WO2014199460A1 - Command generation device - Google Patents

Command generation device Download PDF

Info

Publication number
WO2014199460A1
WO2014199460A1 PCT/JP2013/066180 JP2013066180W WO2014199460A1 WO 2014199460 A1 WO2014199460 A1 WO 2014199460A1 JP 2013066180 W JP2013066180 W JP 2013066180W WO 2014199460 A1 WO2014199460 A1 WO 2014199460A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
acceleration
time
motor
machine
Prior art date
Application number
PCT/JP2013/066180
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 丸下
仁之 高橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201380077326.8A priority Critical patent/CN105308526B/en
Priority to JP2013552053A priority patent/JP5558638B1/en
Priority to PCT/JP2013/066180 priority patent/WO2014199460A1/en
Priority to KR1020157034811A priority patent/KR101630141B1/en
Publication of WO2014199460A1 publication Critical patent/WO2014199460A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39195Control, avoid oscillation, vibration due to low rigidity

Definitions

  • the present invention relates to a command generation device that generates an operation command for driving a motor.
  • a command generator is used for positioning control of various industrial machines (for example, electronic component mounting machines, industrial robots, machine tools, etc.).
  • the command generation device generates an operation command for operating a motor connected to the machine.
  • the positioning control it is required that the machine is accurately positioned at a desired position without vibration.
  • the mechanical system has low rigidity, such as when the machine has an arm shape, or the machine is driven through a reduction mechanism or a shaft with low rigidity, the operation of the tip of the machine and the motor There is a difference between Further, when the operation changes, such as when the mechanical system is stopped, vibration due to the low rigidity of the mechanical system may occur.
  • Patent Document 1 discloses a technique that uses a damping filter.
  • the command generation device includes a vibration suppression filter.
  • the vibration period of the machine to be driven is preset in the vibration suppression filter.
  • the vibration suppression filter generates an operation command by synthesizing a reference command and a command obtained by delaying the reference command by a half cycle of the vibration cycle.
  • this vibration suppression filter can remove the vibration frequency component (reciprocal of the vibration period) of the machine to be driven from the frequency components included in the reference command, the machine vibrates. And accurate positioning control is realized.
  • the command generation device described in Patent Document 2 multiplies each of two basic waveforms with normalized time width and amplitude by a gain. Then, the command generation device generates an operation command by delaying one of the two basic waveforms multiplied by the gain and subtracting it from the other basic waveform.
  • the command generation device has an amplitude and a phase for an output waveform of a secondary transfer characteristic in which the time width of the one basic waveform is smaller than the time width of the other basic waveform and the two basic waveforms are input respectively.
  • the delay time and the respective gains are calculated so that and match each other. According to Patent Document 2, it is possible to generate a command that suppresses vibration of the machine without increasing the command operation time by being configured in this way.
  • the present invention has been made in view of the above, and can generate a command generation device that does not require complicated calculation, can suppress machine vibration in positioning control, and can shorten the operation time.
  • the purpose is to obtain.
  • the commanding device of the present invention receives a command parameter including acceleration information indicating a first acceleration and moving distance information indicating a moving distance, from the first acceleration.
  • a first command for generating a reference command having a predetermined shape which is a reference command for accelerating the motor with a larger second acceleration and driving the motor by the moving distance, and among the reference commands
  • a second generation unit configured to generate an operation command for the motor by delaying a part thereof by a time corresponding to a vibration period of the machine.
  • the command generation device generates an operation command by delaying a part of a reference command having an acceleration larger than the acceleration indicated by the command parameter by a time corresponding to the vibration cycle of the machine. Can be suppressed, machine vibration in positioning control can be suppressed, and the operation time can be shortened.
  • FIG. 1 is a diagram illustrating a configuration of a command generation device.
  • FIG. 2 is a diagram illustrating a reference command according to the embodiment.
  • FIG. 3 is a diagram illustrating a specific configuration example of the vibration suppression command generation unit.
  • FIG. 4 is a flowchart for explaining the operation of the command analysis unit.
  • FIG. 5 is a diagram for explaining an operation command.
  • FIG. 1 is a diagram showing a configuration of a command generation device according to an embodiment of the present invention.
  • the command generation device 10 receives vibration suppression parameters and command parameters from the outside.
  • the command generation device 10 generates an operation command based on the input vibration suppression parameter and the command parameter, and inputs the generated operation command to the drive control unit 3.
  • the drive control unit 3 is a servo amplifier, for example, and generates a drive current for the motor 1.
  • the motor 1 is driven by the drive current from the drive control unit 3 and generates torque for driving the machine 2.
  • the motor 1 includes an encoder (not shown) that detects a current state value (current position or current speed) of the motor 1.
  • the current state value detected by the encoder is input to the drive control unit 3.
  • the drive control unit 3 controls the drive current supplied to the motor 1 so that the position or speed of the motor 1 indicated by the current state value follows the position or speed commanded by the operation command.
  • the vibration suppression parameters include the vibration period Td of the machine 2 driven by the motor 1 and the vibration attenuation amount G (0 ⁇ G ⁇ 1.0) of the vibration period Td.
  • the damping amount G is a parameter that is set to a smaller value as the damping speed of the vibration of the vibration period Td in the machine 2 is larger.
  • the operation command may be a command for the position or speed of the motor 1 or a command for the position or speed of the part to be positioned of the machine 2.
  • the operation command is for commanding the speed of the motor 1.
  • a sensor for detecting the position or speed is provided in the part to be positioned in the machine 2, and drive control is performed.
  • the unit 3 may use the detection value by the sensor as the current state value.
  • the operation command is for instructing the position or speed of the positioning target portion of the motor 1, and the drive control unit 3 calculates the current position or current speed of the motor 1 based on the detection value by the sensor. It may be.
  • a reference command having a relatively simple waveform is generated based on the command parameter, and thereafter, the reference command is processed into an operation command in consideration of vibration reduction.
  • the reference command may be a command for the position or speed of the motor 1, or may be a command for the position or speed of the positioning target portion of the machine 2.
  • the reference command is a command for the speed of the motor 1.
  • the value obtained by integrating the reference command with time corresponds to the moving distance.
  • the reference command is generated using a command pattern having one or more pieces of numerical information as variables.
  • the command parameter is a specific numerical value assigned to a variable included in the command pattern or information necessary for deriving a specific numerical value.
  • the command pattern is a pattern that is accelerated with a constant positive acceleration and accelerated with a negative acceleration obtained by reversing the sign of the acceleration, and has a trapezoidal or triangular shape.
  • the command pattern has, for example, acceleration, acceleration time, and constant velocity time as variables.
  • the constant speed time is the time of the part of the trapezoidal reference command where the speed is kept constant (the time of the constant speed section).
  • the acceleration time refers to the time (acceleration section time) during acceleration with positive acceleration in the trapezoidal or triangular reference command. In the following description, it is assumed that the time in the acceleration section is equal to the time in which acceleration is performed with negative acceleration (time in the deceleration section).
  • the waveform of the reference command is a triangular waveform (that is, a waveform having an acceleration section and a deceleration section in this order) or a trapezoid. (Ie, a waveform having an acceleration section, a constant speed section, and a deceleration section in this order).
  • the command parameters include, for example, a moving distance S, a moving speed V, and an acceleration time Ta.
  • the movement distance S is movement distance information indicating the movement distance of the motor 1.
  • the moving speed V and the acceleration time Ta included in the command parameter are used as information (acceleration information) indicating the first acceleration (acceleration A described later).
  • the command parameter may include the acceleration A itself as acceleration information.
  • the movement distance information may not be the movement distance S itself as long as it is information for deriving the movement distance S.
  • the reference command is directly derived using the command parameter input from the outside.
  • acceleration A (first acceleration) is calculated by the following equation (1).
  • A V / Ta (1)
  • the reference command shape is determined to be a triangle.
  • the acceleration time Tb and the moving speed Vb for moving the moving distance S are calculated by the following equations (4) and (5).
  • Tb sqrt (S / A) (4)
  • Vb A ⁇ Tb (5)
  • moving speed Vb ⁇ moving speed V is established. That is, when the shape of the reference command is a triangle, deceleration is started before the speed of the motor 1 reaches the moving speed V.
  • the acceleration A calculated by the equation (1), the constant velocity time Tc calculated by the equation (3), and the acceleration time Tb calculated by the equation (4) are substituted into the command pattern variables.
  • the command generation device 10 includes a command analysis unit 11, a reference command generation unit 12, and a vibration suppression command generation unit 13.
  • the command analysis unit 11 corrects the command parameter so that the acceleration of the reference command becomes a second acceleration larger than the acceleration A (first acceleration) according to the comparative example. Then, the command analysis unit 11 inputs the corrected command parameter to the reference command generation unit 12. For example, the command analysis unit 11 corrects the acceleration time Ta described in the command parameter to a smaller value.
  • the command analysis unit 11 sets a value obtained by multiplying the acceleration time Ta by the attenuation amount G included in the damping parameter as the corrected acceleration time (acceleration time Ta ′). That is, the second acceleration is equal to a value A ′ obtained by dividing the acceleration A by the attenuation amount G.
  • the reference command generator 12 stores a command pattern in advance.
  • the reference command generation unit 12 performs a calculation equivalent to the calculation shown in the equations (1) to (5) using the command parameter corrected by the command analysis unit 11, thereby substituting a specific value into the command pattern variable. Calculate numerical values. Then, the reference command generation unit 12 generates a reference command by substituting the calculated specific numerical value into a variable of the command pattern.
  • the command analysis unit 11 and the reference command generation unit 12 cooperate to generate a first reference command for accelerating the motor 1 with a second acceleration larger than the first acceleration indicated by the command parameter input from the outside. Functions as a generation unit.
  • FIG. 2 is a diagram for explaining a reference command (reference command in the embodiment) generated by the reference command generation unit 12.
  • the acceleration time of the reference command of the embodiment is shorter than that of the reference command of the comparative example.
  • the acceleration according to the reference command of the embodiment is larger than the acceleration according to the reference command of the comparative example. Since these two reference commands are generated so that the integral value (that is, the area) is equal to the movement distance S, the reference command of the embodiment has a shorter command end time than the reference command of the comparative example.
  • the vibration suppression command generation unit (second generation unit) 13 receives a reference command and a vibration suppression parameter.
  • the vibration suppression command generation unit 13 generates an operation command by delaying a part of the reference command by a time corresponding to the vibration cycle Td.
  • the time to be delayed is, for example, an odd multiple of the time of a half cycle of the vibration cycle Td.
  • an operation command is generated so as to suppress the vibration of the vibration period Td generated in the machine 2.
  • the time to be delayed is a time corresponding to a half cycle of the vibration cycle Td.
  • FIG. 3 is a diagram illustrating a specific configuration example of the vibration suppression command generation unit 13.
  • the vibration suppression command generation unit 13 includes a first gain multiplication unit 131, a second gain multiplication unit 132, a delay unit 133, and an addition unit 134.
  • the first gain multiplication unit 131 and the second gain multiplication unit 132 are input with the attenuation G of the damping parameters and the reference command.
  • the first gain multiplier 131 multiplies the reference command by the attenuation amount G, and outputs the command (first command) obtained by the multiplication as the first command after division.
  • the second gain multiplication unit 132 multiplies the reference command by (1-G), and inputs the command (second command) obtained by the multiplication to the delay unit 133.
  • the delay unit 133 receives the vibration period Td of the vibration suppression parameters.
  • the delay unit 133 delays the command input by the second gain multiplication unit 132 by a time corresponding to a half cycle of the vibration cycle Td (that is, Td / 2), and outputs the delayed second command.
  • the addition unit 134 adds (synthesizes) the first command after division and the second command after division, and outputs a command obtained by the addition as an operation command.
  • FIG. 4 is a flowchart for explaining the operation of the command analysis unit 11.
  • the command analysis unit 11 receives an input of an external command parameter (step S1). Then, the command analysis unit 11 determines whether or not an acceleration time Ta ′ obtained by multiplying the acceleration time Ta by the attenuation amount G is smaller than Td / 2 (step S2).
  • the command analysis unit 11 calculates the acceleration A based on the equation (1), and divides the acceleration A by the attenuation amount G.
  • the acceleration A ′ that is the second acceleration is calculated, and it is determined whether or not the acceleration A ′ is smaller than the allowable acceleration setting value Amax (step S3).
  • the allowable acceleration set value Amax is the maximum allowable acceleration, and is set in advance in the command analysis unit 11, for example.
  • the allowable acceleration setting value Amax may be described in the command parameter and input to the command analysis unit 11.
  • the allowable acceleration setting value Amax is an arbitrary setting value. For example, the allowable acceleration setting value Amax may be set to the smaller value of the acceleration that the machine 2 can withstand or the allowable acceleration determined by the specifications of the motor 1.
  • the command analysis unit 11 corrects the acceleration time Ta in the information included in the command parameter to the acceleration time Ta ′ (step S4). ). Then, the command analysis unit 11 outputs the corrected command parameter (Step S5) and ends the operation.
  • step S2 When the acceleration time Ta ′ is greater than Td / 2 (step S2, No) or when the acceleration A ′ is greater than the allowable acceleration setting value Amax (step S3, No), the command analysis unit 11 performs the process of step S5. Execute.
  • FIG. 5 is a diagram for explaining an operation command generated by the command generation device 10.
  • the upper graph shows an operation command generated based on the reference command of the comparative example
  • the lower graph shows an operation command generated based on the reference command of the embodiment.
  • Each graph shows a first divided command and a second divided command generated based on the respective reference commands for reference.
  • a thin solid line indicates a reference command
  • a one-dot chain line indicates a first command after division
  • a two-dot chain line indicates a second command after division
  • a thick solid line indicates an operation command.
  • the operation time is shortened compared to the comparative example.
  • the acceleration time Ta is corrected to the acceleration time Ta ′
  • the reference command acceleration A is corrected to an acceleration A ′ that is (1 / G) times the acceleration A.
  • the acceleration of the first divided command generated by the internal processing of the vibration suppression command generating unit 13 is A
  • the acceleration of the second divided command is (A′ ⁇ A).
  • the acceleration time Ta ′ is corrected to the acceleration time Ta ′ even if the acceleration time Ta ′ is longer than Td / 2 (No in step S2)
  • the acceleration timing and division by the first command after division are performed.
  • a period in which the acceleration timing according to the second command overlaps occurs.
  • the acceleration of the operation command is an acceleration A ′ that is larger than the acceleration A.
  • the acceleration time Ta ′ is corrected to the acceleration time Ta ′ when the acceleration time Ta ′ is smaller than Td / 2, and the acceleration time Ta is not corrected when the acceleration time Ta ′ is larger than Td / 2. Therefore, the acceleration time Ta is not corrected when a period occurs in which the acceleration timing according to the first command after division and the acceleration timing according to the second command after division occur.
  • the acceleration of the first command after division is (A ⁇ G), and the acceleration of the second command after division is ⁇ A ⁇ (1-G). ⁇ . Therefore, when a period in which the acceleration timing according to the first command after division and the acceleration timing according to the second command after division occur, the acceleration of the operation command in that period coincides with the acceleration A. That is, the operation command does not exceed the acceleration A regardless of whether the acceleration time Ta ′ is longer than Td / 2 or not.
  • the maximum acceleration by the operation command does not exceed the acceleration A. Therefore, according to the embodiment, even if the user sets the first acceleration based on any reason, the motor 1 can be driven without the acceleration of the motor 1 exceeding the first acceleration. Become.
  • step S3 Yes when the acceleration A ′, which is the second acceleration, is smaller than the allowable acceleration setting value Amax (step S3, Yes), the acceleration time Ta is corrected, and the acceleration A ′ becomes the allowable acceleration setting value Amax. If it is greater than (step S3, No), the acceleration time Ta is not corrected. As a result, the acceleration of the operation command can be prevented from exceeding the allowable acceleration setting value Amax as much as possible.
  • each component included in the command generation device 10 may be realized by dedicated hardware or may be realized by software. Realization by software means that in a computer having an arithmetic device and a storage device (memory), a program module corresponding to a component is stored in the storage device, and the arithmetic device executes the program module stored in the storage device. By doing so, the function of the component is realized.
  • the command analysis unit 11 and the reference command generation unit 12 cooperate to accelerate the acceleration A greater than the acceleration A commanded by the command parameter input from the outside. Accelerate the motor 1 with 'and generate a reference command for driving the motor 1 by the moving distance commanded by the command parameter. Then, the vibration suppression command generation unit 13 generates an operation command for the motor 1 by delaying a part of the reference command by a time corresponding to the vibration cycle Td of the machine 2. According to the embodiment of the present invention, since the operation command is generated based on the reference command having the acceleration A ′ larger than the acceleration A according to the command parameter, the operation command is generated based on the reference command having the acceleration A.
  • the command generation device 10 can suppress the vibration of the machine in the positioning control and shorten the operation time without requiring a complicated calculation.
  • the shape of the reference command is a shape that includes an acceleration section and a deceleration section in this order, or a shape that includes an acceleration section, a constant speed section, and a deceleration section in this order.
  • the shape of the reference command is not limited to these.
  • the acceleration in the acceleration / deceleration section of the reference command has been described as being fixed, the acceleration may be changed according to an S-shaped function.
  • the reference command generation unit 12 When the acceleration in the acceleration / deceleration section is defined by a predetermined function, the reference command generation unit 12 generates a reference command such that the average value of acceleration matches the second acceleration larger than the first acceleration. It's okay.
  • the command generation device 10 includes an arbitrary filter (for example, a first-order lag filter, between the reference command generation unit 12 and the vibration suppression command generation unit 13, or between the vibration suppression command generation unit 13 and the drive control unit 3.
  • an arbitrary filter for example, a first-order lag filter, between the reference command generation unit 12 and the vibration suppression command generation unit 13, or between the vibration suppression command generation unit 13 and the drive control unit 3.
  • a smoothing filter or the like may be inserted.
  • the damping command generation unit 13 receives a damping amount G (0.5 ⁇ G ⁇ 1), which is a parameter that decreases as the damping speed of the vibration of the machine 2 increases, and sets the reference command as the first command.
  • the first command and the second command are divided so that the ratio between the (first command after division) and the second command is G vs. (1-G).
  • the vibration suppression command generation unit 13 delays the second command by a time corresponding to the vibration period Td of the machine 2 and combines the delayed second command (second command after division) with the first command.
  • the acceleration A ′ that is the second acceleration is equal to the value obtained by dividing the acceleration A that is the first acceleration by the attenuation amount G. Therefore, when the first command after division and the second command after division do not overlap the acceleration sections, the acceleration of the operation command can be matched with the acceleration A indicated by the command parameter input from the outside.
  • the shape of the reference command is a shape including an acceleration section and a deceleration section in this order, or a shape including an acceleration section, a constant speed section, and a deceleration section in this order, and the reference command generator 12
  • a reference command for accelerating the motor 1 with the acceleration A is generated instead of a reference command for accelerating the motor 1 with the acceleration A '.
  • the reference command generation unit 12 when the second acceleration is larger than the allowable acceleration setting value Amax, the reference command generation unit 12 generates a reference command for accelerating the motor 1 with the acceleration A instead of a reference command for accelerating the motor 1 with the acceleration A ′. To do. Thereby, it is possible to prevent the maximum value of the operation command from exceeding the allowable acceleration setting value Amax.
  • the command generation device is suitable for application to a command generation device that generates an operation command for driving a motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)

Abstract

The purpose of the present invention is to suppress machine vibration during positioning control, and to shorten operation time, without the need for complex calculations. A command analysis unit (11) and a reference-command generation unit (12), which are provided to a command generation device (10), work in conjunction to generate a reference command for causing a motor (1) to accelerate with an acceleration (A') greater than an acceleration (A) instructed by command parameters inputted from an external unit, and causing the motor (1) to drive a travel distance instructed by the command parameters. A damping-command generation unit (13) provided to the command generation unit (10) generates an operation command for the motor (1) by delaying a part of the reference command by a time corresponding to a vibration cycle (Td) of a machine (2).

Description

指令生成装置Command generator
 本発明は、モータを駆動せしめる動作指令を生成する指令生成装置に関する。 The present invention relates to a command generation device that generates an operation command for driving a motor.
 各種産業用の機械(例えば電子部品実装機、産業用ロボット、工作機械など)の位置決め制御のために、指令生成装置が使用される。指令生成装置は、機械に接続されたモータを動作させる動作指令を生成する。位置決め制御に関しては、機械が振動することなく、かつ、機械が正確に所望の位置に位置決めされることが要求される。 A command generator is used for positioning control of various industrial machines (for example, electronic component mounting machines, industrial robots, machine tools, etc.). The command generation device generates an operation command for operating a motor connected to the machine. Regarding the positioning control, it is required that the machine is accurately positioned at a desired position without vibration.
 しかしながら、機械がアーム状の形状を有していたり、減速機構または剛性が低いシャフトを介して機械を駆動したりするなど、機械系の剛性が低い場合には、機械の先端の動作と、モータの動作との間に違いが生じる。また、機械系の停止時など、動作が変化する際には、機械系の低剛性に起因した振動を生じる場合がある。 However, if the mechanical system has low rigidity, such as when the machine has an arm shape, or the machine is driven through a reduction mechanism or a shaft with low rigidity, the operation of the tip of the machine and the motor There is a difference between Further, when the operation changes, such as when the mechanical system is stopped, vibration due to the low rigidity of the mechanical system may occur.
 機械が振動するという問題に対し、特許文献1には、制振フィルタを使用する技術が開示されている。特許文献1によれば、指令生成装置は、制振フィルタを備える。制振フィルタには駆動対象の機械の振動周期が予め設定される。制振フィルタは、基準指令と、基準指令を振動周期の半周期だけ遅延させた指令と、を合成することによって、動作指令を生成する。特許文献1によれば、この制振フィルタは、基準指令に含まれる周波数成分のうち、駆動対象の機械の振動周波数成分(振動周期の逆数)を除去することができるので、機械が振動することなく正確な位置決め制御が実現する、とされている。 In response to the problem that the machine vibrates, Patent Document 1 discloses a technique that uses a damping filter. According to Patent Literature 1, the command generation device includes a vibration suppression filter. The vibration period of the machine to be driven is preset in the vibration suppression filter. The vibration suppression filter generates an operation command by synthesizing a reference command and a command obtained by delaying the reference command by a half cycle of the vibration cycle. According to Patent Document 1, since this vibration suppression filter can remove the vibration frequency component (reciprocal of the vibration period) of the machine to be driven from the frequency components included in the reference command, the machine vibrates. And accurate positioning control is realized.
 また、特許文献2に記載の指令生成装置は、時間幅と振幅とが正規化された二つの基本波形の夫々にゲインを乗じる。そして、指令生成装置は、ゲインが乗じられた二つの基本波形のうちの一を遅延させて他の基本波形から減算することによって、動作指令を生成する。この指令生成装置は、前記一の基本波形の時間幅が前記他の基本波形の時間幅よりも小さく、かつ、二つの基本波形を夫々入力とした二次伝達特性の出力波形について、振幅と位相とが互いに一致するように、遅延時間および夫々のゲインを演算する。特許文献2によれば、このように構成されることによって指令動作時間を増大させずに機械の振動を抑制するような指令の生成が可能となる、とされている。 Also, the command generation device described in Patent Document 2 multiplies each of two basic waveforms with normalized time width and amplitude by a gain. Then, the command generation device generates an operation command by delaying one of the two basic waveforms multiplied by the gain and subtracting it from the other basic waveform. The command generation device has an amplitude and a phase for an output waveform of a secondary transfer characteristic in which the time width of the one basic waveform is smaller than the time width of the other basic waveform and the two basic waveforms are input respectively. The delay time and the respective gains are calculated so that and match each other. According to Patent Document 2, it is possible to generate a command that suppresses vibration of the machine without increasing the command operation time by being configured in this way.
特開平5-108165号公報Japanese Patent Laid-Open No. 5-108165 特開2011-60044号公報JP 2011-60044 A
 しかしながら、特許文献1に記載の技術によれば、動作指令は振動周期の半周期分だけ遅延された基準指令を含むため、機械の先端の位置決めが完了するまでにかかる時間(動作時間)が長くなる。 However, according to the technique described in Patent Document 1, since the operation command includes a reference command delayed by a half period of the vibration cycle, the time (operation time) required to complete the positioning of the tip of the machine is long. Become.
 また、特許文献2に記載の技術によれば、二つの基本波形の夫々について二次伝達特性の出力を演算する必要があるため、動作指令を生成するための計算時間が長くなる。その結果、位置決め制御が起動されてから動作指令が出力されるまでの時間が長くなる。また、特許文献2に記載の技術によれば、演算された二次伝達特性の出力を記憶する大容量のメモリを指令生成装置に具備する必要がある。 Further, according to the technique described in Patent Document 2, since it is necessary to calculate the output of the secondary transfer characteristic for each of the two basic waveforms, the calculation time for generating the operation command becomes long. As a result, the time from when the positioning control is activated until the operation command is output becomes longer. Moreover, according to the technique described in Patent Document 2, it is necessary to provide the command generation device with a large-capacity memory that stores the output of the calculated secondary transfer characteristic.
 本発明は、上記に鑑みてなされたものであって、複雑な演算を必要とすることなく、かつ、位置決め制御における機械の振動を抑制し、かつ、動作時間を短縮することができる指令生成装置を得ることを目的とする。 The present invention has been made in view of the above, and can generate a command generation device that does not require complicated calculation, can suppress machine vibration in positioning control, and can shorten the operation time. The purpose is to obtain.
 上述した課題を解決し、目的を達成するために、本発明の指令性装置は、第1加速度を示す加速度情報と移動距離を示す移動距離情報と含む指令パラメータが入力され、前記第1加速度よりも大きい第2加速度でモータを加速して前記移動距離だけモータを駆動せしめるための基準指令であって、予め定められた形状の基準指令を生成する第1生成部と、前記基準指令のうちの一部を機械の振動周期に応じた時間だけ遅延させることによってモータに対する動作指令を生成する第2生成部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the commanding device of the present invention receives a command parameter including acceleration information indicating a first acceleration and moving distance information indicating a moving distance, from the first acceleration. A first command for generating a reference command having a predetermined shape, which is a reference command for accelerating the motor with a larger second acceleration and driving the motor by the moving distance, and among the reference commands And a second generation unit configured to generate an operation command for the motor by delaying a part thereof by a time corresponding to a vibration period of the machine.
 本発明にかかる指令生成装置は、指令パラメータによって示される加速度よりも大きい加速度を有する基準指令の一部を機械の振動周期に応じた時間だけ遅延させることによって動作指令を生成するので、複雑な演算を必要とすることなく、かつ、位置決め制御における機械の振動を抑制し、かつ、動作時間を短縮することができる。 The command generation device according to the present invention generates an operation command by delaying a part of a reference command having an acceleration larger than the acceleration indicated by the command parameter by a time corresponding to the vibration cycle of the machine. Can be suppressed, machine vibration in positioning control can be suppressed, and the operation time can be shortened.
図1は、指令生成装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a command generation device. 図2は、実施の形態の基準指令を説明する図である。FIG. 2 is a diagram illustrating a reference command according to the embodiment. 図3は、制振指令生成部の具体的な構成例を示す図である。FIG. 3 is a diagram illustrating a specific configuration example of the vibration suppression command generation unit. 図4は、指令解析部の動作を説明するフローチャートである。FIG. 4 is a flowchart for explaining the operation of the command analysis unit. 図5は、動作指令を説明する図である。FIG. 5 is a diagram for explaining an operation command.
 以下に、本発明にかかる指令生成装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a command generation device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態の指令生成装置の構成を示す図である。
Embodiment.
FIG. 1 is a diagram showing a configuration of a command generation device according to an embodiment of the present invention.
 指令生成装置10は、制振パラメータおよび指令パラメータが外部から入力される。指令生成装置10は、入力された制振パラメータおよび指令パラメータに基づいて動作指令を生成し、生成した動作指令を駆動制御部3に入力する。 The command generation device 10 receives vibration suppression parameters and command parameters from the outside. The command generation device 10 generates an operation command based on the input vibration suppression parameter and the command parameter, and inputs the generated operation command to the drive control unit 3.
 駆動制御部3は、例えばサーボアンプであって、モータ1の駆動電流を発生させる。モータ1は、駆動制御部3からの駆動電流によって駆動され、機械2を駆動するトルクを発生する。モータ1は、モータ1の現在状態値(現在位置または現在速度)を検出するエンコーダ(図示せず)を備えている。エンコーダによって検出された現在状態値は駆動制御部3に入力される。駆動制御部3は、現在状態値が示すモータ1の位置または速度が動作指令によって指令された位置または速度に追従するように、モータ1に供給する駆動電流を制御する。 The drive control unit 3 is a servo amplifier, for example, and generates a drive current for the motor 1. The motor 1 is driven by the drive current from the drive control unit 3 and generates torque for driving the machine 2. The motor 1 includes an encoder (not shown) that detects a current state value (current position or current speed) of the motor 1. The current state value detected by the encoder is input to the drive control unit 3. The drive control unit 3 controls the drive current supplied to the motor 1 so that the position or speed of the motor 1 indicated by the current state value follows the position or speed commanded by the operation command.
 制振パラメータは、モータ1が駆動する機械2の振動周期Tdおよび振動周期Tdの振動の減衰量G(0<G<1.0)を含む。減衰量Gは、機械2における振動周期Tdの振動の減衰速度が大きいほど小さい値が設定されるパラメータである。 The vibration suppression parameters include the vibration period Td of the machine 2 driven by the motor 1 and the vibration attenuation amount G (0 <G <1.0) of the vibration period Td. The damping amount G is a parameter that is set to a smaller value as the damping speed of the vibration of the vibration period Td in the machine 2 is larger.
 なお、動作指令は、モータ1の位置または速度を指令するものであってもよいし、機械2の位置決め対象の部位の位置または速度を指令するものであってもよい。ここでは、動作指令はモータ1の速度を指令するものであるとして説明する。動作指令が機械2の位置決め対象の部位の位置または速度を指令するものである場合には、例えば、機械2のうちの位置決め対象の部位に位置または速度を検出するセンサが配設され、駆動制御部3は、当該センサによる検出値を現在状態値として使用するようにしてもよい。また、動作指令がモータ1の位置決め対象の部位の位置または速度を指令するものであって、駆動制御部3は、前記センサによる検出値に基づいてモータ1の現在位置または現在速度を演算するようにしてもよい。 The operation command may be a command for the position or speed of the motor 1 or a command for the position or speed of the part to be positioned of the machine 2. Here, description will be made assuming that the operation command is for commanding the speed of the motor 1. When the operation command is for instructing the position or speed of the part to be positioned of the machine 2, for example, a sensor for detecting the position or speed is provided in the part to be positioned in the machine 2, and drive control is performed. The unit 3 may use the detection value by the sensor as the current state value. Further, the operation command is for instructing the position or speed of the positioning target portion of the motor 1, and the drive control unit 3 calculates the current position or current speed of the motor 1 based on the detection value by the sensor. It may be.
 指令生成装置10においては、比較的単純な形状の波形を有する基準指令が指令パラメータに基づいて生成され、その後、振動の低減が考慮された動作指令に基準指令が加工される。基準指令は、動作指令と同様に、モータ1の位置または速度を指令するものであってもよいし、機械2の位置決め対象の部位の位置または速度を指令するものであってもよい。ここでは一例として、基準指令は、モータ1の速度を指令するものであるとする。基準指令を時間で積分して得られる値は移動距離に相当する。基準指令は、1以上の数値情報を変数とした指令パターンを用いて生成される。指令パラメータは、指令パターンが備える変数に代入される具体的数値または具体的数値を導出するために必要となる情報である。 In the command generation device 10, a reference command having a relatively simple waveform is generated based on the command parameter, and thereafter, the reference command is processed into an operation command in consideration of vibration reduction. Similar to the operation command, the reference command may be a command for the position or speed of the motor 1, or may be a command for the position or speed of the positioning target portion of the machine 2. Here, as an example, it is assumed that the reference command is a command for the speed of the motor 1. The value obtained by integrating the reference command with time corresponds to the moving distance. The reference command is generated using a command pattern having one or more pieces of numerical information as variables. The command parameter is a specific numerical value assigned to a variable included in the command pattern or information necessary for deriving a specific numerical value.
 また、指令パターンは、一定の正の加速度で加速され、その加速度の符号を逆にして得られる負の加速度で加速されるパターンであって、台形または三角形の形状を有するものとする。また、指令パターンは、例えば、加速度と、加速時間と、等速度時間とを変数として有する。等速度時間は、台形の基準指令のうちの速度が一定に維持される部分の時間(等速区間の時間)をいう。また、加速時間は、台形または三角形の基準指令のうちの正の加速度で加速している時間(加速区間の時間)をいう。なお、ここでは、加速区間の時間と、負の加速度で加速している時間(減速区間の時間)とは、等しいものとして説明する。基準指令の波形は、指令パターンの変数に具体的数値が代入されて生成されるので、ここでは、三角形の形状の波形(即ち加速区間と減速区間とをこの順番で有する波形)か、または台形の形状の波形(即ち加速区間と等速区間と減速区間とをこの順番で有する波形)のどちらかに該当する。 The command pattern is a pattern that is accelerated with a constant positive acceleration and accelerated with a negative acceleration obtained by reversing the sign of the acceleration, and has a trapezoidal or triangular shape. The command pattern has, for example, acceleration, acceleration time, and constant velocity time as variables. The constant speed time is the time of the part of the trapezoidal reference command where the speed is kept constant (the time of the constant speed section). Further, the acceleration time refers to the time (acceleration section time) during acceleration with positive acceleration in the trapezoidal or triangular reference command. In the following description, it is assumed that the time in the acceleration section is equal to the time in which acceleration is performed with negative acceleration (time in the deceleration section). Since the reference command waveform is generated by substituting specific numerical values for the variables of the command pattern, the waveform of the reference command is a triangular waveform (that is, a waveform having an acceleration section and a deceleration section in this order) or a trapezoid. (Ie, a waveform having an acceleration section, a constant speed section, and a deceleration section in this order).
 指令パラメータは、例えば、移動距離S、移動速度V、および加速時間Taを含む。移動距離Sは、モータ1の移動距離を示す移動距離情報である。指令パラメータに含まれる移動速度Vおよび加速時間Taは、第1加速度(後述する加速度A)を示す情報(加速度情報)として用いられる。なお、指令パラメータは、加速度Aそのものを加速度情報として含んでいてもよい。また、移動距離情報は、移動距離Sを導出するための情報であれば移動距離Sそのものでなくてもよい。 The command parameters include, for example, a moving distance S, a moving speed V, and an acceleration time Ta. The movement distance S is movement distance information indicating the movement distance of the motor 1. The moving speed V and the acceleration time Ta included in the command parameter are used as information (acceleration information) indicating the first acceleration (acceleration A described later). The command parameter may include the acceleration A itself as acceleration information. The movement distance information may not be the movement distance S itself as long as it is information for deriving the movement distance S.
 ここで、本発明の実施の形態と比較される技術(以降、比較例)について説明する。比較例によれば、外部から入力される指令パラメータを用いて直接的に基準指令が導出される。 Here, a technique (hereinafter referred to as a comparative example) compared with the embodiment of the present invention will be described. According to the comparative example, the reference command is directly derived using the command parameter input from the outside.
 比較例によれば、まず、次の式(1)により加速度A(第1加速度)が演算される。
 A=V/Ta   (1)
According to the comparative example, first, acceleration A (first acceleration) is calculated by the following equation (1).
A = V / Ta (1)
 そして、基準指令の形状に三角形が適用され、移動速度Vおよび加速時間Taが適用された場合の移動距離Saが次の式(2)により演算される。
 Sa=A×Ta   (2)
Then, the triangle is applied to the shape of the reference command, and the moving distance Sa when the moving speed V and the acceleration time Ta are applied is calculated by the following equation (2).
Sa = A × Ta 2 (2)
 そして、SとSaとが比較され、S>Saの関係が成立する場合には、基準指令の形状が台形に決定される。そして、基準指令の形状が台形である場合の等速時間Tcが次の式(3)により演算される。
 Tc=S/V-Ta   (3)
Then, S and Sa are compared, and when the relationship of S> Sa is established, the shape of the reference command is determined to be a trapezoid. Then, the constant speed time Tc when the shape of the reference command is a trapezoid is calculated by the following equation (3).
Tc = S / V-Ta (3)
 S≦Saの関係が成立する場合には、基準指令の形状が三角形に決定される。基準指令の形状が三角形である場合に、移動距離Sを移動するための加速時間Tbおよび移動速度Vbが次の式(4)、(5)により演算される。
 Tb=sqrt(S/A)   (4)
 Vb=A×Tb   (5)
When the relationship of S ≦ Sa is established, the reference command shape is determined to be a triangle. When the shape of the reference command is a triangle, the acceleration time Tb and the moving speed Vb for moving the moving distance S are calculated by the following equations (4) and (5).
Tb = sqrt (S / A) (4)
Vb = A × Tb (5)
 なお、移動速度Vb≦移動速度Vの関係が成立する。即ち、基準指令の形状が三角形である場合には、モータ1の速度が移動速度Vに到達する前に減速が開始される。 It should be noted that the relationship of moving speed Vb ≦ moving speed V is established. That is, when the shape of the reference command is a triangle, deceleration is started before the speed of the motor 1 reaches the moving speed V.
 比較例によれば、式(1)によって演算された加速度A、式(3)によって演算された等速時間Tc、および式(4)によって演算された加速時間Tbが指令パターンの変数に代入される。 According to the comparative example, the acceleration A calculated by the equation (1), the constant velocity time Tc calculated by the equation (3), and the acceleration time Tb calculated by the equation (4) are substituted into the command pattern variables. The
 本発明の実施の形態の指令生成装置10は、指令解析部11、基準指令生成部12および制振指令生成部13を備えている。 The command generation device 10 according to the embodiment of the present invention includes a command analysis unit 11, a reference command generation unit 12, and a vibration suppression command generation unit 13.
 指令解析部11は、基準指令の加速度が比較例による加速度A(第1加速度)より大きい第2加速度となるように指令パラメータを修正する。そして、指令解析部11は、修正した指令パラメータを基準指令生成部12に入力する。例えば、指令解析部11は、指令パラメータに記述された加速時間Taをより小さい値に修正する。ここでは、指令解析部11は、一例として、加速時間Taに制振パラメータに含まれる減衰量Gを乗じた値を修正後の加速時間(加速時間Ta’)とする。即ち、第2加速度は、加速度Aを減衰量Gで除算して得られる値A’に等しい。 The command analysis unit 11 corrects the command parameter so that the acceleration of the reference command becomes a second acceleration larger than the acceleration A (first acceleration) according to the comparative example. Then, the command analysis unit 11 inputs the corrected command parameter to the reference command generation unit 12. For example, the command analysis unit 11 corrects the acceleration time Ta described in the command parameter to a smaller value. Here, for example, the command analysis unit 11 sets a value obtained by multiplying the acceleration time Ta by the attenuation amount G included in the damping parameter as the corrected acceleration time (acceleration time Ta ′). That is, the second acceleration is equal to a value A ′ obtained by dividing the acceleration A by the attenuation amount G.
 基準指令生成部12は、予め指令パターンを記憶している。基準指令生成部12は、指令解析部11によって修正された指令パラメータを用いて式(1)~(5)に示した演算と同等の演算を行うことによって、指令パターンの変数に代入する具体的数値を算出する。そして、基準指令生成部12は、算出した具体的数値を指令パターンの変数に代入することによって、基準指令を生成する。 The reference command generator 12 stores a command pattern in advance. The reference command generation unit 12 performs a calculation equivalent to the calculation shown in the equations (1) to (5) using the command parameter corrected by the command analysis unit 11, thereby substituting a specific value into the command pattern variable. Calculate numerical values. Then, the reference command generation unit 12 generates a reference command by substituting the calculated specific numerical value into a variable of the command pattern.
 即ち、指令解析部11および基準指令生成部12は、協働して、外部から入力された指令パラメータが示す第1加速度よりも大きい第2加速度でモータ1を加速する基準指令を生成する第1生成部として機能する。 That is, the command analysis unit 11 and the reference command generation unit 12 cooperate to generate a first reference command for accelerating the motor 1 with a second acceleration larger than the first acceleration indicated by the command parameter input from the outside. Functions as a generation unit.
 図2は、基準指令生成部12によって生成される基準指令(実施の形態の基準指令)を説明する図である。図示するように、実施の形態の基準指令は、比較例の基準指令よりも加速時間が短縮されている。その結果、実施の形態の基準指令による加速度は、比較例の基準指令による加速度よりも大きくなっている。これらの2つの基準指令は、積分値(つまり面積)が移動距離Sに等しくなるように生成されるため、実施の形態の基準指令は、比較例の基準指令よりも指令の終了時間が短縮される。 FIG. 2 is a diagram for explaining a reference command (reference command in the embodiment) generated by the reference command generation unit 12. As shown in the figure, the acceleration time of the reference command of the embodiment is shorter than that of the reference command of the comparative example. As a result, the acceleration according to the reference command of the embodiment is larger than the acceleration according to the reference command of the comparative example. Since these two reference commands are generated so that the integral value (that is, the area) is equal to the movement distance S, the reference command of the embodiment has a shorter command end time than the reference command of the comparative example. The
 制振指令生成部(第2生成部)13は、基準指令と制振パラメータとが入力される。制振指令生成部13は、基準指令のうちの一部を振動周期Tdに応じた時間だけ遅延せしめることによって動作指令を生成する。なお、遅延せしめられる時間は例えば振動周期Tdの半周期分の時間の奇数倍である。これにより、機械2に発生する振動周期Tdの振動を抑制するような動作指令が生成される。ここでは、動作時間を出来るだけ小さくするために、遅延せしめられる時間は振動周期Tdの半周期分の時間であるものとする。 The vibration suppression command generation unit (second generation unit) 13 receives a reference command and a vibration suppression parameter. The vibration suppression command generation unit 13 generates an operation command by delaying a part of the reference command by a time corresponding to the vibration cycle Td. Note that the time to be delayed is, for example, an odd multiple of the time of a half cycle of the vibration cycle Td. Thereby, an operation command is generated so as to suppress the vibration of the vibration period Td generated in the machine 2. Here, in order to make the operation time as small as possible, it is assumed that the time to be delayed is a time corresponding to a half cycle of the vibration cycle Td.
 図3は、制振指令生成部13の具体的な構成例を示す図である。制振指令生成部13は、第1のゲイン乗算部131、第2のゲイン乗算部132、遅延部133、および加算部134を備えている。 FIG. 3 is a diagram illustrating a specific configuration example of the vibration suppression command generation unit 13. The vibration suppression command generation unit 13 includes a first gain multiplication unit 131, a second gain multiplication unit 132, a delay unit 133, and an addition unit 134.
 第1のゲイン乗算部131および第2のゲイン乗算部132は、制振パラメータのうちの減衰量Gと、基準指令とが入力される。第1のゲイン乗算部131は、基準指令に減衰量Gを乗算し、乗算により得られた指令(第1指令)を分割後第1指令として出力する。第2のゲイン乗算部132は、基準指令に(1-G)を乗算し、乗算により得られた指令(第2指令)を遅延部133に入力する。 The first gain multiplication unit 131 and the second gain multiplication unit 132 are input with the attenuation G of the damping parameters and the reference command. The first gain multiplier 131 multiplies the reference command by the attenuation amount G, and outputs the command (first command) obtained by the multiplication as the first command after division. The second gain multiplication unit 132 multiplies the reference command by (1-G), and inputs the command (second command) obtained by the multiplication to the delay unit 133.
 遅延部133は、制振パラメータのうちの振動周期Tdが入力される。遅延部133は、第2のゲイン乗算部132によって入力された指令を振動周期Tdの半周期分の時間(即ちTd/2)だけ遅延させ、分割後第2指令として出力する。 The delay unit 133 receives the vibration period Td of the vibration suppression parameters. The delay unit 133 delays the command input by the second gain multiplication unit 132 by a time corresponding to a half cycle of the vibration cycle Td (that is, Td / 2), and outputs the delayed second command.
 加算部134は、分割後第1指令と分割後第2指令とを加算(合成)して、加算により得られる指令を動作指令として出力する。 The addition unit 134 adds (synthesizes) the first command after division and the second command after division, and outputs a command obtained by the addition as an operation command.
 図4は、指令解析部11の動作を説明するフローチャートである。まず、指令解析部11は、外部の指令パラメータの入力を受け付ける(ステップS1)。そして、指令解析部11は、加速時間Taに減衰量Gを乗じて得られる加速時間Ta’がTd/2よりも小さいか否かを判定する(ステップS2)。 FIG. 4 is a flowchart for explaining the operation of the command analysis unit 11. First, the command analysis unit 11 receives an input of an external command parameter (step S1). Then, the command analysis unit 11 determines whether or not an acceleration time Ta ′ obtained by multiplying the acceleration time Ta by the attenuation amount G is smaller than Td / 2 (step S2).
 加速時間Ta’がTd/2よりも小さい場合には(ステップS2、Yes)、指令解析部11は、式(1)に基づいて加速度Aを演算し、加速度Aを減衰量Gで除算して第2加速度である加速度A’を演算し、加速度A’が許容加速度設定値Amaxよりも小さいか否かを判定する(ステップS3)。許容加速度設定値Amaxは、許容される最大の加速度であって、例えば指令解析部11に予め設定される。許容加速度設定値Amaxは、指令パラメータに記述されて指令解析部11に入力されてもよい。許容加速度設定値Amaxは、任意の設定値である。例えば、許容加速度設定値Amaxは、機械2が耐えうる加速度またはモータ1の仕様によって定められている許容加速度のうちの小さいほうの値が設定されてもよい。 When the acceleration time Ta ′ is smaller than Td / 2 (step S2, Yes), the command analysis unit 11 calculates the acceleration A based on the equation (1), and divides the acceleration A by the attenuation amount G. The acceleration A ′ that is the second acceleration is calculated, and it is determined whether or not the acceleration A ′ is smaller than the allowable acceleration setting value Amax (step S3). The allowable acceleration set value Amax is the maximum allowable acceleration, and is set in advance in the command analysis unit 11, for example. The allowable acceleration setting value Amax may be described in the command parameter and input to the command analysis unit 11. The allowable acceleration setting value Amax is an arbitrary setting value. For example, the allowable acceleration setting value Amax may be set to the smaller value of the acceleration that the machine 2 can withstand or the allowable acceleration determined by the specifications of the motor 1.
 加速度A’が許容加速度設定値Amaxよりも小さい場合(ステップS3、Yes)、指令解析部11は、指令パラメータに含まれる情報のうちの加速時間Taを、加速時間Ta’に修正する(ステップS4)。そして、指令解析部11は、修正された指令パラメータを出力し(ステップS5)、動作を終了する。 When the acceleration A ′ is smaller than the allowable acceleration setting value Amax (step S3, Yes), the command analysis unit 11 corrects the acceleration time Ta in the information included in the command parameter to the acceleration time Ta ′ (step S4). ). Then, the command analysis unit 11 outputs the corrected command parameter (Step S5) and ends the operation.
 加速時間Ta’がTd/2よりも大きい場合(ステップS2、No)または加速度A’が許容加速度設定値Amaxよりも大きい場合(ステップS3、No)、指令解析部11は、ステップS5の処理を実行する。 When the acceleration time Ta ′ is greater than Td / 2 (step S2, No) or when the acceleration A ′ is greater than the allowable acceleration setting value Amax (step S3, No), the command analysis unit 11 performs the process of step S5. Execute.
 図5は、指令生成装置10によって生成される動作指令を説明する図である。上段のグラフは、比較例の基準指令に基づいて生成される動作指令、下段のグラフは、実施の形態の基準指令に基づいて生成される動作指令を夫々示している。また、夫々のグラフには、参考のために、夫々の基準指令に基づいて生成される分割後第1指令および分割後第2指令が示されている。細い実線は基準指令を、一点鎖線は分割後第1指令を、二点鎖線は分割後第2指令を、太い実線は動作指令を、夫々示している。実施の形態によれば、比較例に比べて加速時間が短縮された結果、比較例に比べて動作時間が短縮されている。 FIG. 5 is a diagram for explaining an operation command generated by the command generation device 10. The upper graph shows an operation command generated based on the reference command of the comparative example, and the lower graph shows an operation command generated based on the reference command of the embodiment. Each graph shows a first divided command and a second divided command generated based on the respective reference commands for reference. A thin solid line indicates a reference command, a one-dot chain line indicates a first command after division, a two-dot chain line indicates a second command after division, and a thick solid line indicates an operation command. According to the embodiment, as a result of shortening the acceleration time compared to the comparative example, the operation time is shortened compared to the comparative example.
 なお、加速時間Taが加速時間Ta’に修正されると、基準指令の加速度Aが加速度Aの(1/G)倍の値の加速度A’に修正される。そして、制振指令生成部13の内部処理によって生成される分割後第1指令の加速度はAとなり、分割後第2指令の加速度は(A’-A)となる。ここで、仮に加速時間Ta’がTd/2よりも大きい場合(ステップS2、No)においても加速時間Taが加速時間Ta’に修正される場合には、分割後第1指令による加速タイミングと分割後第2指令による加速タイミングとが重なる期間が発生する。2つの加速タイミングが重なった期間においては、動作指令の加速度は、加速度Aよりも大きい加速度A’となる。実施の形態では、加速時間Ta’がTd/2よりも小さい場合に加速時間Taが加速時間Ta’に修正され、加速時間Ta’がTd/2よりも大きい場合に加速時間Taが修正されないようにしているので、分割後第1指令による加速タイミングと分割後第2指令による加速タイミングとが重なる期間が発生する場合には加速時間Taが修正されないようになる。 When the acceleration time Ta is corrected to the acceleration time Ta ′, the reference command acceleration A is corrected to an acceleration A ′ that is (1 / G) times the acceleration A. Then, the acceleration of the first divided command generated by the internal processing of the vibration suppression command generating unit 13 is A, and the acceleration of the second divided command is (A′−A). Here, if the acceleration time Ta ′ is corrected to the acceleration time Ta ′ even if the acceleration time Ta ′ is longer than Td / 2 (No in step S2), the acceleration timing and division by the first command after division are performed. Thereafter, a period in which the acceleration timing according to the second command overlaps occurs. During the period in which the two acceleration timings overlap, the acceleration of the operation command is an acceleration A ′ that is larger than the acceleration A. In the embodiment, the acceleration time Ta ′ is corrected to the acceleration time Ta ′ when the acceleration time Ta ′ is smaller than Td / 2, and the acceleration time Ta is not corrected when the acceleration time Ta ′ is larger than Td / 2. Therefore, the acceleration time Ta is not corrected when a period occurs in which the acceleration timing according to the first command after division and the acceleration timing according to the second command after division occur.
 加速時間Ta’がTd/2よりも大きい場合(ステップS2、No)、分割後第1指令の加速度は(A×G)となり、分割後第2指令の加速度は{A×(1-G)}となる。したがって、分割後第1指令による加速タイミングと分割後第2指令による加速タイミングとが重なる期間が発生した場合、その期間における動作指令の加速度は、加速度Aに一致する。即ち、加速時間Ta’がTd/2よりも大きい場合であっても、大きくない場合であっても、動作指令は加速度Aを超えることがない。 When the acceleration time Ta ′ is longer than Td / 2 (No in step S2), the acceleration of the first command after division is (A × G), and the acceleration of the second command after division is {A × (1-G). }. Therefore, when a period in which the acceleration timing according to the first command after division and the acceleration timing according to the second command after division occur, the acceleration of the operation command in that period coincides with the acceleration A. That is, the operation command does not exceed the acceleration A regardless of whether the acceleration time Ta ′ is longer than Td / 2 or not.
 上述のように、動作指令による最大加速度は加速度Aを越えることがない。したがって、実施の形態によれば、ユーザがなんらかの理由に基づいて第1加速度を設定した場合であっても、モータ1の加速度がその第1加速度を越えることなくモータ1を駆動することが可能となる。 As described above, the maximum acceleration by the operation command does not exceed the acceleration A. Therefore, according to the embodiment, even if the user sets the first acceleration based on any reason, the motor 1 can be driven without the acceleration of the motor 1 exceeding the first acceleration. Become.
 また、実施の形態によれば、第2加速度である加速度A’が許容加速度設定値Amaxよりも小さい場合(ステップS3、Yes)、加速時間Taが修正され、加速度A’が許容加速度設定値Amaxよりも大きい場合に(ステップS3、No)、加速時間Taが修正されない。これにより、動作指令の加速度が許容加速度設定値Amaxをできるだけ越えないようにすることが可能となる。 Further, according to the embodiment, when the acceleration A ′, which is the second acceleration, is smaller than the allowable acceleration setting value Amax (step S3, Yes), the acceleration time Ta is corrected, and the acceleration A ′ becomes the allowable acceleration setting value Amax. If it is greater than (step S3, No), the acceleration time Ta is not corrected. As a result, the acceleration of the operation command can be prevented from exceeding the allowable acceleration setting value Amax as much as possible.
 なお、指令生成装置10が備える夫々の構成要素(指令解析部11、基準指令生成部12、制振指令生成部13、ならびに、制振指令生成部13を構成する第1のゲイン乗算部131、第2のゲイン乗算部132、遅延部133、および、加算部134)のうちの一部または全部は、専用のハードウェアで実現されてもよいし、ソフトウェアで実現されてもよい。ソフトウェアで実現するとは、演算装置および記憶装置(メモリ)を備えるコンピュータにおいて、構成要素に対応するプログラムモジュールを記憶装置に格納しておき、当該記憶装置に格納されているプログラムモジュールを演算装置が実行することによって当該構成要素の機能を実現することである。 It should be noted that each component included in the command generation device 10 (a command analysis unit 11, a reference command generation unit 12, a vibration suppression command generation unit 13, and a first gain multiplication unit 131 that constitutes the vibration suppression command generation unit 13, Part or all of the second gain multiplication unit 132, the delay unit 133, and the addition unit 134) may be realized by dedicated hardware or may be realized by software. Realization by software means that in a computer having an arithmetic device and a storage device (memory), a program module corresponding to a component is stored in the storage device, and the arithmetic device executes the program module stored in the storage device. By doing so, the function of the component is realized.
 以上述べたように、本発明の実施の形態によれば、指令解析部11および基準指令生成部12は、協働して、外部から入力された指令パラメータにより指令された加速度Aより大きい加速度A’でモータ1を加速して、指令パラメータにより指令された移動距離だけモータ1を駆動せしめるための基準指令を生成する。そして、制振指令生成部13は、基準指令のうちの一部を機械2の振動周期Tdに応じた時間だけ遅延させることによってモータ1に対する動作指令を生成する。本発明の実施の形態によれば、指令パラメータに応じた加速度Aよりも大きい加速度A’を有する基準指令に基づいて動作指令が生成されるので、加速度Aを有する基準指令に基づいて動作指令が生成される場合に比べて加減速にかかる時間が短縮されるので、結果として動作時間が短縮される。また、ステップS2~ステップS4において説明したように、基準指令の加速度を大きくするための演算は、二次伝達特性の出力を演算したりする場合などに比べて簡単である。したがって、演算による起動時間の遅延を抑制するとともに、中間データを記憶するメモリの必要サイズを削減することが可能となる。即ち、本発明の実施の形態の指令生成装置10は、複雑な演算を必要とすることなく、かつ、位置決め制御における機械の振動を抑制し、かつ、動作時間を短縮することができる。 As described above, according to the embodiment of the present invention, the command analysis unit 11 and the reference command generation unit 12 cooperate to accelerate the acceleration A greater than the acceleration A commanded by the command parameter input from the outside. Accelerate the motor 1 with 'and generate a reference command for driving the motor 1 by the moving distance commanded by the command parameter. Then, the vibration suppression command generation unit 13 generates an operation command for the motor 1 by delaying a part of the reference command by a time corresponding to the vibration cycle Td of the machine 2. According to the embodiment of the present invention, since the operation command is generated based on the reference command having the acceleration A ′ larger than the acceleration A according to the command parameter, the operation command is generated based on the reference command having the acceleration A. Since the time required for acceleration / deceleration is shortened as compared with the case where it is generated, the operation time is shortened as a result. Further, as described in steps S2 to S4, the calculation for increasing the acceleration of the reference command is simpler than the case where the output of the secondary transfer characteristic is calculated. Therefore, it is possible to suppress the delay of the startup time due to the calculation and reduce the required size of the memory for storing the intermediate data. That is, the command generation device 10 according to the embodiment of the present invention can suppress the vibration of the machine in the positioning control and shorten the operation time without requiring a complicated calculation.
 なお、以上の説明においては、基準指令の形状は、加速区間と減速区間とをこの順番で含む形状か、または加速区間と等速区間と減速区間とをこの順番で含む形状であるものとして説明したが、基準指令の形状はこれらに限定されない。また、基準指令の加減速区間における加速度は固定であるものとして説明したが、S字関数に従って加速度が変化するようにしてもよい。加減速区間における加速度が所定の関数により定義される場合には、基準指令生成部12は、加速度の平均値が第1加速度よりも大きい第2加速度に一致するような基準指令を生成するなどしてよい。また、指令生成装置10は、基準指令生成部12と制振指令生成部13との間、または制振指令生成部13と駆動制御部3との間に、任意のフィルタ(例えば一次遅れフィルタ、平滑化フィルタなど)が介挿されて構成されてもよい。 In the above description, it is assumed that the shape of the reference command is a shape that includes an acceleration section and a deceleration section in this order, or a shape that includes an acceleration section, a constant speed section, and a deceleration section in this order. However, the shape of the reference command is not limited to these. Although the acceleration in the acceleration / deceleration section of the reference command has been described as being fixed, the acceleration may be changed according to an S-shaped function. When the acceleration in the acceleration / deceleration section is defined by a predetermined function, the reference command generation unit 12 generates a reference command such that the average value of acceleration matches the second acceleration larger than the first acceleration. It's okay. In addition, the command generation device 10 includes an arbitrary filter (for example, a first-order lag filter, between the reference command generation unit 12 and the vibration suppression command generation unit 13, or between the vibration suppression command generation unit 13 and the drive control unit 3. A smoothing filter or the like) may be inserted.
 また、制振指令生成部13は、機械2の振動の減衰速度が速いほど小さい値となるパラメータである減衰量G(0.5<G<1)が入力され、基準指令を、第1指令(分割後第1指令)と第2指令との比がG対(1-G)となるように第1指令と第2指令とに分割する。そして、制振指令生成部13は、第2指令を機械2の振動周期Tdに応じた時間だけ遅延させて、遅延された第2指令(分割後第2指令)を第1指令と合成する。そして、第2加速度である加速度A’は、第1加速度である加速度Aを減衰量Gで除算して得られる値に等しい。したがって、分割後第1指令と分割後第2指令とが加速区間が重ならない場合において、外部から入力された指令パラメータが示す加速度Aに動作指令の加速度を一致させることができる。 Further, the damping command generation unit 13 receives a damping amount G (0.5 <G <1), which is a parameter that decreases as the damping speed of the vibration of the machine 2 increases, and sets the reference command as the first command. The first command and the second command are divided so that the ratio between the (first command after division) and the second command is G vs. (1-G). Then, the vibration suppression command generation unit 13 delays the second command by a time corresponding to the vibration period Td of the machine 2 and combines the delayed second command (second command after division) with the first command. The acceleration A ′ that is the second acceleration is equal to the value obtained by dividing the acceleration A that is the first acceleration by the attenuation amount G. Therefore, when the first command after division and the second command after division do not overlap the acceleration sections, the acceleration of the operation command can be matched with the acceleration A indicated by the command parameter input from the outside.
 また、基準指令の形状は、加速区間と減速区間とをこの順番で含む形状か、または加速区間と等速区間と減速区間とをこの順番で含む形状であって、基準指令生成部12は、加速区間の時間が機械2の振動周期Tdに応じた時間よりも大きい場合には、モータ1を加速度A’で加速する基準指令ではなくモータ1を加速度Aで加速する基準指令を生成する。これにより、分割後第1指令と分割後第2指令とが加速区間が重なる虞がある場合には加速度を大きくしないので、動作指令の加速度の最大値が加速度Aを越えることを防ぐことができる。 Further, the shape of the reference command is a shape including an acceleration section and a deceleration section in this order, or a shape including an acceleration section, a constant speed section, and a deceleration section in this order, and the reference command generator 12 When the time of the acceleration section is longer than the time corresponding to the vibration period Td of the machine 2, a reference command for accelerating the motor 1 with the acceleration A is generated instead of a reference command for accelerating the motor 1 with the acceleration A '. Thereby, when there is a possibility that the first command after division and the second command after division are overlapped with each other, the acceleration is not increased, so that the maximum value of the acceleration of the operation command can be prevented from exceeding the acceleration A. .
 また、基準指令生成部12は、第2加速度が許容加速度設定値Amaxよりも大きい場合には、モータ1を加速度A’で加速する基準指令ではなくモータ1を加速度Aで加速する基準指令を生成する。これにより、動作指令の最大値が許容加速度設定値Amaxを越えることを防ぐことができる。 In addition, when the second acceleration is larger than the allowable acceleration setting value Amax, the reference command generation unit 12 generates a reference command for accelerating the motor 1 with the acceleration A instead of a reference command for accelerating the motor 1 with the acceleration A ′. To do. Thereby, it is possible to prevent the maximum value of the operation command from exceeding the allowable acceleration setting value Amax.
 以上のように、本発明にかかる指令生成装置は、モータを駆動せしめる動作指令を生成する指令生成装置に適用して好適である。 As described above, the command generation device according to the present invention is suitable for application to a command generation device that generates an operation command for driving a motor.
 1 モータ、2 機械、3 駆動制御部、10 指令生成装置、11 指令解析部、112 基準指令生成部、13 制振指令生成部、131 第1のゲイン乗算部、132 第2のゲイン乗算部、133 遅延部、134 加算部。 1 motor, 2 machine, 3 drive control unit, 10 command generation device, 11 command analysis unit, 112 reference command generation unit, 13 vibration suppression command generation unit, 131 first gain multiplication unit, 132 second gain multiplication unit, 133 delay part, 134 addition part.

Claims (7)

  1.  第1加速度を示す加速度情報と移動距離を示す移動距離情報と含む指令パラメータが入力され、前記第1加速度よりも大きい第2加速度でモータを加速して前記移動距離だけモータを駆動せしめるための基準指令であって、予め定められた形状の基準指令を生成する第1生成部と、
     前記基準指令のうちの一部を機械の振動周期に応じた時間だけ遅延させることによってモータに対する動作指令を生成する第2生成部と、
     を備えることを特徴とする指令生成装置。
    A command parameter including acceleration information indicating the first acceleration and movement distance information indicating the movement distance is input, and a reference for accelerating the motor with a second acceleration larger than the first acceleration and driving the motor by the movement distance. A first generation unit that generates a reference command of a predetermined shape,
    A second generator for generating an operation command for the motor by delaying a part of the reference command by a time corresponding to a vibration period of the machine;
    A command generation device comprising:
  2.  前記第2生成部は、
     パラメータGが設定され、
     前記基準指令を、第1指令と第2指令との比がG対(1-G)となるように分割し、
     前記第2指令を前記機械の振動周期に応じた時間だけ遅延させ、
     前記第1指令と前記遅延された第2指令とを合成して前記動作指令を生成する、
     ことを特徴とする請求項1に記載の指令生成装置。
    The second generator is
    Parameter G is set,
    The reference command is divided so that the ratio of the first command and the second command is G vs. (1-G),
    Delaying the second command by a time corresponding to the vibration period of the machine;
    Combining the first command and the delayed second command to generate the operation command;
    The command generation device according to claim 1.
  3.  前記第2加速度の大きさは、前記第1加速度の(1/G)倍の大きさに等しい、
     ことを特徴とする請求項2に記載の指令生成装置。
    The magnitude of the second acceleration is equal to (1 / G) times the first acceleration.
    The command generation device according to claim 2.
  4.  前記予め定められた形状は、加速区間と減速区間とをこの順番で含む形状か、または加速区間と等速区間と減速区間とをこの順番で含む形状である、
     ことを特徴とする請求項3に記載の指令生成装置。
    The predetermined shape is a shape including an acceleration section and a deceleration section in this order, or a shape including an acceleration section, a constant speed section, and a deceleration section in this order.
    The command generation device according to claim 3.
  5.  前記第1生成部は、
     前記加速区間の時間と前記機械の振動周期に応じた時間とを比較し、
     前記加速区間の時間が前記機械の振動周期に応じた時間よりも小さい場合に前記第2加速度で前記モータを加速せしめる基準指令を生成し、
     前記加速区間の時間が前記機械の振動周期に応じた時間よりも大きい場合に前記第1加速度で前記モータを加速せしめる基準指令を生成する、
     ことを特徴とする請求項4に記載の指令生成装置。
    The first generator is
    Comparing the time of the acceleration section and the time according to the vibration period of the machine,
    Generating a reference command for accelerating the motor with the second acceleration when the time of the acceleration section is smaller than the time according to the vibration period of the machine;
    Generating a reference command for accelerating the motor at the first acceleration when the time of the acceleration section is larger than the time according to the vibration period of the machine;
    The command generation device according to claim 4.
  6.  前記機械の振動周期に応じた時間は、振動周期の半分の長さの時間である、
     ことを特徴とする請求項5に記載の指令生成装置。
    The time according to the vibration period of the machine is a time that is half the vibration period.
    The command generation device according to claim 5.
  7.  前記第1生成部は、前記第2加速度と許容加速度設定値とを比較し、
     前記第2加速度が前記許容加速度設定値よりも小さい場合に前記第2加速度で前記モータを加速せしめる基準指令を生成し、
     前記第2加速度が前記許容加速度設定値よりも大きい場合に前記第1加速度で前記モータを加速せしめる基準指令を生成する、
     ことを特徴とする請求項1に記載の指令生成装置。
    The first generation unit compares the second acceleration and an allowable acceleration setting value,
    Generating a reference command for accelerating the motor with the second acceleration when the second acceleration is smaller than the allowable acceleration setting value;
    Generating a reference command for accelerating the motor at the first acceleration when the second acceleration is greater than the allowable acceleration setting value;
    The command generation device according to claim 1.
PCT/JP2013/066180 2013-06-12 2013-06-12 Command generation device WO2014199460A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380077326.8A CN105308526B (en) 2013-06-12 2013-06-12 Command generating device
JP2013552053A JP5558638B1 (en) 2013-06-12 2013-06-12 Command generator
PCT/JP2013/066180 WO2014199460A1 (en) 2013-06-12 2013-06-12 Command generation device
KR1020157034811A KR101630141B1 (en) 2013-06-12 2013-06-12 Command generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066180 WO2014199460A1 (en) 2013-06-12 2013-06-12 Command generation device

Publications (1)

Publication Number Publication Date
WO2014199460A1 true WO2014199460A1 (en) 2014-12-18

Family

ID=51416948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066180 WO2014199460A1 (en) 2013-06-12 2013-06-12 Command generation device

Country Status (4)

Country Link
JP (1) JP5558638B1 (en)
KR (1) KR101630141B1 (en)
CN (1) CN105308526B (en)
WO (1) WO2014199460A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748702A (en) * 2019-10-30 2021-05-04 兄弟工业株式会社 Vibration suppression method and vibration suppression device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395927B2 (en) * 2015-04-23 2018-09-26 三菱電機株式会社 Positioning control device
KR102470391B1 (en) * 2020-12-23 2022-11-25 알에스오토메이션주식회사 Current control device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143801A (en) * 1984-11-29 1986-07-01 Ishikawajima Harima Heavy Ind Co Ltd Control method of electric and hydraulic servo system
JPH05108165A (en) * 1991-10-11 1993-04-30 Yaskawa Electric Corp Oscillation positioning control system
JPH07134608A (en) * 1993-11-10 1995-05-23 Enshu Ltd Quickest fast forward control method
JP2000298521A (en) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd Positioning controller
JP2000315106A (en) * 1999-05-06 2000-11-14 Yaskawa Electric Corp Programmable controller
JP2002354858A (en) * 2001-05-21 2002-12-06 Yaskawa Electric Corp Motor controller
JP2005092296A (en) * 2003-09-12 2005-04-07 Yaskawa Electric Corp Motion controller
JP2006215807A (en) * 2005-02-03 2006-08-17 Yaskawa Electric Corp Robot control device and control method
JP2010220397A (en) * 2009-03-17 2010-09-30 Yaskawa Electric Corp Method for controlling vibration of motor controller and motor controller having the same
JP2011060044A (en) * 2009-09-10 2011-03-24 Yaskawa Electric Corp Motion control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923822B1 (en) * 2005-05-31 2009-10-27 미쓰비시덴키 가부시키가이샤 Electric motor control device
TWI404322B (en) * 2009-04-14 2013-08-01 Mitsubishi Electric Corp Motor control unit
WO2011039929A1 (en) * 2009-09-30 2011-04-07 三菱電機株式会社 Positioning control device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143801A (en) * 1984-11-29 1986-07-01 Ishikawajima Harima Heavy Ind Co Ltd Control method of electric and hydraulic servo system
JPH05108165A (en) * 1991-10-11 1993-04-30 Yaskawa Electric Corp Oscillation positioning control system
JPH07134608A (en) * 1993-11-10 1995-05-23 Enshu Ltd Quickest fast forward control method
JP2000298521A (en) * 1999-04-15 2000-10-24 Matsushita Electric Ind Co Ltd Positioning controller
JP2000315106A (en) * 1999-05-06 2000-11-14 Yaskawa Electric Corp Programmable controller
JP2002354858A (en) * 2001-05-21 2002-12-06 Yaskawa Electric Corp Motor controller
JP2005092296A (en) * 2003-09-12 2005-04-07 Yaskawa Electric Corp Motion controller
JP2006215807A (en) * 2005-02-03 2006-08-17 Yaskawa Electric Corp Robot control device and control method
JP2010220397A (en) * 2009-03-17 2010-09-30 Yaskawa Electric Corp Method for controlling vibration of motor controller and motor controller having the same
JP2011060044A (en) * 2009-09-10 2011-03-24 Yaskawa Electric Corp Motion control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112748702A (en) * 2019-10-30 2021-05-04 兄弟工业株式会社 Vibration suppression method and vibration suppression device
CN112748702B (en) * 2019-10-30 2023-10-27 兄弟工业株式会社 Vibration suppressing method and vibration suppressing device

Also Published As

Publication number Publication date
CN105308526A (en) 2016-02-03
CN105308526B (en) 2018-05-25
JPWO2014199460A1 (en) 2017-02-23
KR20160003864A (en) 2016-01-11
JP5558638B1 (en) 2014-07-23
KR101630141B1 (en) 2016-06-13

Similar Documents

Publication Publication Date Title
JP6724831B2 (en) Control system, controller and control method
US7638965B2 (en) Motor control apparatus
JP6491497B2 (en) Motor control device
JP5312670B2 (en) Command generator
JP5558638B1 (en) Command generator
JPWO2009019953A1 (en) Electric motor control device and gain adjustment method thereof
CN110955192B (en) Servo control device, robot, and servo control method
JP5220241B1 (en) Command generation apparatus and command generation method
JP5151994B2 (en) Moment of inertia identification device, identification method thereof, and motor control device including the identification device
JP2007336687A (en) Motor controller
JP5493941B2 (en) Position command generator
JP6661676B2 (en) Robot controller
WO2019193758A1 (en) Base isolation device
WO2015177912A1 (en) Command generation device and method
JP5263143B2 (en) Electric motor control device
JP2018093693A (en) Motor control method and motor control system
JP6542844B2 (en) Servo motor controller
JP5125283B2 (en) Electric motor control device and electric motor control program
JP5159463B2 (en) Electric motor positioning control device
JP7209173B2 (en) motor controller
JP6947674B2 (en) Motor verification system for tape feeders
JP2002318609A (en) Method for generating optimal command
JP4827016B2 (en) Rigid identification device and motor control device including the same
JP5063981B2 (en) Electric motor position control device
JP2000175475A (en) Device for suppressing mechanical resonance of electromagnetic induction machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077326.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013552053

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157034811

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886982

Country of ref document: EP

Kind code of ref document: A1