JPH07130925A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH07130925A
JPH07130925A JP5274512A JP27451293A JPH07130925A JP H07130925 A JPH07130925 A JP H07130925A JP 5274512 A JP5274512 A JP 5274512A JP 27451293 A JP27451293 A JP 27451293A JP H07130925 A JPH07130925 A JP H07130925A
Authority
JP
Japan
Prior art keywords
metal member
ceramic insulator
semiconductor device
pipe
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5274512A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kashiba
良裕 加柴
Takeshi Ito
武志 伊藤
Masaru Okada
勝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5274512A priority Critical patent/JPH07130925A/en
Publication of JPH07130925A publication Critical patent/JPH07130925A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To provide a semiconductor device having an efficient cooling structure for radiating heat from its semiconductor chip of high heat dissipation. CONSTITUTION:A circuit conductor 2B is attached to one side of a ceramic insulator 1, using a chemical agent, and a rear member 2a is attached similarly to the other side. A projection is made in advance in the rear member 2a, and a liquid passage 20 is made, being joined with the ceramic insulator 1. Furthermore, a block member is welded onto the face of the rear member 2a where the liquid passage is made. On the other hand, a semiconductor element is mounted on the circuit conductor 2B, using solder or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の実装に用
いられるセラミック絶縁材と金属材によって製造される
半導体装置に関し、特に半導体素子で発生する熱を放熱
するための液冷方式を採用した半導体装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufactured by a ceramic insulating material and a metal material used for mounting a semiconductor element, and particularly adopts a liquid cooling system for radiating heat generated in the semiconductor element. The present invention relates to a semiconductor device.

【0002】[0002]

【従来の技術】図12はサイリスタなどの電流容量10
00Aレベルの大電力半導体を液冷して用いる従来の絶
縁型スタック半導体装置であり、図13にはその断面構
造を示す。図において、1はセラミック等の絶縁基板、
2は絶縁基板1の片面に接合された電流端子、3は電流
端子2のもう一方の面と接合された大電力の半導体素
子、9a、9bはパイプ部材、10は熱伝導性の良好な
金属ブロックで絶縁基板1のもう一方の面と接合され
る。20は例えばドリル穴明け加工を用いて貫通形成さ
れた冷却水路で、パイプ部材9a、9bは冷却水路20
の入出力口に備えられている。
2. Description of the Related Art FIG. 12 shows a current capacity 10 such as a thyristor.
This is a conventional insulated stack semiconductor device in which a high power semiconductor of 00A level is liquid-cooled and used, and FIG. 13 shows its sectional structure. In the figure, 1 is an insulating substrate such as ceramic,
Reference numeral 2 is a current terminal joined to one surface of the insulating substrate 1, 3 is a high-power semiconductor element joined to the other surface of the current terminal 2, 9a and 9b are pipe members, and 10 is a metal having good thermal conductivity. The block is joined to the other surface of the insulating substrate 1. Reference numeral 20 denotes a cooling water channel formed by drilling, for example, and the pipe members 9a and 9b are cooling water channels 20.
It is provided at the input / output port of.

【0003】半導体素子3より発生する大量の熱を逃が
すために、パイプ部材9a,9bの一方から水を流入さ
せ、冷却水路を通して他方のパイプ部材より流出させ
る。半導体素子3から電流端子2、絶縁基板1を介して
金属ブロック10に伝達された熱を水冷する。また金属
ブロック10、絶縁基板1、電流端子2及び半導体素子
3が接合されている面の接触熱抵抗の値を下げるため
に、2つの金属ブロック10でセラミック絶縁板1と電
流端子2Bを介して半導体素子3を挟み込み、別の冶具
で加圧している。
In order to dissipate a large amount of heat generated from the semiconductor element 3, water is made to flow in from one of the pipe members 9a and 9b and is made to flow out from the other pipe member through the cooling water passage. The heat transferred from the semiconductor element 3 to the metal block 10 via the current terminal 2 and the insulating substrate 1 is water-cooled. Further, in order to reduce the value of the contact thermal resistance of the surface on which the metal block 10, the insulating substrate 1, the current terminal 2 and the semiconductor element 3 are joined, two metal blocks 10 are used to interpose the ceramic insulating plate 1 and the current terminal 2B. The semiconductor element 3 is sandwiched and pressed by another jig.

【0004】また、図14は特開平2-291157公報に掲載
されている電流容量数100A程度以下の中電力のモジ
ュール型半導体装置で、図15はその断面図を示してい
る。図において2A、2B、2Cは電極端子、4a、4
b,4c,4d、4e、4fははんだ等のろう材、11
は放熱板、12は液冷用の金属パイプ、その他の符号は
図12及び図13と同一である。電極端子2A、2Cは
ろう材4a、4cによりセラミック絶縁体1に、半導体
素子3はろう材4dにより回路導体2Bに、回路導体2
Bはろう材4bによりセラミック絶縁体1に、セラミッ
ク絶縁体1はろう材4eにより放熱板11に、さらに放
熱板11はろう材4fにより金属パイプ12に、それぞ
れ接合されている。
FIG. 14 shows a module type semiconductor device of medium power having a current capacity of about 100 A or less, which is disclosed in Japanese Patent Application Laid-Open No. 2-291157, and FIG. 15 is a sectional view thereof. In the figure, 2A, 2B, 2C are electrode terminals, 4a, 4
b, 4c, 4d, 4e, 4f are brazing materials such as solder, 11
Is a heat sink, 12 is a metal pipe for liquid cooling, and other reference numerals are the same as those in FIGS. 12 and 13. The electrode terminals 2A, 2C are made of the brazing materials 4a, 4c to the ceramic insulator 1, the semiconductor element 3 is made of the brazing material 4d in the circuit conductor 2B, and the circuit conductor 2 is made.
B is joined to the ceramic insulator 1 by the brazing material 4b, the ceramic insulator 1 is joined to the radiating plate 11 by the brazing material 4e, and the radiating plate 11 is joined to the metal pipe 12 by the brazing material 4f.

【0005】図に示すように、絶縁基板1の片面にはん
だ等のろう材で接着された放熱板11の下面に冷却液を
循環させる金属パイプ12を備える構造が提案されてい
る。一般的に、中電力のモジュール型半導体では冷却フ
ィンを用いた空冷が採用されており、ここで示されてい
る例は中電力といえども発熱量が大きい場合である。半
導体素子3より発せられる熱は電極端子2b,絶縁基板
1、放熱板11を介して金属パイプ12に伝わり、冷却
される。
As shown in the figure, a structure has been proposed in which a metal pipe 12 for circulating a cooling liquid is provided on the lower surface of a heat dissipation plate 11 which is bonded to one surface of an insulating substrate 1 with a brazing material such as solder. In general, medium power module type semiconductors employ air cooling using cooling fins, and the example shown here is for a case where the amount of heat generation is large even for medium power. The heat generated from the semiconductor element 3 is transmitted to the metal pipe 12 via the electrode terminal 2b, the insulating substrate 1 and the heat dissipation plate 11, and is cooled.

【0006】[0006]

【発明が解決しようとする課題】しかし、図12、13
に示したスタック型半導体装置においては、大電力の半
導体素子3の発熱量が増加すると、冷却効率を高めるた
めに金属ブロック10の水路20を広げるか、水路20
を長くする必要があり、加工が困難であり、または加工
コストの増大を招くので工業的価値が低下するという問
題を有していた。
However, as shown in FIGS.
In the stack type semiconductor device shown in FIG. 3, when the heat generation amount of the high power semiconductor element 3 increases, the water channel 20 of the metal block 10 is widened or the water channel 20 is increased in order to improve the cooling efficiency.
However, it is difficult to process, or the processing cost is increased, so that the industrial value is lowered.

【0007】また、このスタック型半導体装置では、金
属ブロック10、電流端子2、セラミック絶縁体1を別
々の部品で構成しているため、図12、13には示して
いないが、一般的に別に用意した板で半導体装置を上下
から挟み込み、ネジで締め付け加圧して用いる。このよ
うな構造においては、それぞれの接触面において放熱の
妨げとなる接触熱抵抗が存在し、本半導体装置のように
1000Aレベルの大電流を扱う場合には冷却能力にと
って大きく影響する因子である。接触熱抵抗の値を下げ
るためには、なるべく大きな締め付け力で加圧すればよ
いが、この時にネジの締め方が偏っていたり、半導体装
置の構成部材がそっていると、最も脆弱であるセラミッ
ク絶縁体1に割れが入ってしまい、製品としての歩留ま
りが低下するという問題が生じていた。この問題に対し
ては接触する部材間の表面のあらさを小さくする、部材
のそりをなくす、等によって低い加圧力でも接触熱抵抗
を小さくかつ安定化できるよう細心の注意をもって製造
されている。しかし半導体装置の大型化の進展や量産性
改善の観点から、このような部品構成では冷却性能が得
られない、安定化した性能が得られない、という問題が
あった。
Further, in this stack type semiconductor device, the metal block 10, the current terminal 2, and the ceramic insulator 1 are composed of separate parts, so that they are not shown in FIGS. The semiconductor device is sandwiched between the prepared plates from above and below, and it is tightened with screws and pressurized. In such a structure, there is contact thermal resistance that hinders heat dissipation on each contact surface, which is a factor that greatly affects the cooling capacity when handling a large current of 1000 A level as in the present semiconductor device. In order to reduce the value of contact thermal resistance, it is sufficient to apply pressure with as large a tightening force as possible, but if the tightening of the screws is biased at this time or the components of the semiconductor device are warped, the most fragile ceramic There is a problem that the insulator 1 is cracked and the yield as a product is reduced. With respect to this problem, it is manufactured with the utmost care so that the contact thermal resistance can be reduced and stabilized even with a low pressure by reducing the roughness of the surface between the members in contact with each other, eliminating the warpage of the members, and the like. However, from the viewpoint of the progress of upsizing of semiconductor devices and the improvement of mass productivity, there is a problem that such a component configuration does not provide cooling performance or stable performance.

【0008】一方、図14、15に示した中電力の半導
体装置は、半導体素子3を回路導体2Bに、回路導体2
Bをセラミック絶縁体1に、セラミック絶縁体1を放熱
板11に、さらに放熱板11を金属パイプ12にはんだ
等のろう材4d,4b,4e,4fで接合している。し
かしはんだの熱伝導率が銅の約1/10と悪いこと、接
合部分の厚さや幅を一定にすることは困難で熱の逃げに
ばらつきが生じること、接合部分にボイドと呼ばれる空
洞が発生し熱伝導が遮断されること、等のろう付が元来
有している放熱能力上の欠点があり、このようなはんだ
等のろう材により各部材間を接合する構造では大電力の
半導体への適用ができないという問題があった。はんだ
を極力用いずに、かつ低応力で一体化して半導体装置を
組み立てる方法が要求されていた。
On the other hand, in the medium power semiconductor device shown in FIGS. 14 and 15, the semiconductor element 3 is placed in the circuit conductor 2B and the circuit conductor 2 is placed in the circuit conductor 2B.
B is joined to the ceramic insulator 1, the ceramic insulator 1 is joined to the radiator plate 11, and the radiator plate 11 is joined to the metal pipe 12 by brazing materials 4d, 4b, 4e and 4f such as solder. However, the thermal conductivity of solder is about 1/10 that of copper, it is difficult to keep the thickness and width of the joint constant, and the heat escape varies, and voids called voids occur in the joint. There is a defect in the heat dissipation ability that brazing originally has such as heat conduction being cut off.In such a structure that joins each member with a brazing material such as solder, it is possible to There was a problem that it could not be applied. There has been a demand for a method of assembling a semiconductor device by using solder as little as possible and with low stress.

【0009】本発明はこのような事情に鑑みてなされた
ものであり、大電力半導体などの発熱の大きい半導体素
子を搭載するにあたって、半導体素子の発熱を簡単な構
造で効率よく逃がすことができ、しかもコスト的にも安
価な液冷方式を利用した半導体装置を得ることを目的と
している。
The present invention has been made in view of the above circumstances, and when mounting a semiconductor element such as a high power semiconductor which generates a large amount of heat, the heat generated by the semiconductor element can be efficiently dissipated with a simple structure. Moreover, it is an object to obtain a semiconductor device using a liquid cooling system which is inexpensive in terms of cost.

【0010】また、本発明によれば半導体装置を構成す
るセラミック絶縁体や液路となるパイプに割れ等の発生
しない、より信頼性の高い液冷方式の半導体装置を得る
ことを目的としている。
Another object of the present invention is to provide a more reliable liquid-cooling type semiconductor device in which cracks and the like do not occur in a ceramic insulator or a pipe serving as a liquid path which constitutes the semiconductor device.

【0011】さらに、本発明によれば、冷却能率の高い
半導体装置を、簡単な方法によって信頼性高く製造する
ことができる半導体装置の製造方法を提供することを目
的としている。
Another object of the present invention is to provide a method of manufacturing a semiconductor device, which can manufacture a semiconductor device having a high cooling efficiency with high reliability by a simple method.

【0012】[0012]

【課題を解決するための手段】本発明における半導体装
置は、セラミック絶縁体の一の面に接合され、そのセラ
ミック絶縁体との間に液体の流れる空間を形成するため
の凸状形状を有する第一の金属部材と、セラミック絶縁
体の反対側の面に接続された第二の金属部材と、第一の
金属部材の凸状形状をなす面上に設けられたブロック部
材と、第二の金属部材もしくはブロック部材に搭載され
た半導体素子を備えたものである。
A semiconductor device according to the present invention is bonded to one surface of a ceramic insulator and has a convex shape for forming a space in which a liquid flows between the ceramic insulator and the ceramic insulator. One metal member, a second metal member connected to the opposite surface of the ceramic insulator, a block member provided on the convex surface of the first metal member, and a second metal member The semiconductor device is mounted on a member or a block member.

【0013】また、セラミック絶縁体の両側の面に接合
され、そのセラミック絶縁体との間に液体の流れる空間
を形成するための凸上形状を有する第一の金属部材およ
び第二の金属部材と、第一および第二の金属部材の凸状
形状をなす面上に設けられた第一のブロック部材および
第二のブロック部材と、この第一または第二のブロック
部材に搭載された半導体素子を備えたものである。
Further, a first metal member and a second metal member, which are joined to both sides of the ceramic insulator and have a convex shape for forming a space in which a liquid flows between the ceramic insulator and the ceramic insulator. A first block member and a second block member provided on the convex-shaped surfaces of the first and second metal members, and a semiconductor element mounted on the first or second block member. Be prepared.

【0014】また、ブロック部材が、金属部材の外縁よ
り所定の領域を除いて、その金属部材の面上に設けられ
たものである。
Further, the block member is provided on the surface of the metal member except for a predetermined region from the outer edge of the metal member.

【0015】また、ブロック部材は金属皮膜を付して金
属部材に接合されたものである。
The block member is provided with a metal coating and joined to the metal member.

【0016】また、ブロック部材の表面に第一および第
二の金属部材の少なくともいずれか一方の有する凸状形
状に合致する凹状曲面を設けるとともに、その凹状曲面
または凸状形状の表面に凹凸の連続形状を形成し、その
凹状曲面と凸状形状が合致するようにブロック部材を第
一および第二の金属部材の少なくともいずれか一方に密
着させるようにしたものである。
Further, a concave curved surface that matches the convex shape of at least one of the first and second metal members is provided on the surface of the block member, and the concave or convex surface or the surface of the convex shape is continuously concavo-convex. A shape is formed, and the block member is brought into close contact with at least one of the first and second metal members so that the concave curved surface and the convex shape match.

【0017】また、セラミック絶縁体と液体の流れる空
間の間に拘束部材を設けたものである。
Further, a restraint member is provided between the ceramic insulator and the space in which the liquid flows.

【0018】また、セラミック絶縁体の一の面上の所定
箇所に設けられた液体の通路となるパイプと、このパイ
プを覆うようにセラミック絶縁体の面上に設けられたブ
ロック部材と、セラミック絶縁体の反対側の面に接合さ
れた金属部材と、金属部材またはブロック部材に搭載さ
れた半導体素子を備えたものである。
A pipe serving as a liquid passage provided at a predetermined position on one surface of the ceramic insulator, a block member provided on the surface of the ceramic insulator so as to cover the pipe, and a ceramic insulator. It is provided with a metal member joined to the opposite surface of the body and a semiconductor element mounted on the metal member or the block member.

【0019】また、セラミック絶縁体の両側の面上の所
定箇所に設けられた液体の通路となる第一のパイプおよ
び第二のパイプと、第一および第二のパイプを覆うよう
に、セラミック絶縁体の両側の面上に設けられた第一の
ブロック部材および第二のブロック部材と、第一または
第二のブロック部材に搭載された半導体素子を備えたも
のである。
Also, the ceramic insulation is provided so as to cover the first and second pipes and the first and second pipes which are liquid passages provided at predetermined positions on both sides of the ceramic insulator. It is provided with a first block member and a second block member provided on both sides of the body, and a semiconductor element mounted on the first or second block member.

【0020】また、パイプは銅を主成分とし、少なくと
もこのパイプの外側表層および内側表層のいずれか一方
に所定の元素が所定の量添加されたものである。
The pipe has copper as a main component, and a predetermined amount of a predetermined element is added to at least one of the outer surface layer and the inner surface layer of the pipe.

【0021】また、本発明における半導体装置の製造方
法は、少なくともいずれか一方に凸状形状を有する第一
の金属部材および第二の金属部材を、化学的固定剤を介
してセラミック絶縁体の両側の面上にそれぞれ配置する
第一の工程と、加熱、加圧することによりこのセラミッ
ク絶縁体と第一の金属部材および第二の金属部材を接合
し、一体化する第二の工程と、凹状曲面を有するブロッ
ク部材を、第一および第二の金属部材の少なくともいず
れか一方の有する凸状形状とそのブロック部材の凹状曲
面が合致するように、第一の金属部材もしくは第二の金
属部材の少なくともいずれか一方に密着させる第三の工
程を含むものである。
Further, in the method of manufacturing a semiconductor device according to the present invention, at least one of the first metal member and the second metal member having a convex shape is provided on both sides of the ceramic insulator through a chemical fixing agent. The first step of arranging the ceramic insulator and the first metal member and the second metal member by heating and pressurizing and integrating them, and the concave curved surface. At least one of the first and second metal members so that the convex shape of at least one of the first and second metal members and the concave curved surface of the block member match. It includes a third step of bringing the film into close contact with either one.

【0022】また、本発明における半導体装置の製造方
法は、第一の金属部材と第二の金属部材を、化学的固定
剤を介してセラミック絶縁体の両側の面上にそれぞれ配
置する第一の工程と、第一の金属部材および第二の金属
部材の面上の少なくともいずれか一方に拘束部材を配置
し、さらにこの拘束部材の面上に凸状形状を有する第三
の金属部材を配置する第二の工程と、加熱、加圧するこ
とにより、そのセラミック絶縁体と第一の金属部材もし
くは第二の金属部材とを、この第一の金属部材もしくは
第二の金属部材と拘束部材とを、さらにこの拘束部材と
第三の金属部材とをそれぞれ接合させる第三の工程と、
凹状曲面を有するブロック部材を、第三の金属部材の有
する凸状形状とブロック部材の凹状曲面が合致するよう
に、この第三の金属部材に密着させる第四の工程を含む
ものである。
Further, in the method of manufacturing a semiconductor device according to the present invention, the first metal member and the second metal member are respectively arranged on both sides of the ceramic insulator via a chemical fixing agent. A step, and disposing a restraint member on at least one of the surfaces of the first metal member and the second metal member, and further disposing a third metal member having a convex shape on the surface of this restraint member. The second step, by heating and pressurizing the ceramic insulator and the first metal member or the second metal member, the first metal member or the second metal member and the restraining member, Furthermore, a third step of joining the restraint member and the third metal member, respectively,
The fourth step of bringing the block member having the concave curved surface into close contact with the third metal member such that the convex shape of the third metal member and the concave curved surface of the block member match each other.

【0023】また、ブロック部材に形成される凹状曲面
の深さを、第一の金属部材および第二の金属部材のうち
少なくともいずれか一方に形成された凸状形状の高さよ
り浅く加工し、ブロック部材の凹状曲面と第一の金属部
材および第二の金属部材の少なくともいずれか一方の凸
状形状が合致するように加圧、密着させる工程を含むも
のである。
Further, the depth of the concave curved surface formed on the block member is processed to be shallower than the height of the convex shape formed on at least one of the first metal member and the second metal member, and the block is formed. It includes a step of applying pressure and contact so that the concave curved surface of the member and the convex shape of at least one of the first metal member and the second metal member match.

【0024】また、第一の金属部材および第二の金属部
材を、化学的固定剤を介してセラミック絶縁体の両側の
面にそれぞれ配置する第一の工程と、加熱、加圧するこ
とによりセラミック絶縁体と第一の金属部材および第二
の金属部材を接合する第二の工程と、第一の金属部材お
よび第二の金属部材のうち少なくともいずれか一方にパ
イプを所定位置に配置する第三の工程と、加熱、加圧す
ることによりパイプを第一の金属部材もしくは第二の金
属部材に接合する第四の工程と、凹状曲面を有するブロ
ック部材を、パイプの形状とこのブロック部材の凹状曲
面と合致するように第一および第二の金属部材の少なく
ともいずれか一方に密着させる第五の工程を含むもので
ある。
Further, the first step of disposing the first metal member and the second metal member on both sides of the ceramic insulator through the chemical fixing agent, and the ceramic insulation by heating and pressurizing. The second step of joining the body and the first metal member and the second metal member, and the third step of arranging the pipe at a predetermined position in at least one of the first metal member and the second metal member. A step, a fourth step of joining the pipe to the first metal member or the second metal member by heating and pressurizing, a block member having a concave curved surface, the shape of the pipe and the concave curved surface of the block member. It includes a fifth step of closely contacting at least one of the first and second metal members so as to match.

【0025】[0025]

【作用】本発明において、半導体素子から冷却液を流れ
る液路を形成する金属部材まで接合して一体構造として
いるので、発熱する半導体素子から液路までの距離は近
くなり、かつ各部材間の接触熱抵抗のロスは限りなく小
さくなり、また液路を形成する金属部材の面上にブロッ
ク部材を設けたので、冷却のための有効熱伝達表面積が
増加し、冷却能率が向上する。
In the present invention, since the semiconductor element and the metal member forming the liquid passage through which the cooling liquid flows are joined to form an integral structure, the distance from the semiconductor element that generates heat to the liquid passage is short, and the distance between the members is small. The loss of contact heat resistance is extremely small, and since the block member is provided on the surface of the metal member forming the liquid path, the effective heat transfer surface area for cooling is increased and the cooling efficiency is improved.

【0026】また、ブロック部材が金属部材の外縁より
所定の領域を除いて、金属部材の面上に設けられたの
で、半導体装置の使用時にセラミック絶縁体に発生する
応力は低減される。
Further, since the block member is provided on the surface of the metal member except the predetermined region from the outer edge of the metal member, the stress generated in the ceramic insulator when the semiconductor device is used is reduced.

【0027】また、ブロック部材は金属皮膜を付して金
属部材に接合されたので、両部材の接続部分は腐食しに
くくなる。
Further, since the block member is attached to the metal member with a metal coating, the connecting portion between both members is less likely to corrode.

【0028】また、金属部材の凸状形状の表面またはブ
ロック部材の凹状曲面のいずれか一方に凹凸の連続形状
を形成し、この凸状形状と凹状曲面を密着させるので、
この凹凸の連続形状の部分ではミクロ的な密着状態が優
れ、熱伝導性がよくなる。
Further, since a continuous concavo-convex shape is formed on either the convex surface of the metal member or the concave curved surface of the block member, the convex shape and the concave curved surface are brought into close contact with each other.
In the portion of the continuous shape of the unevenness, the microscopic close contact state is excellent and the thermal conductivity is improved.

【0029】また、セラミック絶縁体と液体の流れる空
間の間に拘束部材を設けたので、液体の流れる際の液圧
によりセラミック絶縁体に発生する応力が低減される。
Further, since the restraint member is provided between the ceramic insulator and the space in which the liquid flows, the stress generated in the ceramic insulator by the liquid pressure when the liquid flows can be reduced.

【0030】また、セラミックの一の面上に液路となる
パイプを設けたので、安定した液体供給、液体回収が可
能になり、また液体の供給、回収のための外部装置との
接続が容易になる。
Further, since a pipe serving as a liquid path is provided on one surface of the ceramic, stable liquid supply and liquid recovery are possible, and connection with an external device for liquid supply and recovery is easy. become.

【0031】また、パイプは銅を主成分とし、少なくと
もその外側表層および内側表層のいずれか一方に所定の
元素が所定の量添加されたので、パイプに発生する割れ
を防止することができる。
Further, since the pipe contains copper as a main component and a predetermined amount of a predetermined element is added to at least one of the outer surface layer and the inner surface layer, cracks occurring in the pipe can be prevented.

【0032】また、少なくともいずれか一方に凸状形状
を有する第一の金属部材および第二の金属部材を、化学
的固定剤を介してセラミック絶縁体の両側の面上にそれ
ぞれ配置して、加熱、加圧によりこのセラミック絶縁体
と第一の金属部材および第二の金属部材を接合、一体化
させるので、部材間の接合部分で熱伝導が遮断されるこ
とはなくなり、さらに凹状曲面を有するブロック部材
を、第一の金属部材または第二の金属部材の有する凸状
形状と凹状曲面が合致するように、第一の金属部材もし
くは第二の金属部材に密着させるので、放熱、冷却する
効率の優れた液冷方式の半導体装置を製造できる。
Further, a first metal member and a second metal member having a convex shape on at least one of them are arranged on both sides of the ceramic insulator through a chemical fixing agent, and heated. Since the ceramic insulator and the first metal member and the second metal member are joined and integrated by pressurization, the heat conduction is not interrupted at the joint portion between the members, and the block having the concave curved surface is also provided. Since the member is brought into close contact with the first metal member or the second metal member so that the convex shape and the concave curved surface of the first metal member or the second metal member match, the efficiency of heat dissipation and cooling is improved. An excellent liquid-cooling type semiconductor device can be manufactured.

【0033】また、ブロック部材に形成される凹状曲面
の深さを、凸状形状の高さより浅く加工して、その凸状
形状と凹面形状を合致するようにブロック部材を第一の
金属部材もしくは第二の金属部材に加圧、密着させるの
で、ブロック部材の加工精度が悪くても凹状曲面と凸状
形状が密着し、熱伝導が安定して確保される。
Further, the depth of the concave curved surface formed on the block member is processed to be shallower than the height of the convex shape, and the block member is made of the first metal member or the concave metal so that the convex shape and the concave surface shape are matched. Since the second metal member is pressed and brought into close contact with the second metal member, even if the processing accuracy of the block member is poor, the concave curved surface and the convex shape are in close contact with each other, and stable heat conduction is ensured.

【0034】[0034]

【実施例】実施例1.図1および図2に、本発明に係る
半導体装置およびその製造方法の一実施例を示す。図1
は半導体素子をはんだ等でろう付したモジュール型の半
導体装置の断面図、図2は図1の半導体装置の外観図を
示し、1は基板としての例えばアルミナからなるセラミ
ック絶縁体、2A,2B,2Cはこのセラミック絶縁体
1の片面に接合された例えば銅等の金属部材からなる回
路導体で、その内の一つ(回路導体2B)上に半導体素
子3が実装されている。2aはこのセラミック絶縁体1
の残りの片面に接合された例えば銅等の金属部材からな
る裏面部材であり、4Aは回路導体2B上に半導体素子
3を接合するためのはんだ層、5は半導体素子3で発生
した熱を効率的に輸送するための液体、7は効率的な冷
却を補助するため等の例えばアルミニウムからなるブロ
ック部材、8は裏面部材2aとブロック部材7をはんだ
等によって接合または密着させるための必要に応じて用
いる接着層、20は液体を流すための液路である。
EXAMPLES Example 1. 1 and 2 show an embodiment of a semiconductor device and a manufacturing method thereof according to the present invention. Figure 1
2 is a cross-sectional view of a module type semiconductor device in which semiconductor elements are brazed with solder or the like, FIG. 2 is an external view of the semiconductor device of FIG. 1, and 1 is a ceramic insulator made of, for example, alumina as a substrate, 2A, 2B, 2C is a circuit conductor made of a metal member such as copper and joined to one surface of the ceramic insulator 1, and the semiconductor element 3 is mounted on one of them (circuit conductor 2B). 2a is this ceramic insulator 1
Is a back surface member made of a metal member such as copper, which is bonded to the remaining one surface of the substrate, 4A is a solder layer for bonding the semiconductor element 3 on the circuit conductor 2B, and 5 is a heat generated by the semiconductor element 3. A liquid for mechanically transporting, 7 is a block member made of, for example, aluminum for assisting efficient cooling, and 8 is as necessary for joining or adhering the back member 2a and the block member 7 with solder or the like. The adhesive layer used, 20 is a liquid channel for flowing a liquid.

【0035】本実施例においては、裏面部材2aを例え
ばプレス加工によって凸状形状に成形し、さらに裏面部
材2aの凹側の面とセラミック絶縁体1を接合させるこ
とによってセラミック絶縁体1と裏面部材2aの間に液
路20を形成する。図1および図2から明らかなよう
に、この液路は外部と遮断されるように構成されてい
る。
In this embodiment, the back surface member 2a is formed into a convex shape by pressing, for example, and the concave surface of the back surface member 2a and the ceramic insulator 1 are joined to each other to form the ceramic insulator 1 and the back surface member. A liquid path 20 is formed between 2a. As is clear from FIG. 1 and FIG. 2, this liquid path is configured to be shut off from the outside.

【0036】このような構造による半導体装置におい
て、半導体素子3を動作させると発熱する。この熱はは
んだ層4A、回路導体2B、セラミック絶縁体1を通
り、直接液体5に伝わり、さらに熱の一部はブロック部
材7から裏面部材2aを通して液体5に伝わっていく。
In the semiconductor device having such a structure, when the semiconductor element 3 is operated, heat is generated. This heat is directly transmitted to the liquid 5 through the solder layer 4A, the circuit conductor 2B, and the ceramic insulator 1, and a part of the heat is further transmitted from the block member 7 to the liquid 5 through the back surface member 2a.

【0037】このような構成の半導体装置は、以下のよ
うなプロセスによって製造することが可能となる。ま
ず、銅からなる裏面部材2aをプレス加工して、液路と
なる凸状形状を形成するとともに、セラミック絶縁体
1、回路導体2A、2B、2Cを所定の形に加工する。
セラミック絶縁体1の一方の面に回路導体2A、2B、
2Cを所定の位置に接合する。さらにセラミック絶縁体
1の他方の面に、凸状形状をもつ面が表面となるように
裏面部材2aを接合する。セラミック絶縁体1と回路導
体2A、2B、2C、裏面部材2aは化学的に接合させ
る。そのためにセラミック絶縁体1または回路導体2
A、2B、2C、裏面部材2aの少なくともいずれか一
方に、セラミック材と金属材とを接合させるための化学
的固定剤として、例えばチタンなどの活性金属を含む銅
ペーストを印刷によって厚さ50μm程度供給する。ペ
ースト厚さは10μm以下では十分に気密封止できず、
80μm以上になると、接合界面からのはみだしが顕著
になり絶縁性の観点から好ましくない。
The semiconductor device having such a structure can be manufactured by the following process. First, the back surface member 2a made of copper is pressed to form a convex shape that becomes a liquid path, and the ceramic insulator 1 and the circuit conductors 2A, 2B, and 2C are processed into a predetermined shape.
On one surface of the ceramic insulator 1, the circuit conductors 2A, 2B,
Join 2C in place. Further, the back surface member 2a is joined to the other surface of the ceramic insulator 1 so that the surface having the convex shape becomes the front surface. The ceramic insulator 1, the circuit conductors 2A, 2B, 2C and the back surface member 2a are chemically bonded. For that purpose, the ceramic insulator 1 or the circuit conductor 2
As a chemical fixing agent for joining the ceramic material and the metal material to at least one of A, 2B, 2C and the back surface member 2a, a copper paste containing an active metal such as titanium is printed to have a thickness of about 50 μm. Supply. If the paste thickness is 10 μm or less, it cannot be hermetically sealed,
When it is 80 μm or more, the protrusion from the bonding interface becomes remarkable, which is not preferable from the viewpoint of insulation.

【0038】つぎに、所望の形状に加工した、裏面部材
2a、セラミック絶縁体1、そして回路導体2A、2
B、2Cを順次重ね合わせ、接合装置中にセットする。
接合装置の能力としては、不活性ガスもしくは真空など
の雰囲気形成、加熱、加圧が必要である。例えば回路導
体および裏面部材として無酸素銅、セラミック絶縁体と
して97%アルミナを用いた場合においては、10ー4
orr程度の真空中で約1000℃の加熱、0.5MP
aの加圧を30分程度施すことによって接合が達成され
る。このときセラミック絶縁体1と回路導体2A、2
B,2Cおよび裏面部材2aは、上述したペーストによ
って強固に気密接合される。このペーストは接合プロセ
スを経ることによってセラミック絶縁体1と回路導体2
A、2B,2Cおよび裏面部材2aと反応・拡散し、一
体化される。なお、加圧する際、液路20は裏面部材2
a全体を加圧すると変形してしまうため、この液路部分
は加圧されないよう接合冶具に凹部を設けておく必要が
ある。
Next, the back surface member 2a, the ceramic insulator 1, and the circuit conductors 2A and 2 which are processed into a desired shape are formed.
B and 2C are sequentially superposed and set in the joining device.
As the capability of the bonding apparatus, it is necessary to form an atmosphere such as an inert gas or vacuum, heat, and pressurize. For example, when oxygen-free copper is used for the circuit conductor and the back surface member and 97% alumina is used for the ceramic insulator, 10-4 T
Heating at about 1000 ° C in a vacuum of about orr, 0.5MP
Bonding is achieved by applying the pressure of a for about 30 minutes. At this time, the ceramic insulator 1 and the circuit conductors 2A, 2
B and 2C and the back surface member 2a are firmly airtightly joined by the above-mentioned paste. This paste undergoes a bonding process to produce a ceramic insulator 1 and a circuit conductor 2.
A, 2B, 2C and the back surface member 2a react and diffuse to be integrated. In addition, when pressurizing, the liquid passage 20 is connected to the back surface member 2
When the whole a is pressed, it will be deformed, so it is necessary to provide a recess in the joining jig so that this liquid path part is not pressed.

【0039】また、本実施例においては、半導体装置の
そりや、セラミック絶縁体1の割れを防止するため、回
路部材2A,2B,2Cや裏面部材2aの厚さは、セラ
ミック絶縁体の厚さにかかわらず、およそ0.3mm以
下が好ましい。
Further, in this embodiment, in order to prevent warpage of the semiconductor device and cracking of the ceramic insulator 1, the thickness of the circuit members 2A, 2B, 2C and the back surface member 2a is the thickness of the ceramic insulator. Approximately 0.3 mm or less is preferable.

【0040】ブロック部材7の表面には裏面部材2aの
凸状曲面と合致する凹部の溝をあらかじめ形成してお
き、ブロック部材7は裏面部材2a側の凸状曲面と接合
される。例えばはんだ付等の接着層8を形成する。ブロ
ック部材7にアルミニウムを用いる場合は、銅に比べて
剛性が低いため、セラミックスへの応力を低下させる上
では好ましいが、はんだ付を容易にするにはあらかじめ
銅やニッケルめっきを施しておくことが好ましい。
A groove of a concave portion that matches the convex curved surface of the back surface member 2a is formed in advance on the surface of the block member 7, and the block member 7 is joined to the convex curved surface on the back surface member 2a side. For example, the adhesive layer 8 such as soldering is formed. When aluminum is used for the block member 7, since it has lower rigidity than copper, it is preferable to reduce the stress on the ceramics, but in order to facilitate soldering, copper or nickel plating should be performed in advance. preferable.

【0041】また、半導体素子3は通常のはんだ付けに
よって回路導体2aと接合される。例えば、モジュール
型の中電力用半導体装置においては搭載する半導体素子
3が小さく、半導体素子と半導体装置は加圧せずに、は
んだ付によって接合することが好ましい。
The semiconductor element 3 is joined to the circuit conductor 2a by ordinary soldering. For example, in a module type medium power semiconductor device, the semiconductor element 3 to be mounted is small, and it is preferable to join the semiconductor element and the semiconductor device by soldering without applying pressure.

【0042】以上のように、本実施例の半導体装置で
は、冷却部である液体5はセラミック絶縁体1の下面に
形成されるので、図15の従来例と比較すると、半導体
素子3から液体5までの熱伝導経路は短くなり、放熱特
性はよくなる。さらに液路20を形成する裏面部材2a
をブロック部材7が覆う構造になり、半導体素子3から
の熱の一部はセラミック絶縁体1から熱伝導性のよいブ
ロック部材7を介して液体5に放熱されるので放熱特性
はさらに良くなる。また、半導体素子3から冷却部の液
体5までのはんだ付箇所を減らすことができ、図15の
従来例と比較すると4箇所から1箇所となり、放熱能力
は格段に改善されることがわかる。
As described above, in the semiconductor device of this embodiment, the liquid 5 which is the cooling portion is formed on the lower surface of the ceramic insulator 1. Therefore, as compared with the conventional example shown in FIG. The heat conduction path up to is shortened and the heat dissipation characteristics are improved. Further, the back surface member 2a forming the liquid passage 20
The block member 7 is covered with the block member 7, and a part of the heat from the semiconductor element 3 is radiated from the ceramic insulator 1 to the liquid 5 via the block member 7 having good thermal conductivity, so that the heat radiation characteristic is further improved. Further, it is possible to reduce the number of soldering points from the semiconductor element 3 to the liquid 5 in the cooling part, and it is possible to reduce the number of soldering points from four to one as compared with the conventional example of FIG.

【0043】また凸状形状により構成される液路をブロ
ック部材で覆うことによって半導体装置の取扱いが大幅
に改善され、歩留まりが向上する。
Further, by covering the liquid path constituted by the convex shape with the block member, the handling of the semiconductor device is greatly improved and the yield is improved.

【0044】図3には図1と同一の構造を持つもので、
スタック型の半導体装置を示す。符号は図1と同一のも
のである。上記と同様にして初めにセラミック絶縁体
1、回路導体2A、裏面部材2aは一体にして形成され
る。その後、半導体素子3と回路導体2Aを加圧によっ
て密着させ、さらにブロック部材7と裏面部材2aも同
じ加圧冶具で加圧・密着させるだけでよい。このとき接
着層8は熱伝導性の良好なグリースを用いるか、接着層
8を供給せずに加圧して半導体装置とする。接着層8を
用いない場合は、加圧力にもよるが、表面粗さを1μm
以下、そりを200μm以下とすることが放熱特性上好
ましい。
FIG. 3 has the same structure as that of FIG.
1 illustrates a stack type semiconductor device. Reference numerals are the same as those in FIG. First, the ceramic insulator 1, the circuit conductor 2A, and the back surface member 2a are integrally formed in the same manner as described above. After that, the semiconductor element 3 and the circuit conductor 2A may be brought into close contact with each other by pressurization, and the block member 7 and the back surface member 2a may also be pressed and brought into close contact with the same pressurizing jig. At this time, the adhesive layer 8 is made of grease having good thermal conductivity, or is pressed without supplying the adhesive layer 8 to obtain a semiconductor device. When the adhesive layer 8 is not used, the surface roughness is 1 μm, depending on the applied pressure.
Hereafter, it is preferable that the warpage be 200 μm or less in terms of heat dissipation characteristics.

【0045】上記のようなスタック型半導体装置では、
回路導体2A、セラミック絶縁体1、裏面部材2aは接
合、一体化されて、半導体素子3から冷却部の液体5ま
での加圧密着される部分は少なくなる。図13の従来例
と比較すると、加圧、密着箇所は3箇所(図13の半導
体素子3と回路導体2A間、回路導体2Aとセラミック
絶縁体1間、セラミック絶縁体1と金属ブロック10
間)から1箇所(図2の半導体素子3と回路導体2A
間)となり、放熱能力は格段に改善される。また、上記
のように液路が形成されるので、液路は任意の幅、長
さ、形状に構成しやすくなる。
In the stack type semiconductor device as described above,
The circuit conductor 2A, the ceramic insulator 1, and the back surface member 2a are joined and integrated to reduce the portion of the semiconductor element 3 to the liquid 5 in the cooling portion that is pressed and closely contacted. Compared with the conventional example of FIG. 13, there are three places where pressure is applied and adhered (between the semiconductor element 3 and the circuit conductor 2A in FIG.
From one location (semiconductor element 3 and circuit conductor 2A in FIG. 2)
), And the heat dissipation ability is greatly improved. Further, since the liquid passage is formed as described above, it is easy to form the liquid passage into any width, length and shape.

【0046】実施例2.図4は本発明にかかる別の実施
例を示す。図において、符号は図1と同一である。実施
例1では裏面部材2aを成形し、セラミック絶縁体1に
接合して、液路20をセラミック絶縁体1の下方に設け
た。本実施例では半導体素子3を搭載する回路導体2B
を例えば図のように凸状形状に成形し、セラミック絶縁
体1に接合することにより、液路20をセラミック絶縁
体1の半導体素子3の搭載された側に形成したものであ
る。実施例1と同様の方法でセラミック絶縁体1、裏面
部材2a、回路導体2A,2B,2Cを一体化する。さ
らに図のように成形された回路導体2aの上面にブロッ
ク部材7をはんだ等の接着層8を形成して接合し(スタ
ック型半導体装置では加圧して密着するだけでよい)、
その上に半導体素子3をはんだ等のろう材により接合す
る。裏面部材2aはセラミック絶縁体1の両側で対称的
に構成することでセラミック絶縁体1のそりを防ぐこと
ができ、セラミック絶縁体1の反対側に備えた方が好ま
しい。
Example 2. FIG. 4 shows another embodiment according to the present invention. In the figure, the reference numerals are the same as those in FIG. In Example 1, the back surface member 2 a was molded and joined to the ceramic insulator 1, and the liquid passage 20 was provided below the ceramic insulator 1. In this embodiment, the circuit conductor 2B on which the semiconductor element 3 is mounted
Is formed into a convex shape as shown in the figure and is joined to the ceramic insulator 1 to form the liquid path 20 on the side of the ceramic insulator 1 on which the semiconductor element 3 is mounted. The ceramic insulator 1, the back surface member 2a, and the circuit conductors 2A, 2B, and 2C are integrated by the same method as in the first embodiment. Further, the block member 7 is joined to the upper surface of the circuit conductor 2a formed as shown by forming an adhesive layer 8 of solder or the like (in a stack type semiconductor device, it is only necessary to press and adhere).
The semiconductor element 3 is bonded thereto by a brazing material such as solder. The back surface member 2a can prevent warpage of the ceramic insulator 1 by forming the back surface member 2a symmetrically on both sides of the ceramic insulator 1, and is preferably provided on the opposite side of the ceramic insulator 1.

【0047】本実施例の構成によると、半導体素子3よ
り発生する熱を熱伝導性の良くないセラミック絶縁体1
を介せずに液路20を構成することができるので、より
効果的な冷却が可能となる。また、実施例1と同様に液
路は任意の幅、長さ、形状に構成しやすくなる。ただ
し、半導体素子3とブロック部材7や液路20が形成さ
れている回路導体2Bは電気的に導通状態となり、さら
に液路20を流れる液体を導通する場合があるので、取
り扱い上、相当の注意を要する。
According to the structure of this embodiment, the heat generated by the semiconductor element 3 is not good for the ceramic insulator 1 having poor thermal conductivity.
Since the liquid passage 20 can be configured without the intervening, it is possible to perform more effective cooling. Further, similarly to the first embodiment, the liquid passage can be easily configured to have an arbitrary width, length and shape. However, since the semiconductor element 3 and the circuit conductor 2B in which the block member 7 and the liquid passage 20 are formed are electrically connected to each other, and the liquid flowing through the liquid passage 20 may be made to be electrically connected, considerable care is taken in handling. Requires.

【0048】また、図5に示すように、回路部材2Bと
裏面部材2aのいずれも、凸状形状に成形して、セラミ
ック絶縁体1の両側の面に実施例1と同様の方法により
接合し、さらに回路導体2Bと裏面部材2aの上面にブ
ロック部材7を接合または密着してもよい。セラミック
絶縁体1の両側に液路20が形成され、さらに冷却効果
が増す。
Further, as shown in FIG. 5, both the circuit member 2B and the back surface member 2a are formed in a convex shape and joined to both sides of the ceramic insulator 1 by the same method as in the first embodiment. Further, the block member 7 may be joined or adhered to the upper surfaces of the circuit conductor 2B and the back surface member 2a. Liquid passages 20 are formed on both sides of the ceramic insulator 1 to further enhance the cooling effect.

【0049】実施例3.実施例1で示したように、ブロ
ック部材7と裏面部材2aは密着するか、もしくは接合
によって、半導体装置は製造されるが、特に密着によっ
て製造する場合は安定した熱伝達を確保する必要があ
る。本発明の半導体装置においては、ブロック部材7を
備えることによって実施例1の場合で約3割の放熱特性
の向上を図っており、ブロック部材7と裏面部材2aの
接触状態は装置の能力を大きく左右するのである。
Example 3. As shown in the first embodiment, the block member 7 and the back surface member 2a are in close contact with each other, or the semiconductor device is manufactured by bonding, but particularly in the case of close contact, it is necessary to secure stable heat transfer. . In the semiconductor device of the present invention, the block member 7 is provided to improve the heat dissipation characteristics by about 30% in the case of the first embodiment, and the contact state between the block member 7 and the back surface member 2a increases the capability of the device. It depends.

【0050】図6は本発明による半導体装置の製造方法
を示すが、特にブロック部材7と裏面部材2aを接合も
しくは密着する方法は以下によって達成される。まず、
実施例1と同様の方法でセラミック絶縁体1、裏面部材
2a、回路導体2A,2B,2Cを一体化し、冷却後、
接合装置から取り出す。一方、ブロック部材7の表面に
裏面部材2aにある凸状曲面とほぼ合致する凹面を形成
する(図6(a))。ブロック部材7の凹面側と凸状曲
面を有する裏面部材2aを重ね合わせて加圧する(図6
(b))。ブロック部材7はあらかじめ裏面部材2aの
凸状曲面とほぼ合致する凹面を有し、かつこの凹面の深
さは前記凸状曲面の高さより浅く加工されている。この
加圧プロセスによって、0.5mm程度の薄板で構成さ
れている凸状曲面は図に示すように選択的に変形し、ブ
ロック部材7の凹面に密着する(図6(c))。
FIG. 6 shows a method of manufacturing a semiconductor device according to the present invention. In particular, a method of joining or adhering the block member 7 and the back surface member 2a is achieved by the following. First,
The ceramic insulator 1, the back surface member 2a, and the circuit conductors 2A, 2B, and 2C were integrated by the same method as in Example 1, and after cooling,
Take out from the joining device. On the other hand, a concave surface that substantially matches the convex curved surface of the back surface member 2a is formed on the front surface of the block member 7 (FIG. 6A). The concave side of the block member 7 and the back surface member 2a having a convex curved surface are overlapped and pressed (FIG. 6).
(B)). The block member 7 has a concave surface that substantially matches the convex curved surface of the back surface member 2a, and the depth of this concave surface is processed to be shallower than the height of the convex curved surface. By this pressurizing process, the convex curved surface composed of a thin plate of about 0.5 mm is selectively deformed as shown in the figure, and is brought into close contact with the concave surface of the block member 7 (FIG. 6C).

【0051】なお、凸状曲面と凹状曲面は加工精度の裕
度を考慮した上でほぼ合致する必要がある。すなわち図
6に示した断面における凸状曲面の外周長さが長すぎる
と、凹面と凸面が十分に密着した状態でも裏面部材2a
の平面部とブロック部材7の平面部が密着できず、セラ
ミック絶縁体1を通過してくる熱流がここで遮断されて
しまう。また、逆に凸状曲面の外周長さが十分に長くな
いと凹面と凸面が十分に密着しない状態で裏面部材2a
の平面部とブロック部材7の平面部が密着してしまい、
凹面と凸面間の熱流が限定されてしまう。従って、この
長さの差は加工精度の範囲内に確保しなければならな
い。例えば加工精度は悪いが安価な押し出し加工品を用
いるときには、通常おおよそ数パーセントの加工誤差を
もつ。
The convex curved surface and the concave curved surface need to be substantially matched in consideration of the margin of processing accuracy. That is, if the outer peripheral length of the convex curved surface in the cross section shown in FIG. 6 is too long, the back surface member 2a can be formed even if the concave surface and the convex surface are sufficiently adhered.
The flat surface of the block member 7 and the flat surface of the block member 7 cannot be brought into close contact with each other, and the heat flow passing through the ceramic insulator 1 is interrupted here. Conversely, if the outer peripheral length of the convex curved surface is not sufficiently long, the concave surface and the convex surface do not sufficiently adhere to each other, and the back surface member 2a
And the flat surface of the block member 7 come into close contact with each other,
The heat flow between the concave and convex surfaces is limited. Therefore, this difference in length must be ensured within the range of processing accuracy. For example, when an inexpensive extruded product with poor processing accuracy is used, it usually has a processing error of about several percent.

【0052】凸面と凹面の長さを同一とし、例えば凹面
を直径8mmの半円の押し出し加工品で形成し、凸面を
底面8mmの三角形とすればこの高さは4.8mmとな
り、凸面が凹面よりも0.8mm高くなる。加圧して凸
面を変形させるには、少なくとも凸面の高さが凹面の高
さより大きい必要があり、この凸面の高さは押し出し加
工品の加工誤差を考慮してもなお凹面より高くなる。よ
って、裏面部材2aとブロック部材7を接触させると、
必ず凹面と凸面は接触し、加圧することで両部材は密接
し、熱流が安定に確保される。
If the convex surface and the concave surface have the same length, and the concave surface is formed by an extruded product of a semicircle having a diameter of 8 mm, and the convex surface is a triangle having a bottom surface of 8 mm, this height is 4.8 mm, and the convex surface is a concave surface. 0.8 mm higher than In order to deform the convex surface by applying pressure, at least the height of the convex surface needs to be larger than the height of the concave surface, and the height of this convex surface is still higher than that of the concave surface even when the processing error of the extruded product is taken into consideration. Therefore, when the back surface member 2a and the block member 7 are brought into contact with each other,
The concave surface and the convex surface are always in contact with each other, and both members are brought into close contact with each other by applying pressure, so that a stable heat flow is secured.

【0053】本実施例には裏面部材2aとブロック部材
7間に接着層8を介在させた場合を示しているが、これ
は熱伝導性の良好なグリースもしくは、はんだ等のろう
材を用いる。ろう材の場合は、加圧と同時に加熱・接合
する。なお、接合層8を用いない場合は実施例1と同様
の注意を要する。
In this embodiment, the case where the adhesive layer 8 is interposed between the back surface member 2a and the block member 7 is used, but this uses grease having good thermal conductivity or a brazing material such as solder. In the case of brazing material, it is heated and joined at the same time as pressing. When the bonding layer 8 is not used, the same precautions as in Example 1 are required.

【0054】以上のような構成部材および製造方法によ
って、例えば加工精度が悪いが安価な押し出し加工品を
ブロック部材7として用いたとしても安定した熱伝達が
確保され、製品の信頼性や歩留まりが向上する。
With the above-described components and manufacturing method, stable heat transfer is ensured even if an inexpensive extruded product having poor processing accuracy is used as the block member 7, and product reliability and yield are improved. To do.

【0055】実施例4.ブロック部材7の凹面と裏面部
材2aの凸面との密着状態を良くして熱伝導性を確保し
なければならない。図7はその密着状態を良くするため
の実施例を示すもので、(a)はブロック部材7に形成
されるの凹状曲面に複数の凹凸形状をしたスリットを設
けたものである。30は凹凸状のスリットである。
Example 4. It is necessary to improve the contact state between the concave surface of the block member 7 and the convex surface of the back surface member 2a to ensure thermal conductivity. FIG. 7 shows an embodiment for improving the close contact state. FIG. 7A shows a concave curved surface formed on the block member 7 provided with a plurality of slits having an uneven shape. Reference numeral 30 is an uneven slit.

【0056】熱抵抗を下げるにはミクロ的な密着状態を
良好にすることが望ましいが、図5の変形による密着方
法ではブロック部材7の凹面と裏面部材2aの凸面の力
はおもに板厚に対して垂直に働く。これに対してスリッ
トを設け場合、図7(b)に示すように、板厚に平行に
面同士がすべるようになり、ミクロ的にも密着状態が良
くなる。また、ブロック部材7への応力が分散されるの
で、小さな加圧力でもたとえ凸状形状や凹状形状の加工
精度が悪くても、両部材間の密着状態は良くなり、接触
抵抗は急激に低減し、より放熱特性のよい半導体装置が
得られる。スリットの形状は、すべりが加わり、かつ熱
伝導を妨げない形状として、スリット幅とスリット深さ
はほぼ同等とすることが好ましい。具体的には約0.5
〜1mmの幅と深さが効果的である。また、スリットは
裏面部材2aの凸面上に設けてもよいが、加工上困難で
あるために、ブロック部材7の方が好ましい。
In order to reduce the heat resistance, it is desirable to improve the microscopic close contact state. However, in the close contact method by the deformation of FIG. 5, the force of the concave surface of the block member 7 and the convex surface of the back surface member 2a are mainly relative to the plate thickness. Work vertically. On the other hand, when the slits are provided, as shown in FIG. 7B, the surfaces are made to slide in parallel with the plate thickness, and the close contact state is improved microscopically. Further, since the stress to the block member 7 is dispersed, even if the processing accuracy of the convex shape or the concave shape is poor even with a small pressing force, the close contact state between both members is improved and the contact resistance is rapidly reduced. Thus, a semiconductor device having better heat dissipation characteristics can be obtained. It is preferable that the shape of the slit is such that slip is added and heat conduction is not hindered, and the slit width and the slit depth are substantially equal. Specifically, about 0.5
A width and depth of ~ 1 mm is effective. The slits may be provided on the convex surface of the back surface member 2a, but the block member 7 is preferable because it is difficult to process.

【0057】実施例5.特に、裏面部材2aとブロック
部材7を接合もしくは密着させる場合、裏面部材2aブ
ロック部材7の間に接触電位差があると、長期間使用し
ていると部材の接触部分が溶けてしまい、腐食が起きる
場合がある。これを防止するために、裏面部材2aとブ
ロック部材7の少なくともいずれかに、接着層8として
硬度が低く、裏面部材2aとブロック部材7の接触電位
差を小さくする金属皮膜を例えばめっき等の方法によっ
て供給する。このために、より放熱特性のよい、かつ長
期信頼性の高い半導体装置が得られ、接触電位差を低下
させて腐食を防止することができる。この金属皮膜の作
用は塑性流動して接触界面のミクロ空孔を埋める。
Example 5. In particular, when the back surface member 2a and the block member 7 are joined or adhered to each other, if there is a contact potential difference between the back surface member 2a and the block member 7, the contact portion of the member melts after long-term use and corrosion occurs. There are cases. In order to prevent this, at least one of the back surface member 2a and the block member 7 is provided with a metal film having a low hardness as the adhesive layer 8 and reducing the contact potential difference between the back surface member 2a and the block member 7 by a method such as plating. Supply. Therefore, it is possible to obtain a semiconductor device having better heat dissipation characteristics and high long-term reliability, and it is possible to reduce the contact potential difference and prevent corrosion. The action of this metal film plastically flows to fill the micropores at the contact interface.

【0058】この金属皮膜は、ブロック部材7として接
触電位差を起こしやすいアルミニウムを用いた場合によ
り効果的であり、材料としては亜鉛、すず、鉛が特に好
ましい。
This metal coating is more effective when aluminum is used as the block member 7 because it tends to cause a difference in contact potential, and zinc, tin and lead are particularly preferable as the material.

【0059】実施例6.実施例1において、裏面部材2
aの厚さが例えば0.3mm程度と薄いと、高い液圧を
かけた場合に液もれが発生することがある。しかし、こ
れを防止するために裏面部材2aの厚さを例えば0.5
mm程度と厚くすると、セラミック絶縁体1に加わる応
力が増大し、セラミック絶縁体1に割れが発生する。そ
こで本実施例では、少なくとも液路20を形成する部材
を、裏面部材2aとしての銅部材、セラミック絶縁体1
に接する面上に形成される拘束部材より構成する。この
このような拘束部材を設けることにより上記のようなセ
ラミックの割れを防ぐものである。
Example 6. In Example 1, the back surface member 2
If the thickness of a is thin, for example, about 0.3 mm, liquid leakage may occur when high liquid pressure is applied. However, in order to prevent this, the thickness of the back surface member 2a is set to, for example, 0.5.
When the thickness is increased to about mm, the stress applied to the ceramic insulator 1 increases and cracks occur in the ceramic insulator 1. Therefore, in this embodiment, at least the member forming the liquid passage 20 is a copper member as the back surface member 2a, and the ceramic insulator 1 is used.
It is composed of a restraint member formed on the surface in contact with. By providing such a restraint member, the above-mentioned cracking of the ceramic is prevented.

【0060】図8は本実施例における半導体装置の断面
図を示したものである。図において、2bは銅部材から
なる裏面部材、6aは裏面部材2bと裏面部材2aとの
間に形成された拘束部材で、モリブデン、またはタング
ステン、もしくはこの双方のうちすくなくとも一方を主
成分とする合金からなる。6Aは二つの回路導体2A、
2Bの間に挟まれた拘束部材で、6aと同一のものであ
る。その他の符号は実施例1と同一のもので、裏面部材
2aをプレス加工して、液路用の溝を形成し、液路20
は拘束部材6aと裏面部材2aの積層型構造体とした。
なお、図8は特にスタック型半導体装置を示したもの
で、半導体素子は図における回路部材2Aの上に搭載さ
れ、さらに半導体素子の反対側の面にも回路導体2Aと
接するように図8と同じものを半導体装素子を上下から
挟んで加圧・密着させるものである。
FIG. 8 is a sectional view of the semiconductor device according to this embodiment. In the figure, 2b is a back surface member made of a copper member, 6a is a restraint member formed between the back surface member 2b and the back surface member 2a, and molybdenum, tungsten, or an alloy mainly containing at least one of them. Consists of. 6A is two circuit conductors 2A,
A restraint member sandwiched between 2B and the same as 6a. Other reference numerals are the same as those in the first embodiment, the back surface member 2a is pressed to form a groove for the liquid passage, and the liquid passage 20 is formed.
Is a laminated structure of the restraint member 6a and the back surface member 2a.
Note that FIG. 8 particularly shows a stack type semiconductor device, in which the semiconductor element is mounted on the circuit member 2A in the drawing, and the surface opposite to the semiconductor element is arranged so as to be in contact with the circuit conductor 2A. The same thing is used to press and tightly sandwich the semiconductor component from above and below.

【0061】このような構造による半導体装置におい
て、半導体素子3を動作させると発熱し、実施例1と同
様の経路を通して伝わっていく。
In the semiconductor device having such a structure, when the semiconductor element 3 is operated, heat is generated and the heat is transmitted through the same route as in the first embodiment.

【0062】以上の構成による半導体装置は、以下のよ
うなプロセスによって製造することが可能となる。ま
ず、セラミック絶縁体1と回路導体2B、裏面部材2b
を化学的に接合するために、セラミック絶縁体1もしく
は回路導体2B、裏面部材2bの少なくともいずれか一
方に、セラミック材と金属材とを接合させるための材料
として、たとえばチタンなどの活性金属を含む銅ペース
トを印刷によって厚さ50μm程度供給する。次に、所
望の形状に加工した裏面部材2a、拘束部材6a、裏面
部材2b、セラミック絶縁体1、回路導体2B、拘束部
材6A、回路導体2Aを順次重ね合わせ、接合装置中に
セットする。なお、接合装置の能力としては、実施例1
と同様の装置を用いることができる。例えば回路導体お
よび裏面部材として無酸素銅、セラミック絶縁体として
97%アルミナを用いた場合においては、10ー4Tor
r程度の真空中で約1000℃の加熱、2MPaの加圧
を30分程度施すことによって接合が達成される。この
とき、セラミック絶縁体と回路導体および裏面部材は、
上述したペーストによって強固に気密接合され、同時に
回路導体と拘束部材および裏面部材と拘束部材は拡散接
合によって強固に気密接合される。加圧力は1MPa以
下では拘束部材の接合強度が不十分であり、20MPa
以上ではセラミックスの割れ頻度が急増し、好ましくな
い。なお、ペーストは実施例1と同様、反応・拡散し一
体化される。
The semiconductor device having the above structure can be manufactured by the following process. First, the ceramic insulator 1, the circuit conductor 2B, the back surface member 2b
In order to chemically bond the ceramic material, at least one of the ceramic insulator 1, the circuit conductor 2B, and the back surface member 2b contains an active metal such as titanium as a material for bonding the ceramic material and the metal material. The copper paste is supplied by printing to a thickness of about 50 μm. Next, the back surface member 2a, the restraint member 6a, the back surface member 2b, the ceramic insulator 1, the circuit conductor 2B, the restraint member 6A, and the circuit conductor 2A, which have been processed into a desired shape, are sequentially stacked and set in the joining device. In addition, as the capability of the bonding apparatus, the first embodiment was used.
A device similar to can be used. For example, when oxygen-free copper is used for the circuit conductor and the back surface member, and 97% alumina is used for the ceramic insulator, it is 10 −4 Tor.
Bonding is achieved by heating at about 1000 ° C. in a vacuum of about r and applying a pressure of 2 MPa for about 30 minutes. At this time, the ceramic insulator, the circuit conductor, and the back member are
The paste described above is firmly airtightly joined, and at the same time, the circuit conductor and the restraint member and the back surface member and the restraint member are tightly airtightly joined by diffusion joining. If the applied pressure is 1 MPa or less, the bonding strength of the restraint member is insufficient, and 20 MPa
In the above case, the crack frequency of ceramics increases rapidly, which is not preferable. The paste reacts, diffuses, and is integrated as in the first embodiment.

【0063】ブロック部材7側の構造体は裏面部材2
b、拘束部材6a、裏面部材2aの順に積層している
が、特に裏面部材2bを設けなくてもよいが、セラミッ
ク絶縁体1とモリブデン等からなる拘束部材6aとの接
合性が悪いので、絶縁体1との接合性を良好として接合
界面の欠陥発生を防止でき裏面部材2bを介することが
好ましい。裏面部材2aはブロック部材7との密着性を
良くして熱抵抗を低下させるほか、ろう付性の優れたも
のにする。従って、積層構造として複雑ではあっても上
記の構造が半導体装置の冷却性能にとっては好ましい。
The structure on the block member 7 side is the back member 2
b, the constraining member 6a, and the back surface member 2a are laminated in this order, but the back surface member 2b may not be provided in particular, but the bonding property between the ceramic insulator 1 and the constraining member 6a made of molybdenum or the like is poor. It is preferable that the bonding property with the body 1 is made good and defects at the bonding interface can be prevented, and the back surface member 2b is interposed. The back surface member 2a improves the adhesion with the block member 7 to reduce the thermal resistance and also has excellent brazing property. Therefore, even if the laminated structure is complicated, the above structure is preferable for the cooling performance of the semiconductor device.

【0064】また、セラミック絶縁体1の上方にも拘束
部材6Aを備えたが、この拘束部材6A、さらに回路部
材2bを設けなくてもよい。しかし、セラミック絶縁体
1の両側で対称的に構成されない場合、装置にそりが生
じてしまう可能性があるので、図8のような対称な構造
にした方が好ましい。
Although the restraint member 6A is also provided above the ceramic insulator 1, the restraint member 6A and the circuit member 2b may not be provided. However, if the ceramic insulator 1 is not symmetrically formed on both sides, warpage may occur in the device. Therefore, the symmetrical structure as shown in FIG. 8 is preferable.

【0065】また、裏面部材2aを成形することにより
液路20を設けたが、実施例2のように、例えば図7の
拘束部材6A上の回路導体2Aを成形して液路を形成
し、その上にブロック部材を形成してもよい。
Further, although the liquid passage 20 is provided by molding the back surface member 2a, as in the second embodiment, for example, the circuit conductor 2A on the restraining member 6A of FIG. 7 is formed to form the liquid passage, You may form a block member on it.

【0066】実施例7.上記実施例で示したように、裏
面部材2a、もしくは回路部材2Aをプレス加工により
成形して、液路20を形成したので、その液路の形状、
幅、長さ等は比較的自由に選定できるという効果があ
る。ただし、液体5の供給・回収装置との接続には、図
2のように液体5の入出口に別途パイプ状の継ぎ手9
a,9bをはんだ等のろう付で気密接合する必要があ
る。本実施例では、液路をパイプで形成した場合の半導
体装置を示す。
Example 7. As shown in the above embodiment, since the back surface member 2a or the circuit member 2A is formed by press working to form the liquid passage 20, the shape of the liquid passage,
The width and length can be relatively freely selected. However, in order to connect the liquid 5 supply / recovery device, a pipe-shaped joint 9 is separately provided at the inlet / outlet of the liquid 5 as shown in FIG.
It is necessary to hermetically join a and 9b by brazing such as solder. This embodiment shows a semiconductor device in which the liquid passage is formed by a pipe.

【0067】図9は本実施例における半導体装置の断面
図を示すものである。図において9cは液路を形成する
パイプ、その他の符号は実施例6と同一のものである。
図は実施例6で示した半導体装置において、裏面部材2
aを成形して液路を形成する代わりに、液体の流れるパ
イプ9cを裏面部材2aに接合、一体化させる。
FIG. 9 is a sectional view of the semiconductor device according to this embodiment. In the figure, 9c is a pipe forming a liquid passage, and other reference numerals are the same as those in the sixth embodiment.
The figure shows the back surface member 2 in the semiconductor device shown in the sixth embodiment.
Instead of forming the liquid path by forming a, the pipe 9c through which the liquid flows is joined and integrated with the back surface member 2a.

【0068】例えば、パイプ9cは直径8mm、厚さ
0.5mm程度の脱酸銅、セラミック絶縁体1は厚さ
0.635mm程度のアルミナ、回路導体2A,2Bは
それぞれ厚さ0.5mm程度の無酸素銅、拘束部材6A
は厚さ0.1mm程度のモリブデン、裏面部材2a、2
bは厚さ0.2mm程度の無酸素銅、拘束部材6aは厚
さ0.15mm程度のモリブデンである。セラミック絶
縁体1の厚さが0.3mm以下となると拘束部材6を用
いたとしても割れの発生による歩留まりの低下が生じる
ため好ましくない。また、所望の熱伝導、すなわち裏面
部材2aとパイプ9cの接合面積を確保した上でパイプ
厚さを2mm以上にすると拘束部材6A,6aを用いた
としてもそりが問題となるため好ましくない。また、拘
束部材6A,6aは0.05mm以下では効果がなく、
また0.5mm以上では拘束力が強すぎて、そりなど悪
影響となる。
For example, the pipe 9c has a diameter of 8 mm and a thickness of about 0.5 mm, deoxidized copper, the ceramic insulator 1 has a thickness of about 0.635 mm of alumina, and the circuit conductors 2A and 2B each have a thickness of about 0.5 mm. Oxygen-free copper, restraint member 6A
Is molybdenum having a thickness of about 0.1 mm, the back surface members 2a, 2
b is oxygen-free copper having a thickness of about 0.2 mm, and the restraint member 6a is molybdenum having a thickness of about 0.15 mm. If the thickness of the ceramic insulator 1 is 0.3 mm or less, even if the restraint member 6 is used, the yield will decrease due to the occurrence of cracks, which is not preferable. Further, if the pipe thickness is set to 2 mm or more after ensuring the desired heat conduction, that is, the joint area between the back surface member 2a and the pipe 9c, even if the restraining members 6A and 6a are used, warpage becomes a problem, which is not preferable. Further, the restraint members 6A and 6a have no effect when the thickness is 0.05 mm or less,
On the other hand, if it is 0.5 mm or more, the restraining force is too strong, which causes adverse effects such as warpage.

【0069】さらに、パイプ9cはセラミック絶縁体1
の短辺側とほぼ平行となるよう接合し、接合面積は絶縁
体面積の30%以上70%以下とし、かつパイプ9c側
の拘束部材6aは反対側の拘束部材6Aより厚くするこ
とが望ましい。このように構成する事によって、半導体
装置のそりやセラミック絶縁体1の割れを防止すること
ができる。
Further, the pipe 9c is a ceramic insulator 1.
It is desirable that they are joined so as to be substantially parallel to the short side of the insulator, the joint area is 30% or more and 70% or less of the insulator area, and the restraint member 6a on the pipe 9c side is thicker than the restraint member 6A on the opposite side. With such a configuration, it is possible to prevent warpage of the semiconductor device and cracking of the ceramic insulator 1.

【0070】また、パイプ9cは、構成される半導体装
置より突き出す程度の長さのものを用いる。このように
構成することによって、絶縁体1からパイプ9cが突き
出た構造となり、たとえば市販のパイプ用のコネクタが
使え、液体供給・回収装置との接続が簡単となる。パイ
プ9cにより構成される液路20を接合プロセスによっ
て形成していないため、接合の信頼性に左右されない、
安定した品質が確保できる。
As the pipe 9c, a pipe having a length enough to protrude from the semiconductor device to be used is used. With this structure, the pipe 9c projects from the insulator 1, and for example, a commercially available connector for pipe can be used, and the connection with the liquid supply / recovery device can be simplified. Since the liquid path 20 constituted by the pipe 9c is not formed by the joining process, it is not influenced by the reliability of joining.
Stable quality can be secured.

【0071】上記実施例と同様に、回路導体2A側に液
路を設けるために、回路導体2A上にパイプ9cを形成
して、さらにその上にブロック部材7を接合もしくは密
着させてもよい。また回路導体2Aと裏面部材2aに両
側にパイプ9cを設けてもよい。
Similar to the above-described embodiment, in order to provide a liquid path on the circuit conductor 2A side, a pipe 9c may be formed on the circuit conductor 2A, and the block member 7 may be joined or adhered thereon. Further, pipes 9c may be provided on both sides of the circuit conductor 2A and the back surface member 2a.

【0072】以上の構成による半導体装置の製造プロセ
スを説明する。セラミック絶縁体1の一方の面に回路導
体2B、拘束部材6A、回路導体2Aの順序に接合し、
他方の面には裏面部材2b、拘束部材6a、裏面部材2
aの順序に接合するプロセスは実施例6で述べたものと
基本的に同じである。所定の長さをもつパイプ9cを例
えば裏面部材2aに接合するプロセスを以下に述べる。
A manufacturing process of the semiconductor device having the above configuration will be described. The circuit conductor 2B, the restraint member 6A, and the circuit conductor 2A are joined to one surface of the ceramic insulator 1 in this order,
The back surface member 2b, the restraining member 6a, and the back surface member 2 are provided on the other surface.
The process of joining in the order of a is basically the same as that described in Example 6. A process of joining the pipe 9c having a predetermined length to the back surface member 2a will be described below.

【0073】パイプ9cとして例えば円筒形状のものを
利用する場合は、接合プロセスとしては加熱、加圧のタ
イミングを次のようにコントロールする必要がある。ま
ず、無負荷もしくはパイプ9cが変形しない圧力下で加
熱を開始する。次にパイプ9cと裏面部材2aが反応・
接合を開始した後に加圧を加え、好ましくは接合の進み
具合いに合わせて徐々にパイプ9cを変形させ、裏面部
材2aとの接合面積を増加させる。さらに、所望の変形
状態に達した時点でそれぞれの部材の接合反応を十分進
行させるため10分程度の時間を保持したのち除荷、冷
却することによって、パイプ9cと裏面部材2aは拡散
接合により強固に接合される。以上のプロセスを用いな
い場合はパイプ9cと裏面部材2aの接合が十分確保で
きないため、パイプ9cが図6に示したような半円形状
とならず、三日月状となり、パイプ9cと裏面部材2a
の接合面積が小さくなる結果、冷却効率が大幅に低下
し、本装置の特徴が失われる。
When a pipe having a cylindrical shape, for example, is used as the pipe 9c, it is necessary to control the timing of heating and pressurizing as follows in the joining process. First, heating is started under no load or under a pressure that does not deform the pipe 9c. Next, the pipe 9c reacts with the back surface member 2a.
After joining is started, pressure is applied, and preferably the pipe 9c is gradually deformed in accordance with the progress of joining to increase the joining area with the back surface member 2a. Further, when the desired deformation state is reached, the pipe 9c and the back surface member 2a are firmly joined by diffusion bonding by holding the time for about 10 minutes in order to sufficiently advance the bonding reaction of each member, and then unloading and cooling. To be joined to. If the above process is not used, the joint between the pipe 9c and the back surface member 2a cannot be sufficiently secured, so the pipe 9c does not have the semicircular shape as shown in FIG.
As a result of the smaller bonding area, the cooling efficiency is significantly reduced, and the features of this device are lost.

【0074】なお、あらかじめ裏面部材2aとの接合面
積が確保可能な、多角形のパイプを用いる場合において
も、熱伝導の良好な半導体装置を製造するには、同様に
加圧力をコントロールして変形を抑制した状態でパイプ
9cと裏面部材2aの接触面の接合を進行させた後に、
セラミック絶縁体1と回路導体2Bをはじめ他の部材を
接合する必要がある。
Even in the case of using a polygonal pipe capable of securing the bonding area with the back surface member 2a in advance, in order to manufacture a semiconductor device having good heat conduction, the pressure is similarly controlled to deform the semiconductor device. After advancing the joining of the contact surfaces of the pipe 9c and the back surface member 2a while suppressing the
It is necessary to join other members such as the ceramic insulator 1 and the circuit conductor 2B.

【0075】裏面部材2a、および裏面部材2aに接合
されたパイプ9c上にブロック部材が形成されるが、ブ
ロック部材にパイプ9cの形状にほぼ合致する凹状曲面
を成形し、その後接合もしくは密接される。この接合、
密接の製造プロセスは実施例4に示した注意を要する。
The block member is formed on the back surface member 2a and the pipe 9c joined to the back surface member 2a. The block member is formed with a concave curved surface that substantially matches the shape of the pipe 9c, and then joined or closely bonded. . This joint,
The close manufacturing process requires the attention given in Example 4.

【0076】このように液路をパイプ9cにより構成す
る場合、以上のプロセスによって高い信頼性をもって、
熱伝導性の良い半導体装置が製造できる。
When the liquid path is constructed by the pipe 9c in this way, the above process ensures high reliability.
A semiconductor device having good thermal conductivity can be manufactured.

【0077】実施例8.実施例7においては、パイプ9
cとセラミック絶縁体1との間に拘束部材6aが設けら
れた場合について述べた。セラミック絶縁体1にかかる
応力による割れを防止する効果は少なくなるが、拘束部
材を特に設けなくてもよい。図10は拘束部材を設けな
い場合に、パイプにより液路を形成した半導体装置の断
面図を示したものである。図はセラミック絶縁体1に裏
面部材2aを介してパイプ9cを接合された構成の場合
である。図の半導体装置の製造プロセスは、実施例1と
同様に、回路導体2A、セラミック絶縁体1、裏面部材
2aを接合、一体化する。その後、実施例7と同じ方法
でパイプ9cを加熱、加圧により裏面部材2a上の所定
の位置に接合する。なお、拘束部材を用いない本実施例
では、半導体装置のそりの問題やセラミック絶縁体1の
割れ等を考慮し、パイプの厚さは実施例7のものより小
さい、およそ0.3mm以下のものを用いることが望ま
しい。
Example 8. In Example 7, the pipe 9
The case where the restraint member 6a is provided between the c and the ceramic insulator 1 has been described. Although the effect of preventing cracks due to the stress applied to the ceramic insulator 1 is reduced, the restraint member need not be provided in particular. FIG. 10 is a cross-sectional view of a semiconductor device in which a liquid path is formed by a pipe when a restraint member is not provided. The figure shows the case where the pipe 9c is joined to the ceramic insulator 1 via the back surface member 2a. In the manufacturing process of the illustrated semiconductor device, the circuit conductor 2A, the ceramic insulator 1, and the back surface member 2a are joined and integrated as in the first embodiment. After that, the pipe 9c is joined to a predetermined position on the back surface member 2a by heating and pressurizing in the same manner as in the seventh embodiment. In this embodiment, which does not use the restraint member, the thickness of the pipe is smaller than that of the seventh embodiment, about 0.3 mm or less, in consideration of the problem of the warpage of the semiconductor device and the crack of the ceramic insulator 1. Is preferred.

【0078】実施例7と同様に、回路導体2A側に液路
を設けるために、回路導体2A上にパイプ9cを設け、
または回路導体2Aと裏面部材2aに両側にパイプ9c
を設け、その上にブロック部材7を接合もしくは密着さ
せてもよい。
As in Example 7, in order to provide a liquid path on the circuit conductor 2A side, a pipe 9c is provided on the circuit conductor 2A,
Alternatively, the circuit conductor 2A and the back member 2a may be provided with pipes 9c on both sides.
May be provided and the block member 7 may be joined or adhered thereto.

【0079】また、パイプ9cを直接セラミック絶縁体
1に接合させてもよいが、製造プロセスでパイプ9cを
加熱、加圧する際にセラミック絶縁体1を破壊する可能
性を大きく、接合状態についても、銅等からなる裏面部
材との接合と比べる良くないので裏面部材2aを介して
パイプ9cをセラミック絶縁体1に接合するほうが良
い。
Although the pipe 9c may be directly joined to the ceramic insulator 1, there is a high possibility that the ceramic insulator 1 will be destroyed when the pipe 9c is heated and pressed in the manufacturing process. Since it is not as good as joining with the back surface member made of copper or the like, it is better to join the pipe 9c to the ceramic insulator 1 through the back surface member 2a.

【0080】実施例9.実施例7または実施例8におい
て用いたパイプ9cとして銅を主成分とし、少なくとも
外側表層もしくは内側表層のいずれか一方に、所定の元
素を所定の量だけ増加して添加させた材料を用いること
によって、より信頼性の高い半導体装置が得られる。一
般的に市販されている銅パイプはりん脱酸銅であり、銅
以外の元素濃度は0.1重量%以下と指定されている
が、このようなパイプを本発明の半導体構造に用いる
と、一般的な装置では特に問題なく用いられている銅パ
イプに割れが発生することがある。この現象について鋭
意研究したところ、本発明による半導体装置は製造工程
に1000℃付近の高温に加熱されるために銅の材料変
化が生じること、かつ熱膨張係数の小さいセラミック絶
縁体と一体化されているために製造工程の冷却中に大き
な引張応力が発生するなどが割れの発生原因であり、酸
素や銀などの添加元素を0.1重量%以上含有させた銅
パイプが割れの発生防止に有効であることがわかった。
本実施例に示す材料を用いて銅パイプを1000℃に加
熱したところ、従来では数mm以上に粗大化する結晶が
生じるが、本実施例のの場合は1mm程度以下に抑えら
れている。添加元素としては結晶粒を微細化できる、銅
と反応して融点が大幅に低下しない、剛性が大幅に向上
しない、などの観点から酸素が最も好ましく、亜鉛、
銀、鉄、リン、すず、シリコン、ジルコニウムが効果的
である。
Example 9. By using, as the pipe 9c used in Example 7 or Example 8, a material containing copper as a main component and adding a predetermined element by increasing a predetermined amount to at least one of the outer surface layer and the inner surface layer. Thus, a semiconductor device with higher reliability can be obtained. Generally, a commercially available copper pipe is phosphorous deoxidized copper, and the concentration of elements other than copper is specified to be 0.1% by weight or less. When such a pipe is used in the semiconductor structure of the present invention, A copper pipe that has been used without any problem in a general device may crack. As a result of intensive research on this phenomenon, the semiconductor device according to the present invention is heated to a high temperature of about 1000 ° C. in the manufacturing process, and a material change of copper occurs, and the semiconductor device is integrated with a ceramic insulator having a small thermal expansion coefficient. Therefore, a large tensile stress is generated during cooling in the manufacturing process, which is the cause of cracking. A copper pipe containing 0.1% by weight or more of additive elements such as oxygen and silver is effective in preventing cracking. I found out.
When a copper pipe is heated to 1000 ° C. by using the material shown in this embodiment, crystals which coarsen to several mm or more conventionally occur, but in the case of this embodiment, it is suppressed to about 1 mm or less. As the additional element, oxygen is the most preferable from the viewpoints that the crystal grains can be made finer, the melting point is not significantly lowered by reacting with copper, the rigidity is not significantly improved, and the like, and zinc,
Silver, iron, phosphorus, tin, silicon and zirconium are effective.

【0081】添加元素量は多すぎると、融点低下のため
製造工程中にパイプが溶融してしまうこと、剛性が向上
してしまい半導体装置のそりが大きくなることやセラミ
ック絶縁体1に割れが発生すること、添加元素が接合を
阻害すること、など種々の問題が生じるが、これらの問
題は、元素の添加をパイプの厚さ方向に対して濃度勾配
をつけることによって解決できる。すなわち濃度勾配を
つけることによって、割れの進展は添加元素量の多い部
分で防止でき、パイプの熱伝導特性や柔軟性は元の組成
もしくはそれに近い部分で確保できるため、本半導体装
置にとっては好ましい。さらに、添加元素は割れの亀裂
の起点となる表面層に供給することが効果的である。こ
れらの添加元素の供給方法としては、酸素は酸化、その
他の元素はめっきや蒸着等の方法を用いることができ、
厚さとしては数μm程度以下で良好な結果が得られる。
めっきや酸化によって供給された元素は接合時の高温下
で拡散し、その結果、表面層のみ添加元素量の増加した
銅パイプとすることができる。なお、添加量が多い場合
はあらかじめ、別の工程で元素を拡散させておいてか
ら、さらに接合プロセスに投入しても同様の効果が得ら
れる。
If the amount of the added element is too large, the melting point is lowered, the pipe is melted during the manufacturing process, the rigidity is improved, the warpage of the semiconductor device is increased, and the ceramic insulator 1 is cracked. However, there are various problems such as the fact that the addition element hinders the bonding, and these problems can be solved by adding the element with a concentration gradient in the thickness direction of the pipe. That is, by providing a concentration gradient, the progress of cracking can be prevented in the portion where the amount of the added element is large, and the heat conduction characteristics and flexibility of the pipe can be secured in the original composition or a portion close to it, which is preferable for the present semiconductor device. Furthermore, it is effective to supply the additive element to the surface layer which is the starting point of the crack. As a method of supplying these additional elements, oxygen may be oxidized, and other elements may be plated or vaporized.
Good results are obtained when the thickness is about several μm or less.
The element supplied by plating or oxidation diffuses at a high temperature at the time of joining, and as a result, it is possible to obtain a copper pipe having an increased amount of added element only in the surface layer. Note that when the addition amount is large, the same effect can be obtained by previously diffusing the element in another step and then adding the element to the bonding process.

【0082】なお、表面全体を酸化させた場合、裏面部
材との接合性を劣化させるため、内側のみに形成する
か、両面に形成したのち外側のみ、例えば酸で除去して
から接合プロセスに投入することが好ましい。
When the entire surface is oxidized, the bonding property with the back surface member is deteriorated. Therefore, it is formed only on the inner side, or formed on both sides and then removed only on the outer side, for example, with an acid and then put into the bonding process. Preferably.

【0083】実施例10.本発明の半導体装置におい
て、例えば実施例1の図1に示した半導体装置を使用す
る際、使用環境下において繰り返し温度サイクルが加わ
り、この温度サイクルは材料間の熱膨張差によって各部
材間には応力が発生し、特にこの応力によって破壊され
るのは脆性材料であるセラミック絶縁体1である。セラ
ミックの破壊を防止する一方策として本実施例では、ブ
ロック部材7がセラミック絶縁体1におよぼす応力を低
減し、半導体装置の信頼性を向上するための構造を示し
たものである。
Example 10. In the semiconductor device of the present invention, for example, when the semiconductor device shown in FIG. 1 of the first embodiment is used, a temperature cycle is repeatedly applied under a use environment. It is in the ceramic insulator 1 which is a brittle material that stress is generated and is destroyed in particular by this stress. As one measure to prevent the destruction of ceramics, this embodiment shows a structure for reducing the stress applied to the ceramic insulator 1 by the block member 7 and improving the reliability of the semiconductor device.

【0084】図11は本実施例におけるモジュール型の
半導体装置の断面図を示す。21は裏面部材の端部と密
接されるブロック部材の端部に形成された段差である。
その他の符号は実施例1と同一である。
FIG. 11 is a sectional view of a module type semiconductor device according to this embodiment. Reference numeral 21 is a step formed at the end of the block member that is in close contact with the end of the back member.
Other symbols are the same as those in the first embodiment.

【0085】ブロック部材7の表面を接合もしくは密着
される裏面部材2aの表面より小さくして、かつ裏面部
材2aの外縁より所定の領域を除いて、両部材間が接合
もしくは密着させるものである。図ではブロック部材7
の端部を削って、裏面部材2aと段差を生じるようにし
た。この結果、セラミック絶縁体1の割れの起点となる
裏面部材2aとの接合部のエッジ部分に加わる応力が低
減できる。この段差は、裏面部材2aの板厚程度が好ま
しい。段差が小さすぎると応力低減の効果が不十分で、
大きすぎると応力低減にとって効果的でないばかりでな
く、熱の伝達が悪くなって好ましくない。
The surface of the block member 7 is made smaller than the surface of the back surface member 2a to be joined or adhered, and the two members are joined or adhered to each other except a predetermined region from the outer edge of the back surface member 2a. In the figure, the block member 7
The end portion of was cut to form a step with the back surface member 2a. As a result, the stress applied to the edge portion of the joint with the back surface member 2a, which is the starting point of cracking of the ceramic insulator 1, can be reduced. This step is preferably about the thickness of the back surface member 2a. If the step is too small, the effect of stress reduction is insufficient,
If it is too large, not only is it ineffective in reducing stress, but heat transfer is poor, which is not preferable.

【0086】実施例1に示す半導体装置にだけでなく、
実施例2、実施例6、実施例7、および実施例8で裏面
部材もしくは回路導体にブロック部材を接合または密着
させる場合にも同様である。
Not only the semiconductor device shown in the first embodiment,
The same applies to the case where the block member is joined or adhered to the back surface member or the circuit conductor in the second, sixth, seventh, and eighth embodiments.

【0087】[0087]

【発明の効果】以上説明したように本発明に係る半導体
装置によれば、セラミック絶縁体の一の面に接合され、
このセラミック絶縁体との間に液体の流れる空間を形成
する凸状形状を有する第一の金属部材と、セラミック絶
縁体の反対側の面に接続された第二の金属部材と、第一
の金属部材の凸状形状をなす面上に設けられたブロック
部材と、上記第二の金属部材もしくはブロック部材のい
ずれか一方に搭載する半導体素子を備えたので、簡単な
構造にもかかわらず、半導体装置の発熱に対して効率良
く放熱して冷却をすることができる。
As described above, according to the semiconductor device of the present invention, it is bonded to one surface of the ceramic insulator,
A first metal member having a convex shape that forms a space in which a liquid flows between the ceramic insulator, a second metal member connected to the opposite surface of the ceramic insulator, and a first metal Since the block member provided on the convex surface of the member and the semiconductor element mounted on either the second metal member or the block member are provided, the semiconductor device is simple in spite of the simple structure. It is possible to efficiently dissipate the heat generated by the above and cool it.

【0088】また、本発明によれば、ブロック部材は、
金属部材の外縁より所定の領域を除いて、その金属部材
の面上に設けられたので、半導体装置の使用時に発生す
る応力を低減することができ、信頼性の高い半導体装置
が得られる。
Further, according to the present invention, the block member is
Since the metal member is provided on the surface of the metal member excluding a predetermined region from the outer edge thereof, stress generated when the semiconductor device is used can be reduced, and a highly reliable semiconductor device can be obtained.

【0089】また、本発明によれば、ブロック部材は金
属皮膜を付して金属部材に接合されたので、ブロック部
材と金属部材の接続部分の腐食を防ぐことができ、信頼
性の高い半導体装置が得られる。
Further, according to the present invention, since the block member is attached to the metal member by applying the metal coating, it is possible to prevent the corrosion of the connecting portion between the block member and the metal member, and to provide a highly reliable semiconductor device. Is obtained.

【0090】また、本発明によれば、ブロック部材の表
面に、第一および第二の金属部材の少なくともいずれか
一方の有する凸状形状に合致する凹状曲面を設けるとと
もに、その凸状形状の表面または凹状曲面のいずれか一
方に、凹凸の連続形状を形成し、ブロック部材を第一の
金属部材および第二の金属部材の少なくともいずれか一
方に密着するようにしたので、部材間のミクロ的な密着
状態が可能となり、良好な熱伝導性が得られる。
Further, according to the present invention, a concave curved surface matching the convex shape of at least one of the first and second metal members is provided on the surface of the block member, and the surface of the convex shape is provided. Alternatively, since the continuous shape of the concavities and convexities is formed on either one of the concave curved surfaces, and the block member is brought into close contact with at least one of the first metal member and the second metal member, a microscopic structure between the members is achieved. Adhesion is possible and good thermal conductivity is obtained.

【0091】また、本発明によれば、セラミック絶縁体
と液体の流れる空間の間に拘束部材を設けたので、液体
の流れる際の液圧によりセラミック絶縁体に発生する応
力を低減し、セラミック絶縁体の割れを防止でき、信頼
性の高い半導体装置を得ることができる。
Further, according to the present invention, since the restraint member is provided between the ceramic insulator and the space in which the liquid flows, the stress generated in the ceramic insulator due to the liquid pressure when the liquid flows can be reduced, and the ceramic insulation can be reduced. It is possible to prevent the body from cracking and obtain a highly reliable semiconductor device.

【0092】また、本発明によれば、セラミック絶縁体
の一の面上の所定箇所に設けられた液体の通路となるパ
イプと、パイプを覆うようにセラミック絶縁体の面上に
設けられたブロック部材と、セラミック絶縁体の反対側
の面に接合された金属部材と、その金属部材もしくはブ
ロック部材に搭載された半導体素子を備えたので、安定
した液体の供給、液体の回収が可能になり、また液体の
供給、回収等の取扱いも容易となる。
Further, according to the present invention, a pipe serving as a liquid passage provided at a predetermined position on one surface of the ceramic insulator, and a block provided on the surface of the ceramic insulator so as to cover the pipe. Since the member, the metal member joined to the opposite surface of the ceramic insulator, and the semiconductor element mounted on the metal member or the block member are provided, it becomes possible to stably supply the liquid and recover the liquid, Further, handling such as supply and recovery of liquid becomes easy.

【0093】また、本発明によれば、パイプは銅を主成
分とし、少なくともパイプの外側表層および内側表層の
いずれか一方に所定量添加されたものなので、パイプに
発生する割れを防止でき、信頼性の高い半導体装置を得
ることができる。
Further, according to the present invention, since the pipe contains copper as a main component and is added in a predetermined amount to at least one of the outer surface layer and the inner surface layer of the pipe, cracks that occur in the pipe can be prevented and reliability is improved. A highly reliable semiconductor device can be obtained.

【0094】また、本発明に係る半導体装置の製造方法
によると、少なくともいずれか一方に凸状形状を有する
第一の金属部材および第二の金属部材を、化学的固定剤
を介してセラミック絶縁体の両側の面上にそれぞれ配置
する第一の工程、加熱、加圧することによりセラミック
絶縁体と第一の金属部材および第二の金属部材を接合
し、一体化する第二の工程、凹状曲面を有するブロック
部材を、第一および第二の金属部材の少なくともいずれ
か一方に有する凸状形状とその凹状曲面が合致するよう
に、その第一の金属部材および第二の金属部材の少なく
ともいずれか一方に密着させる第三の工程を含むので、
放熱効率の良い半導体装置を製造することができる。
According to the method of manufacturing a semiconductor device of the present invention, at least one of the first metal member and the second metal member having a convex shape is provided with a ceramic insulator through a chemical fixing agent. The first step of arranging on both sides of each, the second step of joining and integrating the ceramic insulator and the first metal member and the second metal member by heating and pressing, the concave curved surface At least one of the first metal member and the second metal member so that the convex shape having the block member having at least one of the first and second metal members and the concave curved surface thereof match. Since it includes the third step of contacting
A semiconductor device with good heat dissipation efficiency can be manufactured.

【0095】また、本発明に係る半導体装置の製造方法
によると、ブロック部材に形成される凹状曲面の深さ
を、第一および第二の金属部材の少なくともいずれか一
方に形成された凸状形状の高さより浅く加工されて、ブ
ロック部材は第一の金属部材および第二の金属部材の少
なくともいずれか一方に加圧、密着させるので、凸状形
状、または凹状曲面の加工精度が悪くても、その凸面と
凹面はうまく密着され、熱伝導を安定に確保できる半導
体装置を製造することができる。
Further, according to the method of manufacturing a semiconductor device of the present invention, the depth of the concave curved surface formed on the block member is the convex shape formed on at least one of the first and second metal members. Is processed shallower than the height of the block member, since the block member is pressed against at least one of the first metal member and the second metal member, and is brought into close contact, even if the processing accuracy of the convex shape or the concave curved surface is poor, The convex surface and the concave surface are in close contact with each other, and it is possible to manufacture a semiconductor device capable of ensuring stable heat conduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るモジュール型半導体装置およびそ
の製造方法の一実施例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing one embodiment of a module-type semiconductor device and a method for manufacturing the same according to the present invention.

【図2】図1に示した半導体装置の概略構成を説明する
ための概略斜視図である。
FIG. 2 is a schematic perspective view for explaining a schematic configuration of the semiconductor device shown in FIG.

【図3】本発明に係るスタック型半導体装置を示す概略
断面図である。
FIG. 3 is a schematic cross-sectional view showing a stack type semiconductor device according to the present invention.

【図4】本発明に係る実施例2における半導体装置を示
す概略断面図である。
FIG. 4 is a schematic sectional view showing a semiconductor device according to a second embodiment of the present invention.

【図5】本発明に係る実施例2における別の半導体装置
を示す概略断面図である。
FIG. 5 is a schematic sectional view showing another semiconductor device according to the second embodiment of the present invention.

【図6】本発明に係る実施例3における半導体装置の製
造方法の一部を示す概略プロセス図である。
FIG. 6 is a schematic process diagram showing a part of a method for manufacturing a semiconductor device according to a third embodiment of the present invention.

【図7】本発明に係る実施例4における半導体装置のブ
ロック部材の凹状曲面部分を示す概略断面図である。
FIG. 7 is a schematic cross-sectional view showing a concave curved surface portion of a block member of a semiconductor device according to a fourth embodiment of the present invention.

【図8】本発明に係る実施例6における半導体装置を示
す概略断面図である。
FIG. 8 is a schematic sectional view showing a semiconductor device according to a sixth embodiment of the present invention.

【図9】本発明に係る実施例7における半導体装置を示
す概略断面図である。
FIG. 9 is a schematic sectional view showing a semiconductor device according to a seventh embodiment of the present invention.

【図10】本発明に係る実施例8における半導体装置を
示す概略断面図である。
FIG. 10 is a schematic sectional view showing a semiconductor device according to an eighth embodiment of the present invention.

【図11】本発明に係る実施例10における半導体装置
を示す概略断面図である。
FIG. 11 is a schematic sectional view showing a semiconductor device according to a tenth embodiment of the present invention.

【図12】従来のスタック型半導体装置を示す概略斜視
図である。
FIG. 12 is a schematic perspective view showing a conventional stack type semiconductor device.

【図13】図12に示した従来のスタック半導体装置を
示す概略断面図である。
13 is a schematic cross-sectional view showing the conventional stacked semiconductor device shown in FIG.

【図14】従来のモジュール型半導体装置を示す概略斜
視図である。
FIG. 14 is a schematic perspective view showing a conventional module type semiconductor device.

【図15】図14に示した従来のモジュール型半導体装
置を示す概略断面図である。
FIG. 15 is a schematic sectional view showing the conventional module-type semiconductor device shown in FIG.

【符号の説明】[Explanation of symbols]

1 セラミック絶縁体 2A 回路導体 2B 回路導体 2C 回路導体 2a 裏面部材 2b 裏面部材 3 半導体素子 4A はんだ層 5 液体 6A 拘束部材 6a 拘束部材 7 ブロック部材 8 接着層 9a パイプ部材 9b パイプ部材 9c パイプ 20 液路 30 凹凸スリット 1 Ceramic Insulator 2A Circuit Conductor 2B Circuit Conductor 2C Circuit Conductor 2a Backside Member 2b Backside Member 3 Semiconductor Element 4A Solder Layer 5 Liquid 6A Restraint Member 6a Restraint Member 7 Block Member 8 Adhesive Layer 9a Pipe Member 9b Pipe Member 9c Pipe 20 Liquid Path 30 uneven slits

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月2日[Submission date] February 2, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】また、第一の金属部材および第二の金属部
材を、化学的固定剤を介してセラミック絶縁体の両側の
にそれぞれ配置する第一の工程と、上記第一の金属
部材および第二の金属部材のうち少なくともいずれか一
方の所定位置にパイプを配置する第の工程と、加熱、
加圧することにより上記セラミック絶縁体と第一の金属
部材および第二の金属部材を接合すると同時に上記パイ
プを上記第一の金属部材および第二の金属部材の少なく
とも一方に接合する第の工程と、凹状曲面を有するブ
ロック部材を上記パイプの形状と上記ブロック部材の凹
状曲面とが合致するように、第一の金属部材および第二
の金属部材の少なくとも一方に密着させる第の工程を
含むものである。
Further, the first metal member and the second metallic member, a first step of placing each on both surfaces of the ceramic insulator through the chemical fixative, the upper Symbol first metal member And a second step of placing the pipe at a predetermined position of at least one of the second metal member, and heating,
By pressing, the ceramic insulator and the first metal
Less of the member and a second said simultaneously the pipe when the metal member is bonded to the first metal member and the second metallic member
And a third step of also bonded to one, a block member having a concave curved surface to match and a concave curved surface shape and the block member of the pipe, the less of the first metal member and the second metallic member also included a fourth step of adhering the hand.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0064[Correction target item name] 0064

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0064】また、セラミック絶縁体1の上方にも拘束
部材6Aを備えたが、この拘束部材6A、さらに回路部
材2を設けなくてもよい。しかし、セラミック絶縁体
1の両面で対称的に構成されない場合、装置にそりが生
じてしまう可能性があるので、図8のような対称な構造
にした方が好ましい。
[0064] Moreover, although even with a restraining member 6A above the ceramic insulator 1, the restraining member 6A, may not be further provided circuit member 2 B. However, if the ceramic insulator 1 is not symmetrically formed on both sides, warpage may occur in the device. Therefore, the symmetrical structure as shown in FIG. 8 is preferable.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0072[Name of item to be corrected] 0072

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0072】以上の構成による半導体装置の製造プロセ
スを説明する。半導体装置の構成部材を接合装置中にセ
ットした後、接合するプロセスは実施例6で述べたもの
と基本的に同じである。所定の長さをもつパイプ9cを
例えば裏面部材2aに接合するプロセスを以下に述べ
る。
A manufacturing process of the semiconductor device having the above configuration will be described. Set the components of the semiconductor device in the bonding device.
After Tsu bets, the process of junction is basically the same as that described in Example 6. A process of joining the pipe 9c having a predetermined length to the back surface member 2a will be described below.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0073[Correction target item name] 0073

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0073】パイプ9cとして例えば円筒形状のものを
利用する場合は、接合プロセスとしては加熱、加圧のタ
イミングを次のようにコントロールする必要がある。ま
ず、無負荷もしくはパイプ9cが変形しない圧力下で加
熱を開始する。次にパイプ9cと裏面部材2aが反応・
接合を開始した後に加圧を加え、好ましくは接合の進み
具合いに合わせて徐々にパイプ9cを変形させ、裏面部
材2aとの接合面積を増加させる。さらに、所望の変形
状態に達した時点でそれぞれの部材の接合反応を十分進
行させるため10分程度の時間を保持したのち除荷、冷
却することによって、パイプ9cと裏面部材2aは拡散
接合により強固に接合される。また、同時に他の構成部
材間も強固に接合される。以上のプロセスを用いない場
合はパイプ9cと裏面部材2aの接合が十分確保できな
いため、パイプ9cが図6に示したような半円形状とな
らず、三日月状となり、パイプ9cと裏面部材2aの接
合面積が小さくなる結果、冷却効率が大幅に低下し、本
装置の特徴が失われる。
When a pipe having a cylindrical shape, for example, is used as the pipe 9c, it is necessary to control the timing of heating and pressurizing as follows in the joining process. First, heating is started under no load or under a pressure that does not deform the pipe 9c. Next, the pipe 9c reacts with the back surface member 2a.
After joining is started, pressure is applied, and preferably the pipe 9c is gradually deformed in accordance with the progress of joining to increase the joining area with the back surface member 2a. Further, when the desired deformation state is reached, the pipe 9c and the back surface member 2a are firmly joined by diffusion bonding by holding the time for about 10 minutes in order to sufficiently advance the bonding reaction of each member, and then unloading and cooling. To be joined to. At the same time, other components
The materials are also firmly joined. If the above process is not used, the joint between the pipe 9c and the back member 2a cannot be sufficiently secured, so the pipe 9c does not have the semicircular shape as shown in FIG. As a result of the smaller bonding area, the cooling efficiency is significantly reduced, and the features of this device are lost.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0077[Correction target item name] 0077

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0077】実施例8.実施例7においては、パイプ9
cとセラミック絶縁体1との間に拘束部材6aが設けら
れた場合について述べた。セラミック絶縁体1にかかる
応力による割れを防止する効果は少なくなるが、拘束部
材を特に設けなくてもよい。図10は拘束部材を設けな
い場合に、パイプにより液路を形成した半導体装置の断
面図を示したものである。図はセラミック絶縁体1に裏
面部材2aを介してパイプ9cを接合された構成の場合
である。図の半導体装置の製造プロセスは、実施例7と
同様である。なお、拘束部材を用いない本実施例では、
半導体装置のそりの問題やセラミック絶縁体1の割れ等
を考慮し、パイプの厚さは実施例7のものより小さい、
およそ0.3mm以下のものを用いることが望ましい。
Example 8. In Example 7, the pipe 9
The case where the restraint member 6a is provided between the c and the ceramic insulator 1 has been described. Although the effect of preventing cracks due to the stress applied to the ceramic insulator 1 is reduced, the restraint member need not be provided in particular. FIG. 10 is a cross-sectional view of a semiconductor device in which a liquid path is formed by a pipe when a restraint member is not provided. The figure shows the case where the pipe 9c is joined to the ceramic insulator 1 via the back surface member 2a. Manufacturing process of the semiconductor device of figure Example 7
It is the same. Contact name in this embodiment using no restraint member,
The thickness of the pipe is smaller than that of the seventh embodiment in consideration of the warpage problem of the semiconductor device and the cracking of the ceramic insulator 1.
It is desirable to use one having a size of about 0.3 mm or less.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 セラミック絶縁体と、上記セラミック絶
縁体の一の面に接合され、上記セラミック絶縁体との間
に液体の流れる空間を形成する凸状形状を有する第一の
金属部材と、上記セラミック絶縁体の反対側の面に接続
された第二の金属部材と、上記第一の金属部材の凸状形
状をなす面上に設けられたブロック部材と、上記第二の
金属部材もしくはブロック部材に搭載された半導体素子
を備えたことを特徴とした半導体装置。
1. A ceramic insulator, a first metal member joined to one surface of the ceramic insulator, and having a convex shape that forms a space in which a liquid flows between the ceramic insulator and the ceramic insulator, A second metal member connected to the opposite surface of the ceramic insulator, a block member provided on the convex surface of the first metal member, and the second metal member or the block member. A semiconductor device comprising a semiconductor element mounted on.
【請求項2】 セラミック絶縁体と、上記セラミック絶
縁体の両側の面に接合され、上記セラミック絶縁体との
間に液体の流れる空間を形成する凸状形状を有する第一
の金属部材および第二の金属部材と、上記第一および第
二の金属部材の凸状形状をなす面上にそれぞれ設けられ
た第一のブロック部材および第二のブロック部材と、上
記第一もしくは第二のブロック部材に搭載された半導体
素子を備えたことを特徴とした半導体装置。
2. A first metal member and a second metal member, which are joined to both sides of the ceramic insulator and have a convex shape that forms a space for liquid to flow between the ceramic insulator and the ceramic insulator. Of the metal member, the first block member and the second block member respectively provided on the surface forming the convex shape of the first and second metal member, the first or second block member A semiconductor device comprising a mounted semiconductor element.
【請求項3】 ブロック部材は、金属部材の外縁より所
定の領域を除いて、上記第一および第二の金属部材の少
なくとも一方の面上に設けられたことを特徴をする請求
項1もしくは請求項2に記載の半導体装置。
3. The block member is provided on at least one surface of the first and second metal members except a predetermined region from the outer edge of the metal member. Item 2. The semiconductor device according to item 2.
【請求項4】 ブロック部材は金属皮膜を付して金属部
材に接合されたことを特徴とする請求項1ないし請求項
3のいずれか一項記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the block member is bonded to the metal member by applying a metal film.
【請求項5】 ブロック部材の表面に第一および第二の
金属部材の少なくともいずれか一方の有する凸状形状に
合致する凹状曲面を設けるとともに、上記凸状形状の表
面もしくは凹状曲面に凹凸の連続形状を形成し、上記凸
状形状と凹状曲面を合致するように上記ブロック部材を
上記第一の金属部材および第二の金属部材の少なくとも
いずれか一方に密着するようにしたことを特徴とする請
求項1ないし請求項4のいずれか一項記載の半導体装
置。
5. A concave curved surface matching the convex shape of at least one of the first and second metal members is provided on the surface of the block member, and the surface of the convex shape or the concave curved surface is continuously concavo-convex. A shape is formed, and the block member is brought into close contact with at least one of the first metal member and the second metal member so as to match the convex shape and the concave curved surface. The semiconductor device according to any one of claims 1 to 4.
【請求項6】 セラミック絶縁体と液体の流れる空間の
間に拘束部材を設けたことを特徴とする請求項1ないし
請求項5のいずれか一項記載の半導体装置。
6. The semiconductor device according to claim 1, further comprising a restraint member provided between the ceramic insulator and the space through which the liquid flows.
【請求項7】 セラミック絶縁体と、上記セラミック絶
縁体の一の面上の所定箇所に設けられた液体の通路とな
るパイプと、上記パイプを覆うように、上記セラミック
絶縁体の面上に設けられたブロック部材と、上記セラミ
ック絶縁体の反対側の面に接合された金属部材と、上記
金属部材もしくはブロック部材に搭載された半導体素子
を備えたことを特徴とする半導体装置。
7. A ceramic insulator, a pipe serving as a liquid passage provided at a predetermined position on one surface of the ceramic insulator, and provided on the surface of the ceramic insulator so as to cover the pipe. A block member, a metal member joined to the opposite surface of the ceramic insulator, and a semiconductor element mounted on the metal member or the block member.
【請求項8】 セラミック絶縁体と、セラミック絶縁体
の両側の面上の所定箇所に設けられた液体の通路となる
第一のパイプおよび第二のパイプと、上記第一および第
二のパイプをそれぞれ覆うように、セラミック絶縁体の
両側の面上に設けられた第一のブロック部材および第二
のブロック部材と、上記第一もしくは第二のブロック部
材に搭載された半導体素子を備えたことを特徴とする半
導体装置。
8. A ceramic insulator, a first pipe and a second pipe serving as liquid passages provided at predetermined positions on both sides of the ceramic insulator, and the first and second pipes. A first block member and a second block member provided on both sides of the ceramic insulator so as to respectively cover, and a semiconductor element mounted on the first or second block member. Characteristic semiconductor device.
【請求項9】 セラミック絶縁体とパイプの間に拘束部
材を設けたことを特徴とする請求項7もしくは請求項8
に記載の半導体装置。
9. The restraint member is provided between the ceramic insulator and the pipe, and the restraint member is provided.
The semiconductor device according to.
【請求項10】 パイプは銅を主成分とし、上記パイプ
の少なくとも外側表層および内側表層のいずれか一方に
所定の元素が所定の量添加されたことを特徴とする請求
項7ないし請求項9のいずれか一項記載の半導体装置。
10. The pipe according to claim 7, wherein the pipe contains copper as a main component, and a predetermined amount of a predetermined element is added to at least one of the outer surface layer and the inner surface layer of the pipe. The semiconductor device according to claim 1.
【請求項11】 拘束部材はモリブデン、またはタング
ステン、もしくは双方のうち少なくとも一方を主成分と
する合金からなることを特徴とする請求項6もしくは請
求項9に記載の半導体装置。
11. The semiconductor device according to claim 6, wherein the restraint member is made of molybdenum, tungsten, or an alloy containing at least one of the two as a main component.
【請求項12】 少なくともいずれか一方に凸状形状を
有する第一の金属部材および第二の金属部材を、化学的
固定剤を介してセラミック絶縁体の両側の面上にそれぞ
れ配置する第一の工程と、加熱、加圧することにより上
記セラミック絶縁体と第一の金属部材および第二の金属
部材を接合し、一体化する第二の工程と、凹状曲面を有
するブロック部材を、上記第一および第二の金属部材の
少なくとも一方の有する凸状形状と上記ブロック部材の
凹状曲面が合致するように、上記第一の金属部材および
第二の金属部材の少なくとも一方に密着させる第三の工
程を含むことを特徴とする半導体装置の製造方法。
12. A first metal member and a second metal member having a convex shape on at least one of them are arranged on both surfaces of a ceramic insulator through a chemical fixative, respectively. The step, the second step of joining the ceramic insulator and the first metal member and the second metal member by heating and pressurizing, and integrating them, the block member having a concave curved surface, A third step of closely contacting at least one of the first metal member and the second metal member so that the convex shape of at least one of the second metal member and the concave curved surface of the block member match. A method of manufacturing a semiconductor device, comprising:
【請求項13】 第一の金属部材および第二の金属部材
を、化学的固定剤を介してセラミック絶縁体の両側の面
上にそれぞれ配置する第一の工程と、第一の金属部材お
よび第二の金属部材の面上の少なくともいずれか一方に
拘束部材を配置し、さらに上記拘束部材の面上に凸状形
状を有する第三の金属部材を配置する第二の工程と、加
熱、加圧することにより、上記セラミック絶縁体と上記
第一の金属部材および第二の金属部材とを、上記第一の
金属部材もしくは第二の金属部材と上記拘束部材とを、
さらに上記拘束部材と上記第三の金属部材とをそれぞれ
接合させる第三の工程と、凹状曲面を有するブロック部
材を、上記第三の金属部材の有する凸状形状と上記ブロ
ック部材の凹状曲面とが合致するように上記第三の金属
部材に密着させる第四の工程を含むことを特徴とする半
導体装置の製造方法。
13. A first step of disposing a first metal member and a second metal member on both sides of a ceramic insulator through a chemical fixing agent, respectively, and a first metal member and a first metal member. A second step of disposing a restraint member on at least one of the surfaces of the second metal member and further disposing a third metal member having a convex shape on the surface of the restraint member, and heating and pressurizing. Thereby, the ceramic insulator and the first metal member and the second metal member, the first metal member or the second metal member and the restraint member,
Furthermore, a third step of joining the constraining member and the third metal member, respectively, a block member having a concave curved surface, the convex shape of the third metal member and the concave curved surface of the block member A method of manufacturing a semiconductor device, comprising a fourth step of bringing the third metal member into close contact with the third metal member so as to match.
【請求項14】 請求項12の第三の工程、および請求
項13の第四の工程において、ブロック部材に形成され
る凹状曲面の深さを、第一の金属部材および第二の金属
部材のうち少なくともいずれか一方に形成された凸状形
状の高さより浅く加工し、上記ブロック部材の凹状曲面
と上記第一の金属部材および第二の金属部材の少なくと
もいずれか一方の凸状形状とが合致するように加圧、密
着させることを特徴とする請求項12記載もしくは請求
項13に半導体装置の製造方法。
14. In the third step of claim 12 and the fourth step of claim 13, the depth of the concave curved surface formed in the block member is set to the depth of the first metal member and the second metal member. Processed to be shallower than the height of the convex shape formed on at least one of them, and the concave curved surface of the block member matches the convex shape of at least one of the first metal member and the second metal member. 14. The method for manufacturing a semiconductor device according to claim 12 or claim 13, wherein the pressure is applied and the contact is made.
【請求項15】 請求項12の第三の工程、および請求
項13の第四の工程において、ブロック部材に形成され
る凹状曲面、もしくは第一の金属部材および第二の金属
部材の少なくともいずれか一方に形成された凸状形状の
表面に、凹凸の連続形状を形成し、上記ブロック部材の
凹状曲面と上記第一の金属部材および第二の金属部材の
少なくともいずれか一方の凸状曲面とが合致するように
加圧、密着させることを特徴とする請求項12もしくは
請求項13に記載の半導体装置の製造方法。
15. The concave curved surface formed on the block member or at least one of the first metal member and the second metal member in the third step of claim 12 and the fourth step of claim 13. On the surface of the convex shape formed on one side, a continuous shape of irregularities is formed, and the concave curved surface of the block member and the convex curved surface of at least one of the first metal member and the second metal member are 14. The method of manufacturing a semiconductor device according to claim 12, wherein the pressure and the pressure are closely contacted so as to match each other.
【請求項16】 第一の金属部材および第二の金属部材
を、化学的固定剤を介してセラミック絶縁体の両側の面
上にそれぞれ配置する第一の工程と、加熱、加圧するこ
とにより上記セラミック絶縁体と第一の金属部材および
第二の金属部材を接合する第二の工程と、上記第一の金
属部材および第二の金属部材のうち少なくともいずれか
一方の所定位置にパイプを配置する第三の工程と、加
熱、加圧することにより上記パイプを上記第一の金属部
材および第二の金属部材の少なくとも一方に接合する第
四の工程と、凹状曲面を有するブロック部材を、上記パ
イプの形状と上記ブロック部材の凹状曲面とが合致する
ように、第一の金属部材および第二の金属部材の少なく
とも一方に密着させる第五の工程を含むことを特徴とす
る半導体装置の製造方法。
16. A first step of arranging a first metal member and a second metal member on both sides of a ceramic insulator with a chemical fixing agent, respectively, and heating and pressurizing the above step. A second step of joining the ceramic insulator to the first metal member and the second metal member, and arranging the pipe at a predetermined position of at least one of the first metal member and the second metal member. A third step, a fourth step of joining the pipe to at least one of the first metal member and the second metal member by heating and pressing, and a block member having a concave curved surface of the pipe. A method of manufacturing a semiconductor device, which comprises a fifth step of bringing the shape and the concave curved surface of the block member into close contact with at least one of the first metal member and the second metal member. Law.
【請求項17】 第四の工程において、加熱するととも
に、パイプと接触する金属部材との間で接合が開始した
後に加圧し、上記パイプを変形させることにより接触面
積を増加させ、高温下で一定時間、変形されたパイプを
保持して上記パイプと金属部材とを接合するようにした
ことを特徴とする請求項16記載の半導体装置の製造方
法。
17. In the fourth step, the pipe is deformed by applying pressure after the joining between the metal member in contact with the pipe is heated and the pipe is deformed to increase the contact area, and the temperature is kept constant at high temperature. 17. The method for manufacturing a semiconductor device according to claim 16, wherein the deformed pipe is held for a time to bond the pipe and the metal member.
JP5274512A 1993-11-02 1993-11-02 Semiconductor device and its manufacture Pending JPH07130925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5274512A JPH07130925A (en) 1993-11-02 1993-11-02 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274512A JPH07130925A (en) 1993-11-02 1993-11-02 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH07130925A true JPH07130925A (en) 1995-05-19

Family

ID=17542736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274512A Pending JPH07130925A (en) 1993-11-02 1993-11-02 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH07130925A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253639A2 (en) * 2001-04-27 2002-10-30 Aavid Thermalloy S.r.l. A fluid-cooled heat sink for electronic components
JP2007067258A (en) * 2005-09-01 2007-03-15 Mitsubishi Materials Corp Cooler and power module
EP1921676A1 (en) * 2006-11-13 2008-05-14 Aavid Thermalloy S.r.l. Heat sink
JP2009302417A (en) * 2008-06-17 2009-12-24 Furukawa Electric Co Ltd:The Method for fixing heat pipe and heat sink
CN109556440A (en) * 2018-12-26 2019-04-02 上海毫厘机电科技有限公司 Ceramic cold plate for medical MR system
JP2019168190A (en) * 2018-03-26 2019-10-03 株式会社富士通ゼネラル Metal laminate and method of manufacturing metal laminate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253639A2 (en) * 2001-04-27 2002-10-30 Aavid Thermalloy S.r.l. A fluid-cooled heat sink for electronic components
EP1253639A3 (en) * 2001-04-27 2004-06-09 Aavid Thermalloy S.r.l. A fluid-cooled heat sink for electronic components
JP2007067258A (en) * 2005-09-01 2007-03-15 Mitsubishi Materials Corp Cooler and power module
JP4600220B2 (en) * 2005-09-01 2010-12-15 三菱マテリアル株式会社 Cooler and power module
EP1921676A1 (en) * 2006-11-13 2008-05-14 Aavid Thermalloy S.r.l. Heat sink
JP2009302417A (en) * 2008-06-17 2009-12-24 Furukawa Electric Co Ltd:The Method for fixing heat pipe and heat sink
JP2019168190A (en) * 2018-03-26 2019-10-03 株式会社富士通ゼネラル Metal laminate and method of manufacturing metal laminate
CN109556440A (en) * 2018-12-26 2019-04-02 上海毫厘机电科技有限公司 Ceramic cold plate for medical MR system

Similar Documents

Publication Publication Date Title
EP2980844B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
KR101971756B1 (en) Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
KR102422607B1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
EP1403922B1 (en) Combined member of aluminum-ceramics
JPH07211832A (en) Power radiating device and manufacture thereof
EP3093856B1 (en) Resistor and production method for resistor
JP2007184315A (en) Resin-sealed power semiconductor module
JP5957862B2 (en) Power module substrate
US11090750B2 (en) Method for producing a cooling device, a cooling device and a cooling arrangement
JPH04162756A (en) Semiconductor module
WO2023221970A1 (en) Power module, power supply system, vehicle, and photovoltaic system
JP2010010561A (en) Power module substrate and method of manufacturing the same
JP2005191502A (en) Electronic part cooling device
JP5989465B2 (en) Insulating substrate manufacturing method
CN111696877A (en) Device and method for joining at least two joining members
JP2004022914A (en) Insulated circuit board, cooling structure therefor, power semiconductor device, and cooling structure therefor
JP2005094842A (en) Inverter arrangement and manufacturing method thereof
JP2013207237A (en) Manufacturing method of substrate for power module with heat sink
JPH07130925A (en) Semiconductor device and its manufacture
JP2017135183A (en) Semiconductor device
JP2016152385A (en) Substrate for power module and power module
JPH10144967A (en) Thermoelectric element module for cooling
KR100934827B1 (en) Workpiece support for processing device and processing device using same
JP2015213097A (en) Heat radiator, manufacturing method thereof and package for storing semiconductor device
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module