JPH07134608A - Quickest fast forward control method - Google Patents

Quickest fast forward control method

Info

Publication number
JPH07134608A
JPH07134608A JP30589293A JP30589293A JPH07134608A JP H07134608 A JPH07134608 A JP H07134608A JP 30589293 A JP30589293 A JP 30589293A JP 30589293 A JP30589293 A JP 30589293A JP H07134608 A JPH07134608 A JP H07134608A
Authority
JP
Japan
Prior art keywords
speed
optimum
fast
time constant
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30589293A
Other languages
Japanese (ja)
Inventor
Shuichi Yoshii
吉井秀一
Haruhisa Yamashita
山下晴央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enshu Ltd
Original Assignee
Enshu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enshu Ltd filed Critical Enshu Ltd
Priority to JP30589293A priority Critical patent/JPH07134608A/en
Publication of JPH07134608A publication Critical patent/JPH07134608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To shorten the time needed for shift of the same distance by reducing the time constant to increase the rising acceleration and the falling deceleration and also reducing the highest fast forward speed when a moving object has a small shift distance. CONSTITUTION:An optimum speed calculation control part 2 of an NC controller 1 pre-reads the program contents and fetches the shaft shift data from a program memory part PM. Thus the part 2 previously knows the shift distance of a moving object 10. The time constant of the optimum fast forward is calculated and the time constant of a parameter setting part 3 is rewritten against the short shift distance where the deceleration control is required before the highest fast forward speed is secured. Then a speed control part 4 controls a servo motor 6 based on the optimum fast forward speed (optimum shaft shift) defined by the trapezoidal acceleration/deceleration characteristic F against the shaft shift of the object 10. The object 10 is moved by the motor 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械等の移動体の
最短早送り制御方法に係り、最高早送り速度に到達しな
い内に加減速制御しなければならない短距離移動時の新
規な早送り制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shortest rapid feed control method for a moving body such as a machine tool, and a novel rapid feed control method for short distance movement which requires acceleration / deceleration control before the maximum rapid feed speed is reached. Regarding

【0002】[0002]

【従来の技術】従来、工作機械等の移動体の早送り制御
方法は、図4に見るように、移動距離が長いときは、最
大早送り速度(例えば、30m/min)まで加速さ
せ、その後その速度にて定速送りし、最後に減速停止す
る。一方、移動体の移動距離が短いときは、加速度領域
の最高速度未達(例えば、27m/minまで加速)の
うちに減速領域に入り、全体としての移動時間が長くな
る。即ち、早送りの時定数は、例えば0.2のパラメー
タにより固定しているため、移動距離の長短に係り無く
早送りの最高速度が一定となるものの、移動距離が短く
加速度領域が最高速度未達のままで減速するときは、斜
線部面積が移動距離(60mm)となり、これに要する
時間は0.36秒と長くなる。
2. Description of the Related Art Conventionally, as shown in FIG. 4, when a moving distance is long, a method of controlling a fast-forwarding of a moving body such as a machine tool accelerates to a maximum fast-forwarding speed (for example, 30 m / min), and then the speed is increased. At constant speed, and finally decelerates and stops. On the other hand, when the moving distance of the moving body is short, the vehicle enters the deceleration area while the maximum speed of the acceleration area is not reached (acceleration up to 27 m / min, for example), and the total movement time becomes long. That is, since the fast-forward time constant is fixed by a parameter of, for example, 0.2, the maximum speed of fast-forward is constant regardless of the length of the moving distance, but the moving distance is short and the maximum speed does not reach the maximum speed. When decelerating to the full speed, the shaded area becomes the moving distance (60 mm), and the time required for this becomes as long as 0.36 seconds.

【0003】上記のように、機械系の慣性重量などを考
慮して振動等が発生しない時定数に固定されているた
め、いくら最高早送り速度を高く設定しても移動距離が
短いと、加速度領域が最高速度未達のままで減速するこ
とになり、軸移動に要する時間がかえって長くなると云
う欠点問題点がある。
As described above, the inertial weight of the mechanical system is taken into consideration, and the time constant is fixed so that vibration does not occur. Therefore, even if the maximum rapid feed rate is set high, if the moving distance is short, the acceleration range is increased. However, there is a disadvantage that the speed required to move the shaft is decelerated without reaching the maximum speed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記従来の
問題点に鑑みこれを解消することを課題とし、移動体の
移動距離が短くなるほど、時定数を小さくして立上り加
速度及び立下り減速度を早める反面、早送り最高速度を
低く抑えて同一距離を移動するに要する時間を短縮した
早送り方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to solve the problems. As the moving distance of a moving body becomes shorter, the time constant is made smaller to reduce the rising acceleration and the falling acceleration. It is an object of the present invention to provide a fast-forwarding method that reduces the time required to move the same distance by suppressing the maximum fast-forwarding speed to a low value while increasing the speed.

【0005】[0005]

【課題を解決するための手段】本発明の具体的手段は、
最高早送り速度に到達しない内に減速制御しなければな
らない短距離移動時の早送り制御において、プログラム
メモリから最適速度演算制御部に軸移動データ取込みで
プログラム内容の先読みを行い、上記最適速度演算制御
部は移動体の移動距離に関連して最適早送りの時定数を
算出してパラメータの時定数を書き替え、速度制御部は
上記移動体の軸移動に際し、最適早送り速度にてモータ
ー制御を行い台形加減速特性としたことを特徴とする最
短早送り制御方法である。
The concrete means of the present invention is as follows.
The deceleration control must be performed before the maximum fast-forward speed is reached.In the fast-forward control during short-distance movement, the program contents are prefetched by fetching axis movement data from the program memory to the optimum speed calculation control unit, and the optimum speed calculation control unit Calculates the optimum rapid traverse time constant in relation to the moving distance of the moving body and rewrites the parameter time constant, and the speed control unit controls the motor at the optimum rapid traverse speed when moving the axis of the moving body and adds a trapezoidal shape. This is a shortest fast-forward control method characterized by having a deceleration characteristic.

【0006】[0006]

【作用】本発明によると、最適速度演算制御部はプログ
ラムメモリから軸移動データ取込みで最高早送り速度に
到達しない内に減速制御しなければならない短距離移動
かどうかのプログラム内容の先読みを行う。これで、上
記最適速度演算制御部は移動体の移動距離を予め知るこ
とが出来、最高早送り速度に到達しない内に減速制御し
なければならない短距離移動であれば、最適早送りの時
定数を算出してパラメータの時定数を書き替える。しか
る後、速度制御部は移動体の軸移動に際し、台形加減速
特性による最適早送り速度にてモーター制御を行い、軸
移動時間の短縮化を図る。しかして、移動体の移動距離
が短い時、早送りの最高速度を低く抑える傍ら、小さく
した時定数により、立上り加速度及び立下り減速度を早
めることで同一距離を移動するに要するトータルとして
の時間を短縮する最短早送りとなる。
According to the present invention, the optimum speed calculation control unit prefetches the program contents as to whether or not it is a short distance movement that must be decelerated before the maximum rapid feed speed is reached by fetching axis movement data from the program memory. With this, the optimum speed calculation control unit can know the moving distance of the moving body in advance, and calculates the optimum fast-forward time constant for short-distance movement that requires deceleration control before the maximum fast-forward speed is reached. And rewrite the parameter time constant. After that, the speed control unit controls the motor at the optimum fast-forward speed based on the trapezoidal acceleration / deceleration characteristic when the shaft of the moving body is moved, thereby shortening the axis moving time. When the moving distance of the moving body is short, the total time required to move the same distance by increasing the rising acceleration and the falling deceleration while keeping the maximum fast-forward speed low is shortened. Shortest fast-forward to shorten.

【0007】[0007]

【実施例】以下、図面に示す実施例にて説明する。図1
は本発明の最短早送り制御方法を実施する制御系の概要
ブロック図であり、図2は本発明に係る最短早送り制御
方法の特性図を示している。図3は本発明に係る最短早
送り制御方法を示すフローチャート図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below. Figure 1
2 is a schematic block diagram of a control system for implementing the shortest rapid feed control method of the present invention, and FIG. 2 is a characteristic diagram of the shortest rapid feed control method of the present invention. FIG. 3 is a flowchart showing the shortest fast-forward control method according to the present invention.

【0008】図1において、10は工作機械等の移動体
で、サーボモータ6により左右に移動する。三軸直交の
工作機械では上記移動体10が三組み備えている。上記
サーボモータ6の駆動系はNC制御装置1と、この内部
構成に係り、プログラムメモリ部PMと、このプログラ
ムメモリ部内の軸移動データ取込みでプログラム内容の
先読みを行う最適速度・時定数演算部(最適速度演算制
御部)2と、移動体10の移動距離に関連して最適早送
りの時定数を算出してパラメータの時定数を書き替える
パラメータ設定部3と、最適早送り速度にてモーター制
御を行い台形加減速特性とする速度制御駆動部(速度制
御部)4と、これから発する移動制御指令でサーボモー
タMを駆動するアンプ5とからなる。
In FIG. 1, reference numeral 10 denotes a moving body such as a machine tool, which is moved left and right by a servo motor 6. A machine tool having three axes orthogonal to each other includes three sets of the moving bodies 10. The drive system of the servo motor 6 is related to the NC control device 1 and the internal configuration thereof. The program memory unit PM and the optimum speed / time constant calculation unit (prefetching the program contents by fetching the axis movement data in the program memory unit ( Optimum speed calculation control unit 2), a parameter setting unit 3 that calculates the optimum fast-forward time constant related to the moving distance of the moving body 10 and rewrites the time constant of the parameter, and performs motor control at the optimum rapid-feed speed. It is composed of a speed control drive section (speed control section) 4 having a trapezoidal acceleration / deceleration characteristic and an amplifier 5 for driving the servo motor M by a movement control command issued from this.

【0009】本発明は、上記サーボモータ6の駆動系に
対して制御するもので、図2の如く台形加減速特性を発
揮させるべく最短早送り制御する。即ち、軸移動量が6
0mmのとき、当該制御系の最高早送り速度が30m/
minである時、本発明の最短早送り制御方法を採用し
ないと、最高早送り速度が30m/minになるまでの
時定数は0.17秒となるが、点線三角形のように実際
の加速時間は0.15秒後に27m/minになった所
で、強制的に減速に切り換えられ、0.3秒後には、早
送り終了となる。上記条件下で本発明方法を採用する
と、時定数は0.04秒となり、早送り起動から0.0
4秒後に最高早送り速度20m/minの定速で軸移動
を行い、0.18秒後には減速送りに切り換えられ、
0.22秒後に早送り終了となる。従って、その時間差
0.3−0.22=0.08秒だけ早送りの時間短縮が
図られる。
The present invention controls the drive system of the servo motor 6, and performs the shortest rapid feed control so as to exert the trapezoidal acceleration / deceleration characteristic as shown in FIG. That is, the axis movement amount is 6
When 0 mm, the maximum rapid traverse speed of the control system is 30 m /
When it is min, if the shortest rapid feed control method of the present invention is not adopted, the time constant until the maximum rapid feed speed reaches 30 m / min is 0.17 seconds, but the actual acceleration time is 0 as shown by the dotted triangle. After 15 seconds, the speed was switched to deceleration at 27 m / min, and after 0.3 seconds, fast-forwarding was completed. When the method of the present invention is adopted under the above conditions, the time constant becomes 0.04 seconds, and 0.0
After 4 seconds, the axis is moved at a constant speed with a maximum rapid feed rate of 20 m / min, and after 0.18 seconds, it is switched to deceleration feed.
Fast-forwarding ends after 0.22 seconds. Therefore, the fast-forwarding time can be shortened by the time difference of 0.3-0.22 = 0.08 seconds.

【0010】次に、図3に示す動作手順のフローチャー
トでその作用を説明する。最適速度演算制御部2はプロ
グラムメモリ部PMから「軸移動データ取込み」(ロ)
のために「プログラム内容の先読み」(イ)を行う。こ
れで、上記最適速度演算制御部2は移動体10の移動距
離を予め知る。これに関連して最高早送り速度に到達し
ない内に減速制御しなければならない短距離移動時であ
れば、「最適早送りの時定数を算出」(ハ)してパラメ
ータ設定部3の「時定数」(ニ)が書き替えられる。し
かる後、速度制御部4は移動体10の軸移動に際し、台
形加減速特性Fによる「最適早送り速度(最適軸移
動)」(ホ)にてモーター制御を行い、「軸移動時間の
短縮化」(ヘ)を図る。しかして、移動体10の移動距
離が60mmのように短い場合には、早送りの最高速度
を20m/minと低く抑える傍ら、小さくした時定数
(0.04秒)により、立上り加速度及び立下り減速度
を早めることで同一距離を移動するに要するトータルと
しての時間を0.08秒短縮する最短早送りとなる。
Next, the operation will be described with reference to the flowchart of the operation procedure shown in FIG. The optimum speed calculation control unit 2 "takes in axis movement data" from the program memory unit PM (b)
For this purpose, "Look ahead of program contents" (a) is performed. With this, the optimum speed calculation control unit 2 knows the moving distance of the moving body 10 in advance. In relation to this, in the case of short-distance movement that requires deceleration control before the maximum rapid feed speed is reached, "calculate the optimum rapid feed time constant" (C) and set the "time constant" of the parameter setting unit 3. (D) is rewritten. After that, the speed control unit 4 controls the motor at the "optimum rapid feed speed (optimum axis movement)" (e) according to the trapezoidal acceleration / deceleration characteristic F when the axis of the moving body 10 is moved, thereby "shortening the axis movement time". Try to (f). Then, when the moving distance of the moving body 10 is short such as 60 mm, the maximum speed of fast-forwarding is kept as low as 20 m / min, and the rising time and the falling acceleration are reduced by the reduced time constant (0.04 seconds). By increasing the speed, the total time required to move the same distance is shortened by 0.08 seconds, which is the shortest rapid feed.

【0011】本発明は、上記各実施例に限定されること
なく考案の要旨内での設計変更が可能であること勿論で
ある。例えば、機械装置は工作機械に限らず、その軸数
は問われない。また、時定数も適宜に可調的に変更可能
である。
It is needless to say that the present invention is not limited to each of the above-described embodiments, and design changes can be made within the scope of the invention. For example, the machine device is not limited to a machine tool, and its number of axes does not matter. Also, the time constant can be appropriately and adjustably changed.

【0012】[0012]

【効果】本発明によると、最高早送り速度に到達しない
内に減速制御しなければならない短距離移動時の早送り
制御において、プログラムメモリから最適速度演算制御
部に軸移動データ取込みでプログラム内容の先読みを行
い、上記最適速度演算制御部は移動体の移動距離に関連
して最適早送りの時定数を算出してパラメータの時定数
を書き替え、速度制御部は上記移動体の軸移動に際し、
最適早送り速度にてモーター制御を行い台形加減速特性
としたから、移動体の移動距離が短い場合には、早送り
の最高速度を低く抑える傍ら、小さくした時定数によ
り、立上り加速度及び立下り減速度を早めることで同一
距離を移動するに要するトータルとしての時間を短縮で
きる最適作用の効果が得られる。これは、特にショート
ストロークの移動時において、有効に働き、従来にない
有益な作用効果を発揮する。
[Effects] According to the present invention, in fast-forward control during short-distance movement, in which deceleration control must be performed before the maximum rapid-feed speed is reached, pre-reading of the program contents is performed by fetching axis movement data from the program memory to the optimum speed calculation control unit. The optimum speed calculation control unit calculates the optimum fast-forward time constant in relation to the moving distance of the moving body and rewrites the time constant of the parameter, and the speed control unit moves the axis of the moving body,
Since the motor is controlled at the optimum fast-forward speed to have a trapezoidal acceleration / deceleration characteristic, when the moving distance of the moving body is short, the maximum fast-forward speed is kept low and the time constant is made smaller by the rising acceleration and falling deceleration. By accelerating, the effect of the optimum action that the total time required to move the same distance can be shortened can be obtained. This works effectively especially during movement of a short stroke, and exerts a beneficial action and effect which has never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明最短早送り制御方法を実施する制御系の
概要ブロック図である。
FIG. 1 is a schematic block diagram of a control system that implements the shortest rapid feed control method of the present invention.

【図2】本発明に係る最短早送り制御方法による特性図
である。
FIG. 2 is a characteristic diagram of the shortest fast-forward control method according to the present invention.

【図3】本発明に係る最短早送り制御方法を示すフロー
チャート図である。
FIG. 3 is a flowchart showing a shortest fast-forward control method according to the present invention.

【図4】従来方法の特性図である。FIG. 4 is a characteristic diagram of a conventional method.

【符号の説明】[Explanation of symbols]

1 NC制御装置 2 最適速度・時定数演算部(最適速度演算制御部) 3 パラメータ設定部 4 速度制御駆動部(速度制御部) 5 アンプ 10 移動体 PM プログラムメモリ F 台形加減速特性 1 NC control device 2 Optimal speed / time constant calculation unit (optimal speed calculation control unit) 3 Parameter setting unit 4 Speed control drive unit (speed control unit) 5 Amplifier 10 Mobile unit PM program memory F Trapezoid acceleration / deceleration characteristics

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最高早送り速度に到達しない内に減速制
御しなければならない短距離移動時の早送り制御におい
て、プログラムメモリから最適速度演算制御部に軸移動
データ取込みでプログラム内容の先読みを行い、上記最
適速度演算制御部は移動体の移動距離に関連して最適早
送りの時定数を算出してパラメータの時定数を書き替
え、速度制御部は上記移動体の軸移動に際し、最適早送
り速度にてモーター制御を行い台形加減速特性としたこ
とを特徴とする最短早送り制御方法。
1. In fast-forward control during short-distance movement, in which deceleration control must be performed before the maximum fast-forward speed is reached, the program contents are prefetched by fetching axis movement data from the program memory to the optimum speed calculation control unit. The optimum speed calculation control unit calculates the optimum fast-forward time constant in relation to the moving distance of the moving body and rewrites the time constant of the parameter, and the speed control unit uses the optimum fast-forward speed to move the motor at the optimum fast-forward speed when moving the axis of the moving body. A shortest rapid feed control method characterized by performing control to have a trapezoidal acceleration / deceleration characteristic.
JP30589293A 1993-11-10 1993-11-10 Quickest fast forward control method Pending JPH07134608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30589293A JPH07134608A (en) 1993-11-10 1993-11-10 Quickest fast forward control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30589293A JPH07134608A (en) 1993-11-10 1993-11-10 Quickest fast forward control method

Publications (1)

Publication Number Publication Date
JPH07134608A true JPH07134608A (en) 1995-05-23

Family

ID=17950569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30589293A Pending JPH07134608A (en) 1993-11-10 1993-11-10 Quickest fast forward control method

Country Status (1)

Country Link
JP (1) JPH07134608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266011A (en) * 2008-04-25 2009-11-12 Fanuc Ltd Movement controller and movement control method for robot for shortening cycle time
US7633255B2 (en) 2004-06-09 2009-12-15 Citizen Holdings Co., Ltd. Movement controller for controlling movement of mobile body of machine tool, machine tool provided with movement controller, and mobile body moving method
JP5558638B1 (en) * 2013-06-12 2014-07-23 三菱電機株式会社 Command generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633255B2 (en) 2004-06-09 2009-12-15 Citizen Holdings Co., Ltd. Movement controller for controlling movement of mobile body of machine tool, machine tool provided with movement controller, and mobile body moving method
JP2009266011A (en) * 2008-04-25 2009-11-12 Fanuc Ltd Movement controller and movement control method for robot for shortening cycle time
JP5558638B1 (en) * 2013-06-12 2014-07-23 三菱電機株式会社 Command generator
WO2014199460A1 (en) * 2013-06-12 2014-12-18 三菱電機株式会社 Command generation device
KR20160003864A (en) * 2013-06-12 2016-01-11 미쓰비시덴키 가부시키가이샤 Command generation device
CN105308526A (en) * 2013-06-12 2016-02-03 三菱电机株式会社 Command generation device

Similar Documents

Publication Publication Date Title
JPS61157909A (en) System for correcting route error of robot
JP3553741B2 (en) Numerical control device and spindle motor acceleration / deceleration control method for numerical control device
WO1997015874A1 (en) Method of axis movement numeric control machine tool and apparatus therefor
JP2002132349A (en) Acceleration and deceleration control method
JP3768730B2 (en) LASER MACHINE, NUMERICAL CONTROL DEVICE THEREOF, AND LASER MACHINE CONTROL METHOD
JPH07134608A (en) Quickest fast forward control method
JP4542668B2 (en) Pulse oscillation IC and motor positioning control method and apparatus using the IC
JPH07134607A (en) Quickest fast forward control method
JPH07136905A (en) Shortest rapid traverse control method
JP2001312309A (en) Numerical control working machine and acceleration/ deceleration control method therefor
JPH06250717A (en) Acceleration and deceleration control system for numerical controller
JP3440996B2 (en) Numerical control unit
JPH0792702B2 (en) Control device
JP2654614B2 (en) Speed control device
JPH06170769A (en) Damping control method
JPH10105247A (en) Overshoot preventing method for servomotor
JP2918269B2 (en) Robot movement control method
JPS5942886B2 (en) Voice coil motor control device
JP3403628B2 (en) Method and apparatus for controlling acceleration / deceleration of feed axis in numerical control
JPH1190758A (en) Control method for feed screw mechanism
JPH0655471A (en) Action control method for work transfer robot
JP2001092518A (en) Method of controlling acceleration/deceleration of fast forwarding speed
JP2003260636A (en) Adjustable speed control method of controller
JP2003186515A (en) Acceleration-deceleration control method for numerical control apparatus
JP2002284447A (en) Method for controlling traverse of yarn take-up motion