮する素子を
LL  I+で表示している。(ロ)図は裏面の図で、
電極21〜28から成る領域△の裏面の電極は一体化さ
れて電極Δ51を構成し、電極31〜38から成る領域
Bの裏面の電極は一体化されて電極B52を構成してい
る。
In the figures, (a) is a view of the front surface of the annular piezoelectric body 12, and (b) is a view of the back side. (B) As shown in the figure, the annular piezoelectric body 12 is divided into, for example, 16 mutually adjacent parts divided into 20 degrees, and electrodes 21 to 28 and 31 to 38, which are polarized in the thickness direction, alternately and unpolarized. It is composed of processing electrodes 40 and 41. A region made up of eight electrodes 21 to 28 is designated as A, and a region made up of eight electrodes 31 to 38 is designated B. In response to the instantaneous input of the constituent electrode portions of the regions A and B, the odd-numbered elements expand and the even-numbered elements contract. In the figure, the element that expands at the moment of ≠ is indicated by +°'', and the element that contracts ' is indicated by LL I+. (B) The figure is the back view,
The electrodes on the back surface of region Δ consisting of electrodes 21-28 are integrated to form electrode Δ51, and the electrodes on the back surface of region B consisting of electrodes 31-38 are integrated to form electrode B52.

上記のように構成された円環状圧電体12において、導
電体0作られた円環状弾性体11により電気的に一体化
された表面をコモン端子とし、電極A51にVosin
ωt、電極B 5’ 2にyocosωtの交流電圧を
印加して90’位相差の成る交流電圧を領域△と領域[
3に与えている。
In the annular piezoelectric body 12 configured as described above, the surface electrically integrated with the annular elastic body 11 made of zero conductor is used as a common terminal, and the electrode A51 is connected to Vosin.
ωt, an AC voltage of yocosωt is applied to the electrode B 5' 2, and the AC voltage with a 90' phase difference is divided into the area Δ and the area [
It is given to 3.

この交流電圧の周波数が一体になった円環状圧電体12
と円環状弾性体11とで決まる共振周波数と略等しくな
ったとぎ、固定子は共振し、円周方向に屈曲振動を起す
。ここで、例えば第3図の未分極処理電極41を(3/
4)人に選ぶと、この領域Aと領域Bとに発生した波が
相互に干渉を起し、合成されて進行波となり、回転子1
4を回転させる。この回転の安定を計るため、円環状圧
電体12の未分極処理電極40から信号を引き出してそ
の信号振幅を最大にさせるにうに印加する交流電圧の周
波数を変化させている。印加した交流電圧の周波数が円
環状圧電体12の共振周波数に合致しICとき回転効率
が最高どなり、最大トルクが得られる。
An annular piezoelectric body 12 in which the frequency of this AC voltage is integrated
When the resonance frequency becomes approximately equal to the resonance frequency determined by the annular elastic body 11, the stator resonates and causes bending vibration in the circumferential direction. Here, for example, the unpolarized electrode 41 in FIG.
4) When selected by a person, the waves generated in region A and region B interfere with each other and are combined to form a traveling wave, which causes rotor 1
Rotate 4. In order to stabilize this rotation, a signal is extracted from the unpolarized electrode 40 of the annular piezoelectric body 12, and the frequency of the applied alternating current voltage is varied to maximize the signal amplitude. The frequency of the applied alternating current voltage matches the resonance frequency of the annular piezoelectric body 12, and when it is an IC, the rotational efficiency is the highest and the maximum torque is obtained.

(発明が解決しようとする課題) ところで、上記のように発生した進行波は円環状弾性体
に圧接された回転子13を回転させている。このように
円環状弾性体11はばね14により圧接された回転子1
3を□摩擦力によって摺動して回転させているため相互
に摩耗すると共に摩擦熱を生ずる。この発熱により一体
化された円環状圧電体12と円環状弾性体11の共振周
波数が低くなり、入力交流電圧の周波数とのずれを生ず
るため回転力が低下し、回転数か落ちてくる。
(Problems to be Solved by the Invention) Incidentally, the traveling waves generated as described above rotate the rotor 13 that is pressed against the annular elastic body. In this way, the annular elastic body 11 is pressed against the rotor 1 by the spring 14.
Since the parts 3 are slid and rotated by frictional force, they wear against each other and generate frictional heat. This heat generation lowers the resonant frequency of the integrated annular piezoelectric body 12 and annular elastic body 11, causing a deviation from the frequency of the input AC voltage, resulting in a decrease in rotational force and a drop in rotational speed.

本発明は上記の問題点に鑑みてなされたもので、その目
的は、発熱による共振周波数のずれを補正することので
きる進行波形超音波モータの制御方法を提供することに
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a control method for a traveling wave ultrasonic motor that can correct a shift in resonance frequency due to heat generation.

(課題を解決するための手段) 前記の課題を解決する本発明は、多数の電極に分割され
た圧電体を未分極処理電極を介して企領域に分割゛し、
それぞれに圧電体の共振周波数に等しい周波数で位相差
のある交流電圧を入力し、前記圧電体に接着により一体
化された弾性体に生ずる進行波によって回転体を駆動す
る進行波形超音波モータの制御方法において、前配圧電
体と弾性体とが一体化された振動体に温度センサーを取
り付け温度センナの出力によって前記圧電体に印加する
交流電圧の周波数を変化さ櫨ることを特徴とするもので
ある。
(Means for Solving the Problems) The present invention solves the above problems by dividing a piezoelectric body divided into a large number of electrodes into target regions via unpolarized electrodes,
Control of a traveling wave ultrasonic motor that drives a rotating body by a traveling wave generated in an elastic body that is integrated with the piezoelectric body by adhesive, by inputting an AC voltage with a phase difference at a frequency equal to the resonant frequency of the piezoelectric body to each of them. The method is characterized in that a temperature sensor is attached to a vibrating body in which a front pressure distribution electric body and an elastic body are integrated, and the frequency of an alternating current voltage applied to the piezoelectric body is changed by the output of the temperature sensor. be.

(作用) 圧電体と弾性体が一体化された振動体に取り付けられた
温度センサは前記振動体の温度に比例した電圧を発生し
、圧電体に印加する交流電圧の周波数をm度に応じて変
化させる。
(Function) A temperature sensor attached to a vibrating body in which a piezoelectric body and an elastic body are integrated generates a voltage proportional to the temperature of the vibrating body, and changes the frequency of the AC voltage applied to the piezoelectric body according to m degrees. change.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の方法を実施する回路である
。図において、61は第2図に示す円環状圧電体12と
円環状弾性体11の発生する進行波によって回転子13
が回転する超音波モータ、62は金属製の円環状弾性体
11に取り付(ブて円環状圧電体12を含めた振動体の
温度を測定して温度に比例した電圧を発生づ−る温度セ
ンサで、出力電圧は電圧−周波数変換器(以下VFCと
いう)63に入力される。
FIG. 1 is a circuit implementing the method of one embodiment of the present invention. In the figure, reference numeral 61 indicates a rotor 13 caused by traveling waves generated by the annular piezoelectric body 12 and the annular elastic body 11 shown in FIG.
An ultrasonic motor 62 is attached to a metal annular elastic body 11 (it measures the temperature of the vibrating body including the annular piezoelectric body 12 and generates a voltage proportional to the temperature). The output voltage of the sensor is input to a voltage-frequency converter (hereinafter referred to as VFC) 63.

発生した交流電圧、) sinωtと、移相器64によ
り90’位相を変換された交流電圧VOCO3ωtとが
超音波モータ61に印加される。
The generated AC voltage ) sinωt and the AC voltage VOCO3ωt whose 90' phase has been converted by the phase shifter 64 are applied to the ultrasonic motor 61.

次に、上記の回路の動作と温度補償方法を説明する。温
度センサ62は超音波モータ61の回転ににる発熱のた
め上昇した温度に比例する電圧を発生し、VFC63に
電圧信号を与える。VFC63は入力電圧が高いと低下
する周波数の交流電圧voS1n(1)tを発生し、移
相器64によって90°位相をシフトされた信号Vo 
sin (1)tと共に超音波モータ61に供給される
。この印加された交流電圧の周波数は温度変化に応じて
変化するため、円環状弾性体17と円環状圧電体12の
発熱による温度上昇により変化する共振周波数に常に合
致した周波数で前記円環状圧電体12を発振させる。
Next, the operation of the above circuit and the temperature compensation method will be explained. The temperature sensor 62 generates a voltage proportional to the temperature increased due to the heat generated by the rotation of the ultrasonic motor 61, and provides a voltage signal to the VFC 63. The VFC 63 generates an AC voltage voS1n(1)t whose frequency decreases when the input voltage is high, and a signal Vo whose phase is shifted by 90 degrees by the phase shifter 64.
It is supplied to the ultrasonic motor 61 together with sin (1)t. Since the frequency of this applied alternating current voltage changes in accordance with temperature changes, the annular piezoelectric body 12 always maintains a frequency that matches the resonance frequency that changes due to temperature rise due to heat generation in the annular elastic body 17 and the annular piezoelectric body 12. 12 to oscillate.

以上説明したように本発明の方法では、円環状弾性体又
は円環状圧電体に温度に比例した電圧を発生リ−る温度
センサを取り付(プて、この出力電圧の上昇に反して低
下する周波数の交流電圧によって回転することにより、
発熱による共振周波数の変化を補償することができるよ
うになる。さらに、ロータリーエンコーダからの回転数
信号等と温度センサからの信号とを併用することも可能
である。
As explained above, in the method of the present invention, a temperature sensor that generates a voltage proportional to temperature is attached to an annular elastic body or an annular piezoelectric body, so that the output voltage decreases while the output voltage increases. By rotating by alternating voltage of frequency,
It becomes possible to compensate for changes in resonance frequency due to heat generation. Furthermore, it is also possible to use the rotational speed signal etc. from the rotary encoder together with the signal from the temperature sensor.

=7= (発明の効果) 以上詳細に説明したように本発明によれば、圧電体の発
熱による共振点のずれを自動的に補正することができる
J:うになって、実用上の効果は大きい。
=7= (Effects of the Invention) As explained in detail above, according to the present invention, the displacement of the resonance point due to heat generation of the piezoelectric body can be automatically corrected. big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施J−る回路のブロック図、
第2図は進行波モータの断面図、第3図は進行波モータ
に用いる円環状圧電体の椙造図、第4図は進行波モータ
の原理説明図である。 11・・・円環状弾性体  12・・・円環状圧電体1
3・・・回転子     14・・・ばね21〜28.
31〜38・・・電極 40.41,42.43・・・未分極処理電極61・・
・超音波モータ  62・・・温度センサ63・・・V
FC64・・・移相器 特許出願人   フォスター電機株式会社代  埋  
人   弁理士   井  島  藤  治外1名
FIG. 1 is a block diagram of a circuit for implementing the method of the invention;
FIG. 2 is a sectional view of a traveling wave motor, FIG. 3 is a schematic diagram of an annular piezoelectric body used in the traveling wave motor, and FIG. 4 is a diagram explaining the principle of the traveling wave motor. 11... Annular elastic body 12... Annular piezoelectric body 1
3...Rotor 14...Springs 21-28.
31 to 38... Electrodes 40.41, 42.43... Unpolarized electrodes 61...
・Ultrasonic motor 62...Temperature sensor 63...V
FC64...Phase shifter patent applicant Foster Electric Co., Ltd.
Person Patent attorney Fuji Ijima 1 person

Claims (1)

【特許請求の範囲】[Claims]  多数の電極に分割された圧電体を未分極処理電極を介
して2領域に分割し、それぞれに圧電体の共振周波数に
等しい周波数で位相差のある交流電圧を入力し、前記圧
電体に接着により一体化された弾性体に生ずる進行波に
よって回転体を駆動する進行波形超音波モータの制御方
法において、前記圧電体と弾性体とが一体化された振動
体に温度センサを取り付け温度センサの出力によって前
記圧電体に印加する交流電圧の周波数を変化させること
を特徴とする進行波形超音波モータの制御方法。
A piezoelectric body divided into a large number of electrodes is divided into two regions via unpolarized electrodes, and an AC voltage with a phase difference at a frequency equal to the resonant frequency of the piezoelectric body is input to each region, and the piezoelectric body is bonded to the piezoelectric body. In a method for controlling a traveling wave ultrasonic motor that drives a rotating body by a traveling wave generated in an integrated elastic body, a temperature sensor is attached to the vibrating body in which the piezoelectric body and the elastic body are integrated, and the output of the temperature sensor is used to drive the rotating body. A method for controlling a traveling wave ultrasonic motor, comprising changing the frequency of an alternating current voltage applied to the piezoelectric body.
JP63090902A 1988-04-12 1988-04-12 Control method of progressive-wave type ultrasonic motor Pending JPH01264579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63090902A JPH01264579A (en) 1988-04-12 1988-04-12 Control method of progressive-wave type ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090902A JPH01264579A (en) 1988-04-12 1988-04-12 Control method of progressive-wave type ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH01264579A true JPH01264579A (en) 1989-10-20

Family

ID=14011333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090902A Pending JPH01264579A (en) 1988-04-12 1988-04-12 Control method of progressive-wave type ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH01264579A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190683A (en) * 1990-11-22 1992-07-09 Nissan Motor Co Ltd Driving device for ultrasonic motor
EP0562817A2 (en) * 1992-03-24 1993-09-29 Seiko Instruments Inc. Electronic apparatus with ultrasonic motor
JP2003033056A (en) * 2001-07-10 2003-01-31 Nidec Copal Corp Ultrasonic motor control circuit
US8487510B2 (en) 2008-06-11 2013-07-16 Konica Minolta Opto, Inc. Driving device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04190683A (en) * 1990-11-22 1992-07-09 Nissan Motor Co Ltd Driving device for ultrasonic motor
EP0562817A2 (en) * 1992-03-24 1993-09-29 Seiko Instruments Inc. Electronic apparatus with ultrasonic motor
EP0562817A3 (en) * 1992-03-24 1993-11-03 Seiko Instruments Inc. Electronic apparatus with ultrasonic motor
JP2003033056A (en) * 2001-07-10 2003-01-31 Nidec Copal Corp Ultrasonic motor control circuit
US8487510B2 (en) 2008-06-11 2013-07-16 Konica Minolta Opto, Inc. Driving device

Similar Documents

Publication Publication Date Title
US5079470A (en) Standing-wave type ultrasonic motor and timepiece
JP4891053B2 (en) Ultrasonic motor
EP0674350A1 (en) Ultrasonic motor
US4339682A (en) Rotative motor using a piezoelectric element
US5619089A (en) Ultrasonic motor and electronic apparatus provided with an ultrasonic motor
JP2004266943A (en) Ultrasonic motor, operation device, optical system switching mechanism, and electrical apparatus
JP2638856B2 (en) Ultrasonic motor
JPH01264579A (en) Control method of progressive-wave type ultrasonic motor
US6700305B2 (en) Actuator using a piezoelectric element
US4399385A (en) Rotative motor using a triangular piezoelectric element
US6492760B1 (en) Actuator
JPS61221584A (en) Drive circuit of vibration wave motor
JP2616953B2 (en) Drive control method for traveling waveform ultrasonic motor
JPH03253267A (en) Ultrasonic motor
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
JPH0681523B2 (en) Vibration wave motor
JP4520570B2 (en) Piezoelectric actuator
JP2636280B2 (en) Driving method of ultrasonic motor
JPS60183981A (en) Supersonic wave motor
JPS6091879A (en) Supersonic wave driving method
JP5188062B2 (en) Vibration type actuator and control method thereof
JP2004312814A (en) Operation device and electric apparatus
JP4208627B2 (en) Control device, operation device, and control method for vibration type drive device
SU771773A1 (en) Vibromotor
JP2506859B2 (en) Ultrasonic motor