JP2007184315A - Resin-sealed power semiconductor module - Google Patents

Resin-sealed power semiconductor module Download PDF

Info

Publication number
JP2007184315A
JP2007184315A JP2006000018A JP2006000018A JP2007184315A JP 2007184315 A JP2007184315 A JP 2007184315A JP 2006000018 A JP2006000018 A JP 2006000018A JP 2006000018 A JP2006000018 A JP 2006000018A JP 2007184315 A JP2007184315 A JP 2007184315A
Authority
JP
Japan
Prior art keywords
power semiconductor
sealing
circuit pattern
semiconductor module
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006000018A
Other languages
Japanese (ja)
Other versions
JP4569473B2 (en
Inventor
Akihiro Tanba
昭浩 丹波
Kazuhiro Suzuki
和弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006000018A priority Critical patent/JP4569473B2/en
Publication of JP2007184315A publication Critical patent/JP2007184315A/en
Application granted granted Critical
Publication of JP4569473B2 publication Critical patent/JP4569473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an epoxy resin sealed IGBT module in which miniaturization, high output, high reliability, and long lifetime are attained. <P>SOLUTION: In the power semiconductor module, a ceramics substrate, to which an Si chip is bonded, is soldered to a copper base, two rows or more of trench are formed in the surface of the copper base around the ceramics substrate, the entire region to be sealed is coated uniformly with polyamide resin with a thickness of 10 μm or smaller and then transfer-molding of epoxy resin is carried out. Furthermore, connectors employed are all female connectors and are exposed only to the upper surface of the sealing region, only the inside of the upper surface of copper base are made to serve as the sealing region, and a plurality of attaching holes are provided in the copper base on the outside of the sealing region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パワー半導体モジュール、特に、車載用途等の信頼性が高く、寿命が長いIGBTモジュールの構造に関する。   The present invention relates to a power semiconductor module, and more particularly to a structure of an IGBT module having a high reliability and a long life for in-vehicle applications.

定格電流が百アンペア程度以上の大容量IGBTモジュール等、大容量パワー半導体モジュールの封止形態は、パワー半導体チップ、絶縁基板、金属ベース他が接着され内蔵されている樹脂ケース中を、シリコーンゲル等のソフトレジンで封止する構造が一般的である。これは、各種異種部材が接合されているため、歪や、応力が内在した構造体を、剛性の高い樹脂で封止すると、封止時に新たに大きな応力を発生させ、内蔵部材を破壊させる懸念があり、構造的に成立しにくいためである。   Large capacity power semiconductor modules, such as large capacity IGBT modules with rated currents of about 100 amps or higher, are sealed in a resin case in which a power semiconductor chip, an insulating substrate, a metal base, etc. are bonded. A structure sealed with a soft resin is generally used. This is because various dissimilar members are joined, and if a structure containing strain or stress is sealed with a highly rigid resin, a large stress is newly generated during sealing, and the built-in member may be destroyed. This is because it is difficult to establish structurally.

一方、定格電流数十アンペア以下の低容量パワー半導体モジュールでは、非絶縁性ディスクリートパッケージに代表されるように、構造が比較的単純で、かつ小型であるため、ハードレジンであるエポキシ樹脂で封止しても、上述の大容量パワー半導体モジュールで生じた応力による問題が、発生しづらい。そのために、これらの低容量パワー半導体モジュールでは、エポキシ樹脂でトランスファモールドする構造が、採用されている。このようにトランスファモールドされたパッケージでは、内蔵された部材間の接合応力が分散・低減されることが知られている。   On the other hand, low-capacity power semiconductor modules with a rated current of several tens of amperes or less, as represented by non-insulating discrete packages, have a relatively simple structure and are small, so they are sealed with hard resin epoxy resin. Even so, problems due to stress generated in the above-described large-capacity power semiconductor module are unlikely to occur. Therefore, in these low-capacity power semiconductor modules, a structure in which transfer molding is performed with an epoxy resin is employed. In such a transfer molded package, it is known that the joint stress between the built-in members is dispersed and reduced.

特許文献1には、図12に断面模式図を示すような、トランスファモールドを大容量パワー半導体モジュールに適用したものが開示されている。特許文献1では、パッケージ1200の絶縁を、大容量品では一般的なセラミックス基板ではなく、応力発生の少ない柔らかい絶縁樹脂シート1204で実現し、熱伝導率が低い絶縁樹脂シート1204の欠点を解消するために、厚く、大きな銅製のヒートスプレッダ1206を採用し、この上にパワー半導体チップ1202をはんだ1203で接着し、熱を大きく拡散させて伝熱面積を大きくして熱抵抗の低下を図っている。線膨張係数が大きく異なるSiと銅を接着する場合、接着はんだ層の応力が大きくなり、亀裂が発生がするが、特許文献1では全体をエポキシ樹脂1201で封止して、はんだ1203の応力・歪を分散、低減し、温度サイクルによるクラック防止を図っている。   Patent Document 1 discloses a transfer mold applied to a large-capacity power semiconductor module as shown in a schematic cross-sectional view in FIG. In Patent Document 1, the insulation of the package 1200 is realized by a soft insulating resin sheet 1204 with less stress generation rather than a general ceramic substrate in a large-capacity product, and the drawbacks of the insulating resin sheet 1204 with low thermal conductivity are eliminated. Therefore, a thick and large copper heat spreader 1206 is employed, and a power semiconductor chip 1202 is bonded thereto with solder 1203, and heat is diffused greatly to increase a heat transfer area to reduce thermal resistance. When bonding Si and copper having greatly different linear expansion coefficients, the stress of the bonded solder layer increases and cracks occur. However, in Patent Document 1, the whole is sealed with an epoxy resin 1201, and the stress of the solder 1203 Strain is dispersed and reduced to prevent cracking due to temperature cycling.

特許文献2には、パワー半導体モジュールの一箇所で良好な熱的接触を実現するために、封止樹脂にボルト用貫通孔を備え、特別な取り付け治具を用いるものが開示されている。   Japanese Patent Application Laid-Open No. H10-228561 discloses a device in which a sealing resin is provided with a through-hole for a bolt and a special mounting jig is used in order to achieve good thermal contact at one location of the power semiconductor module.

エポキシ樹脂で封止するパッケージは、上述したように、内蔵物の応力が分散・低減することが特徴である。しかしながら、この効果は、内蔵物と封止エポキシ樹脂の接着性が良好であって初めて達成される。しかしながら、エポキシ樹脂の接着性は十分ではないのが現状である。そこで、特許文献3では、エポキシ樹脂と内蔵物の界面にポリアミド樹脂をコーティングして接着性を確保している。   As described above, the package sealed with the epoxy resin is characterized in that the stress of the built-in material is dispersed and reduced. However, this effect is achieved only when the adhesion between the built-in material and the sealing epoxy resin is good. However, at present, the adhesiveness of the epoxy resin is not sufficient. Therefore, in Patent Document 3, a polyamide resin is coated on the interface between the epoxy resin and the built-in material to ensure adhesion.

特開2004−165281号公報(図2と、(0056)段落から(0060)段落の記載。)JP 2004-165281 A (Description of FIG. 2 and paragraphs (0056) to (0060)) 特開2004−87552号公報(図1、図2と、(0008)段落から(0010)段落の記載。)JP 2004-87552 A (FIGS. 1 and 2 and descriptions from paragraphs (0008) to (0010)). 特開2003−124406号公報(図1と、(0024)段落から(0025)段落の記載。)JP 2003-124406 A (Description of FIG. 1 and paragraphs (0024) to (0025))

前記特許文献1に開示のパワーモジュールでは、パッケージの放熱器への取り付けが困難である。また、特許文献2に開示のパワーモジュールでは取り付けに特別な冶具が必要になるので、工数を含め実装コストが増大する。また、特許文献2の構造では、中央の取り付けボルト用貫通穴はパッケージに穴を穿って作られており、ボルトが封止樹脂を締結するので、樹脂のクリープによる締結力の経年劣化の懸念がある。   In the power module disclosed in Patent Document 1, it is difficult to attach the package to a heat radiator. Moreover, since the power module disclosed in Patent Document 2 requires a special jig for mounting, the mounting cost including man-hours increases. Moreover, in the structure of Patent Document 2, the through hole for the mounting bolt in the center is formed by making a hole in the package, and the bolt fastens the sealing resin, so there is a concern that the fastening force may deteriorate over time due to resin creep. is there.

また、特許文献3に開示のパワーモジュールでは、コーティング樹脂がエポキシ樹脂に比べて柔らかいために、接着性が改善される一方、エポキシ樹脂の応力分散・低減効果が減少する可能性がある。   Further, in the power module disclosed in Patent Document 3, since the coating resin is softer than the epoxy resin, the adhesiveness is improved, while the stress dispersion / reduction effect of the epoxy resin may be reduced.

本発明の目的は、パワー半導体素子をトランスファモールド等によりエポキシ封止するモジュールで、モジュールのサイズを大型にすることなく、放熱ベースへの固定や配線部材の取り付けが容易で、内蔵部材とエポキシ樹脂の接着性を、エポキシ封止による部材の応力分散・低減を損なうことなく実現したパワー半導体モジュールを提供することである。   An object of the present invention is a module in which a power semiconductor element is epoxy-sealed by a transfer mold or the like, and can be easily fixed to a heat radiating base or attached to a wiring member without increasing the size of the module. It is to provide a power semiconductor module that realizes the adhesive property without impairing the stress dispersion / reduction of the member by epoxy sealing.

本発明は、モジュールサイズを増大させること無く、放熱板(金属ベース)のボルト締めによるモジュール取り付けを実現するため、エポキシ封止領域を金属ベースの内側とし、封止領域外側の金属ベース領域をモジュール取り付け領域としている。本構造は、封止領域の最外周に、溝、突起等の封止樹脂かしめ手段を設けるとともに、封止樹脂と内蔵部材の接着層となる、エポキシ樹脂よりも硬度の低いコーティング層を内蔵部材に設けることで、封止エポキシ樹脂と部材との接着性を強固にして実現される。また、従来技術のエポキシ封止パッケージでは、パッケージの側面から出していた端子を、エポキシ樹脂封止領域の上面に露出させることで、上記、金属ベース内側の封止領域を実現し、モジュールの大幅な小型化を実現している。さらに、本構造は、必要に応じ、端子の強度を低減させ、内蔵物に過度な応力を発生させないようにして実現している。   In the present invention, in order to realize module mounting by bolting a heat sink (metal base) without increasing the module size, the epoxy sealing area is inside the metal base, and the metal base area outside the sealing area is the module. The mounting area. In this structure, sealing resin caulking means such as grooves and protrusions are provided on the outermost periphery of the sealing region, and a coating layer having a hardness lower than that of epoxy resin, which serves as an adhesive layer between the sealing resin and the built-in member, is provided. By providing in, the adhesiveness of a sealing epoxy resin and a member is strengthened and implement | achieved. Moreover, in the epoxy sealing package of the prior art, the above-mentioned sealing region inside the metal base is realized by exposing the terminal that has been taken out from the side of the package to the upper surface of the epoxy resin sealing region. Realized miniaturization. Furthermore, this structure is realized by reducing the strength of the terminals as needed and not generating excessive stress in the built-in objects.

本発明のパワー半導体モジュールは放熱器との良好な熱的接触を実現した。さらに、本発明のパワー半導体モジュールは、エポキシ樹脂の内蔵物歪分散・低減効果を損なうことなく、モジュールの信頼性・寿命を大幅に向上させることができる。   The power semiconductor module of the present invention achieves good thermal contact with the radiator. Furthermore, the power semiconductor module of the present invention can greatly improve the reliability and life of the module without impairing the effect of dispersing and reducing the internal resin strain of the epoxy resin.

本発明のIGBTモジュールは、従来技術のシリコーンゲル封止に代えて、エポキシ樹脂でトランスファモールド封止し、長寿命と、高い信頼性とを実現できる構造とした。本発明のエポキシ樹脂でトランスファモールド封止したIGBTモジュールは、封止樹脂と部材の接着性改善を、部材の応力分散・低減効果を損なわないように実現し、かつ、モジュールサイズを大型化させずに、信頼性が高いモジュール取り付け手段である金属ベースをボルト締結する取り付けとした。以下、本発明の詳細を図面を用いながら説明する。   The IGBT module of the present invention has a structure capable of realizing a long life and high reliability by performing transfer mold sealing with an epoxy resin in place of the conventional silicone gel sealing. The IGBT module encapsulated in the transfer mold with the epoxy resin of the present invention realizes an improvement in the adhesion between the sealing resin and the member without impairing the stress dispersion / reduction effect of the member, and without increasing the module size. In addition, a metal base, which is a highly reliable module attachment means, is attached by bolt fastening. The details of the present invention will be described below with reference to the drawings.

図1は、本実施例IGBTモジュールの断面摸式図であり、図7は本実施例に使用される放熱ベースである銅ベースの平面模式図、図8は、図7中のモールド樹脂かしめ領域の断面摸式図である。本実施例では、銅ベース109が、放熱フィン110を裏面に有するフィン付き銅ベースである。すなわち、本実施例のIGBTモジュールでは、放熱フィン110が付いた銅ベース109に直接冷却水が当てられることによりモジュールが冷却される。図11は、本実施例のモジュール長手方向の断面構造模式図である。   FIG. 1 is a schematic cross-sectional view of the IGBT module of this embodiment, FIG. 7 is a schematic plan view of a copper base as a heat dissipation base used in this embodiment, and FIG. 8 is a mold resin caulking region in FIG. FIG. In this embodiment, the copper base 109 is a finned copper base having the radiation fins 110 on the back surface. That is, in the IGBT module of this embodiment, the module is cooled by directly applying cooling water to the copper base 109 with the heat radiation fins 110 attached thereto. FIG. 11 is a schematic cross-sectional view of the module longitudinal direction of the present embodiment.

本実施例のIGBTモジュール100の定格電圧/電流は、各々600V/400Aである。IGBTチップ104とこのIGBTチップ104の主電極に逆並列に接続したFree Wheeling Diodeチップ(FWDチップ105と以下略す。)は、シリコンの各2チップが並列で一枚の銅貼りの回路パターンが付いたAlN基板107に、はんだ106で接着されている。図1ではIGBT、FWD各々1チップの断面が示されている。銅貼りの回路パターンが付いたAlN基板107の部材厚さは、以下の通りである。表面回路パタン厚さ0.3mm、裏面銅板厚さ0.2mm、AlN厚さ0.635mm である。IGBTチップ104、FWDチップ105の厚さは0.35mmであり、はんだ106の厚さは0.1mmである。このはんだ106は、融点300℃程度の高融点はんだである。   The rated voltage / current of the IGBT module 100 of the present embodiment is 600V / 400A, respectively. The IGBT chip 104 and a Free Wheeling Diode chip (hereinafter abbreviated as FWD chip 105) connected in reverse parallel to the main electrode of the IGBT chip 104 are each provided with a circuit pattern in which two silicon chips are arranged in parallel and one piece of copper is attached. The AlN substrate 107 is bonded with solder 106. FIG. 1 shows a cross section of one chip each of IGBT and FWD. The member thickness of the AlN substrate 107 with the circuit pattern attached with copper is as follows. The surface circuit pattern thickness is 0.3 mm, the back surface copper plate thickness is 0.2 mm, and the AlN thickness is 0.635 mm. The thickness of the IGBT chip 104 and the FWD chip 105 is 0.35 mm, and the thickness of the solder 106 is 0.1 mm. This solder 106 is a high melting point solder having a melting point of about 300 ° C.

パワー半導体チップが搭載されたAlN基板107は、融点180℃程度の低融点のはんだ108で、銅ベース109にはんだ接着されている。このはんだ108の厚さは0.2mmである。銅ベース109の材質は無酸素銅であり、平板部厚さが3mmである。放熱フィン110の高さ、幅、間隔は各々8mm、1mm、1.5mm である。これらの寸法は、冷却水を通流した際の圧力損失を可能な限り低減し、かつ、冷却能力向上に配慮した構造となっている。銅貼りのAlN基板107の銅板、及び銅ベース109の表面は、いずれもニッケルメッキ処理されている。このニッケルメッキ層の厚さは、6μm程度であり、はんだ106、108による接着の信頼性を考慮してニッケルメッキ処理を実施している。銅ベース109には貫通穴112が設けられ、この貫通穴112にボルトなどを通して、IGBTモジュール100を図示していないヒートシンクへ取り付ける。   The AlN substrate 107 on which the power semiconductor chip is mounted is soldered to the copper base 109 with a low melting point solder 108 having a melting point of about 180 ° C. The thickness of the solder 108 is 0.2 mm. The material of the copper base 109 is oxygen-free copper, and the thickness of the flat plate portion is 3 mm. The height, width, and spacing of the radiating fins 110 are 8 mm, 1 mm, and 1.5 mm, respectively. These dimensions have a structure in which the pressure loss when cooling water is passed is reduced as much as possible and the cooling capacity is improved. The copper plate of the AlN substrate 107 attached with copper and the surface of the copper base 109 are both subjected to nickel plating. The thickness of the nickel plating layer is about 6 μm, and the nickel plating process is performed in consideration of the reliability of adhesion by the solders 106 and 108. The copper base 109 is provided with a through hole 112, and a bolt or the like is passed through the through hole 112 to attach the IGBT module 100 to a heat sink (not shown).

本実施例では、M6ボルトでの締結を想定しており、貫通穴112は6.6mmφとしている。Siパワー半導体チップであるIGBTチップ104と、FWDチップ105とから主端子101への電気的接続は、線径400μmのAlワイヤ103で実施され、本Alワイヤ103での接続、及び、銅ベース109へのAlN基板107へのはんだ接着が完了した構造で、トランスファモールドされる。   In this embodiment, it is assumed that M6 bolts are fastened, and the through hole 112 is 6.6 mmφ. The electrical connection from the IGBT chip 104, which is a Si power semiconductor chip, and the FWD chip 105 to the main terminal 101 is performed by the Al wire 103 having a wire diameter of 400 μm, the connection by the Al wire 103, and the copper base 109. Transfer molding is performed with a structure in which solder bonding to the AlN substrate 107 is completed.

図1の符号111が封止樹脂を示し、この領域がトランスファモールドされたエポキシ樹脂の領域である。封止樹脂111の高さである封止領域厚さ113は、7mmである。この高さは、Alワイヤ103が封止樹脂から露出せず、かつ十分な絶縁が確保できるような余裕がある高さにしてある。本実施例に用いたエポキシ樹脂の線膨張係数αは16ppm 程度で、弾性係数Eは、16GPa程度である。本実施例のパワーモジュールでは、このような物性にしたので、モジュール底面の反りを0.1mm程度以下にできた。この理由は、封止樹脂111であるエポキシ樹脂の線膨張係数αが銅ベースの線膨張係数αとほぼ一致しているためである。   Reference numeral 111 in FIG. 1 indicates a sealing resin, and this region is an epoxy resin region that is transfer-molded. The sealing region thickness 113 which is the height of the sealing resin 111 is 7 mm. This height is high enough to prevent the Al wire 103 from being exposed from the sealing resin and to ensure sufficient insulation. The linear expansion coefficient α of the epoxy resin used in this example is about 16 ppm, and the elastic coefficient E is about 16 GPa. In the power module of the present embodiment, such physical properties were adopted, so that the warp of the module bottom surface could be reduced to about 0.1 mm or less. This is because the linear expansion coefficient α of the epoxy resin that is the sealing resin 111 substantially matches the linear expansion coefficient α of the copper base.

本実施例の特徴は、トランスファモールドした封止樹脂111と銅ベース109のかしめ用溝102、及び、外部接続用の主端子101である。まず、かしめ用溝102を配置したかしめ領域について、図7と図8を使用して説明する。トランスファモールドは、高圧力下でエポキシ樹脂を注入硬化させるため、大気圧下で樹脂を滴下させた後に硬化させる、いわゆるポッティング法と比べ、接着性が向上すると考えている。しかしながら、ニッケルメッキとエポキシ樹脂の接着性が悪いことが知られている。そこで、本実施例では、ニッケルメッキされた部材である、銅貼りのAlN基板107と銅ベース109とエポキシ樹脂との接着性を確保することは極めて重要である。また、AlN基板107を接着するはんだ108は、本実施例のIGBTモジュール100の熱疲労耐量を決定する部材であり、はんだ108と周囲の樹脂との接着性に対してもっとも配慮しなければならない。そこで、本実施例のIGBTモジュールでは、封止樹脂111であるエポキシ樹脂と銅ベース109のかしめ領域のかしめ用溝102をAlN基板107の極近傍に配置している。   The features of the present embodiment are a transfer molded sealing resin 111, a caulking groove 102 of a copper base 109, and a main terminal 101 for external connection. First, a caulking region in which the caulking groove 102 is disposed will be described with reference to FIGS. Since the transfer mold injects and cures an epoxy resin under a high pressure, it is considered that the adhesive property is improved as compared with a so-called potting method in which a resin is dropped after being dropped under an atmospheric pressure and then cured. However, it is known that the adhesion between nickel plating and epoxy resin is poor. Therefore, in the present embodiment, it is extremely important to ensure adhesion between the copper-plated AlN substrate 107, the copper base 109, and the epoxy resin, which are nickel-plated members. The solder 108 to which the AlN substrate 107 is bonded is a member that determines the thermal fatigue resistance of the IGBT module 100 of the present embodiment, and the most consideration must be given to the adhesion between the solder 108 and the surrounding resin. Therefore, in the IGBT module of this embodiment, the caulking groove 102 in the caulking region of the epoxy resin as the sealing resin 111 and the copper base 109 is disposed in the very vicinity of the AlN substrate 107.

図7に示すように、2列のかしめ用溝701間の突起702を、封止樹脂111のエポキシ樹脂は成形硬化過程で、自身の収縮により強く圧縮し、かしめる。また、図7中、20箇所設けられたかしめ用逆テーパ領域703は、このかしめ力をより強固にするための領域である。断面を図8に示す。かしめ用逆テーパ領域703は、2本の溝を製造した後に、プレスにより、溝の一部をつぶして、図8示したように逆テーパ構造を形成して、封止樹脂の剥離を防止できる構造になっている。本実施例ではこのような構造になっているので、封止領域が銅ベース109の内側上面のみにもかかわらず、良好な接着性を確保できる。このため、モジュール取り付けボルト用の貫通穴112を封止領域の外側に、モジュールサイズを大きくする事なく配置することが可能となった。   As shown in FIG. 7, the projections 702 between the two rows of caulking grooves 701 are strongly compressed and crimped by the shrinkage of the epoxy resin of the sealing resin 111 during the molding and hardening process. Further, in FIG. 7, the caulking reverse taper regions 703 provided at 20 locations are regions for further strengthening the caulking force. A cross section is shown in FIG. The reverse taper region 703 for caulking can prevent peeling of the sealing resin by manufacturing two grooves and then crushing a part of the groove by pressing to form a reverse taper structure as shown in FIG. It has a structure. Since this embodiment has such a structure, good adhesiveness can be ensured regardless of the sealing region only on the inner upper surface of the copper base 109. For this reason, the through holes 112 for module mounting bolts can be arranged outside the sealing region without increasing the module size.

次に、本実施例の端子構造を説明する。従来技術のトランスファモールドによるモジュール構造は、図12に示すように、エポキシ樹脂1201の側面から主端子1207、制御端子1208を取り出す形状である。この形状をそのまま本実施例のモジュールに採用すると、銅ベース109の外側に主端子や、制御端子が横に張り出し、大型化は避けられない。そこで本実施例では、図1に示すように主端子101を銅ブロックとし、AlN基板107上にはんだ等で接着する構造とした。主端子101の銅ブロックの材質は無酸素銅であり、表面は厚さ6μm程度のニッケルメッキが形成されている。このような構造とすることで、図示していないが、トランスファモールド成型時に上型で主端子101上面を固定する事ができ、封止領域上面に主端子101表面を露出させる事ができる。本実施例のような構造では、成型時の金型プレス圧力は、主端子101である銅ブロックを介してAlN基板107等の部材に印加されるため、主端子101の銅ブロックを予め高温で焼きなまして、降伏応力を50MPa程度以下にしておき、金型で押さえた時の部材破損の懸念をなくしている。本実施例の構造で、封止領域上面に露出した主端子101と外部配線との接続は、はんだ接着、あるいは、専用の固定治具等を使用する。   Next, the terminal structure of the present embodiment will be described. As shown in FIG. 12, the module structure by the transfer mold of the prior art is a shape which takes out the main terminal 1207 and the control terminal 1208 from the side surface of the epoxy resin 1201. If this shape is used in the module of this embodiment as it is, the main terminals and control terminals project laterally outside the copper base 109, and an increase in size is inevitable. Therefore, in this embodiment, as shown in FIG. 1, the main terminal 101 is made of a copper block, and is bonded to the AlN substrate 107 with solder or the like. The material of the copper block of the main terminal 101 is oxygen-free copper, and the surface is nickel-plated with a thickness of about 6 μm. With such a structure, although not shown, the upper surface of the main terminal 101 can be fixed with an upper mold during transfer molding, and the surface of the main terminal 101 can be exposed on the upper surface of the sealing region. In the structure as in the present embodiment, the mold press pressure at the time of molding is applied to the member such as the AlN substrate 107 via the copper block which is the main terminal 101, so that the copper block of the main terminal 101 is previously heated at a high temperature. Annealing is performed so that the yield stress is set to about 50 MPa or less, and there is no fear of member breakage when pressed by a mold. In the structure of this embodiment, the main terminal 101 exposed on the upper surface of the sealing area and the external wiring are connected by solder bonding or a dedicated fixing jig.

本実施例では、モジュール中の絶縁基板はAlN基板107であったがこれだけには限らず、セラミックスの材質は、アルミナ、SiN等であってもよい。特に、高い熱伝導率と高い強度を兼ね備えた銅貼りSiN基板は、本実施例のパワー半導体モジュールに適したセラミックス基板である。また、本実施例ではIGBTモジュールの金属ベースとして、一般的な銅ベースを用いたが、軽量化を考慮して、アルミをベース材として使用してもよい。アルミをベース材として使用する場合は、セラミックス基板の材質はアルミナが好ましい。この理由は、アルミとAlNあるいはSiNとでは線膨張係数αの差が大きすぎ、パワーモジュールの製造過程での反りが許容量(例えば0.2mm)を超えたり、あるいは、セラミックス基板に割れを生じる可能性があるためである。そこで、AlN、SiNとくらべて線膨張係数αの大きなアルミナ基板とを用いることで、この不具合を回避できる。この場合、封止エポキシ樹脂の線膨張係数αをアルミと合わせる事が望まれ、封止エポキシ樹脂の線膨張係数αを23ppm程度とすることが望ましい。   In this embodiment, the insulating substrate in the module is the AlN substrate 107. However, the present invention is not limited to this, and the material of the ceramic may be alumina, SiN or the like. In particular, the copper-coated SiN substrate having both high thermal conductivity and high strength is a ceramic substrate suitable for the power semiconductor module of this example. In this embodiment, a general copper base is used as the metal base of the IGBT module. However, aluminum may be used as the base material in consideration of weight reduction. When aluminum is used as the base material, the material of the ceramic substrate is preferably alumina. The reason for this is that the difference in linear expansion coefficient α between aluminum and AlN or SiN is too large, and the warp in the power module manufacturing process exceeds an allowable amount (for example, 0.2 mm), or the ceramic substrate is cracked. This is because there is a possibility. Therefore, this problem can be avoided by using an alumina substrate having a larger linear expansion coefficient α as compared with AlN and SiN. In this case, it is desirable to match the linear expansion coefficient α of the sealing epoxy resin with aluminum, and it is desirable to set the linear expansion coefficient α of the sealing epoxy resin to about 23 ppm.

本実施例のIGBTモジュールのフィン長手方向構造を図11に示す。図11のIGBTモジュール1100は、三相モジュールであって、図11では、IGBTチップ、Alワイヤ、はんだ層等を省略し、銅貼りのAlN基板1103、フィン付きの銅ベース1101、封止樹脂1102を示した。図11に示すIGBTモジュールは、1アームを1基板に搭載した構成であり、計6枚のAlN基板1103から構成されている。1相分、即ち2枚のAlN基板1103を1つの封止樹脂1102で封止しており、各封止樹脂1102毎に、銅ベース1101上に樹脂かしめ領域1105を設けている。   The fin longitudinal direction structure of the IGBT module of the present embodiment is shown in FIG. The IGBT module 1100 in FIG. 11 is a three-phase module. In FIG. 11, the IGBT chip, Al wire, solder layer, and the like are omitted, an AlN substrate 1103 with copper, a copper base 1101 with fins, and a sealing resin 1102. showed that. The IGBT module shown in FIG. 11 has a configuration in which one arm is mounted on one substrate, and includes a total of six AlN substrates 1103. One phase, that is, two AlN substrates 1103 are sealed with one sealing resin 1102, and a resin caulking region 1105 is provided on the copper base 1101 for each sealing resin 1102.

1枚のAlN基板1103毎に樹脂封止すると、この樹脂かしめ領域1105を含め、モジュール全体が大型化してしまう。逆に、例えば全体を一つの封止領域とすると、封止領域が大きすぎて、モールド時の樹脂ボイド、未封止領域発生の懸念がある。また、例えモールドが問題なくできたとしても、封止樹脂と部材界面の熱応力が大きくなり、界面剥離、他の問題が顕在化する恐れがある。放熱フィン1104は、1相分ごとに区切られており、銅ベース1101の剛性増大を低減し、同時に製造時に、金型で銅ベース1101を固定可能とし、封止領域を分割可能としている。   If resin sealing is performed for each AlN substrate 1103, the entire module including the resin caulking region 1105 is enlarged. On the other hand, for example, if the whole is a single sealing region, the sealing region is too large, and there is a concern that resin voids during molding and unsealed regions may occur. Even if the mold can be produced without any problem, the thermal stress at the interface between the sealing resin and the member is increased, and there is a risk that interface peeling and other problems will become apparent. The heat radiating fins 1104 are divided for each phase, and the increase in rigidity of the copper base 1101 is reduced. At the same time, the copper base 1101 can be fixed by a mold during manufacturing, and the sealing region can be divided.

本実施例のパワー半導体モジュールを図2に示す。本実施例は、図2に示すように、実施例1の封止樹脂のかしめ用溝102に加えて、封止樹脂の接着手段を追加した。本実施例のIGBTモジュール200の定格電圧/電流、内蔵基板構成、銅ベース109等は実施例1と同一であり、トランスファモールドに使用したエポキシ樹脂も実施例1と同一である。   The power semiconductor module of this example is shown in FIG. In this example, as shown in FIG. 2, in addition to the sealing resin caulking groove 102 of Example 1, a sealing resin bonding means was added. The rated voltage / current, built-in substrate configuration, copper base 109 and the like of the IGBT module 200 of this embodiment are the same as those of the first embodiment, and the epoxy resin used for the transfer mold is also the same as that of the first embodiment.

本実施例では、封止エポキシ樹脂と部材の接着向上を実現するコーティング層201を設けたことが実施例1とは異なる。コーティング層201の材質は、ポリアミド樹脂であって、このポリアミド樹脂は、エポキシ樹脂、及び、シリコンチップやアルミボンディングワイヤや銅貼りAlN基板などの内蔵各部材と良く接着することを確認している。コーティング層201の代表物性である線膨張係数αは50ppm、弾性係数Eは2.6GPa程度である。即ち、実施例1に示した封止樹脂111の物性と、比べるとコーティング層201が大幅に柔らかい事が分かる。エポキシ樹脂封止のメリットは前述したように、硬いエポキシ樹脂で封止して、内蔵物の応力・歪を分散・低減し、長寿命にできることである。従って、本実施例において、接着性を改善するために導入したコーティング層201は、単に柔らかいだけではエポキシ樹脂封止応力・歪を分散・低減する効果を損なう懸念がある。   The present embodiment is different from the first embodiment in that a coating layer 201 that realizes improved adhesion between the sealing epoxy resin and the member is provided. The material of the coating layer 201 is a polyamide resin, and it has been confirmed that the polyamide resin adheres well to the epoxy resin and each built-in member such as a silicon chip, an aluminum bonding wire, or a copper-coated AlN substrate. The linear expansion coefficient α, which is a representative physical property of the coating layer 201, is 50 ppm, and the elastic coefficient E is about 2.6 GPa. That is, it can be seen that the coating layer 201 is significantly softer than the physical properties of the sealing resin 111 shown in Example 1. As described above, the advantage of the epoxy resin sealing is that it can be sealed with a hard epoxy resin to disperse / reduce the stress and strain of the built-in material, thereby extending the service life. Therefore, in this embodiment, the coating layer 201 introduced to improve the adhesion may be impaired in the effect of dispersing and reducing the epoxy resin sealing stress / strain if it is merely soft.

そこで、本実施例では、コーティング層201の厚さを可能な限り薄くした。コーティング層201は接着性も確保するため、できるだけ均一に塗布する必要あるので、その厚さを概略10μmとしている。このような厚さに塗布することで、例えば、AlN基板107に接着するはんだ108の層を常温(20℃)から125℃まで昇温した場合に生じる歪は、コーティング層201がない場合と同等であることを、応力解析で確認した。即ち、シリコーンゲル封止を、エポキシ樹脂封止に変えることにより、はんだ歪は半減し、この効果は、厚さ10μmのコーティング層201が存在しても変わらなかった。   Therefore, in this embodiment, the thickness of the coating layer 201 is made as thin as possible. The coating layer 201 needs to be applied as uniformly as possible in order to ensure adhesiveness, so the thickness is approximately 10 μm. By applying to such a thickness, for example, the distortion generated when the temperature of the solder 108 layer bonded to the AlN substrate 107 is raised from room temperature (20 ° C.) to 125 ° C. is the same as when the coating layer 201 is not provided. It was confirmed by stress analysis. That is, by changing the silicone gel sealing to the epoxy resin sealing, the solder strain was reduced by half, and this effect was not changed even when the coating layer 201 having a thickness of 10 μm was present.

一方、コーティング層201の厚さが0.1mm(100μm)程度になると、はんだ歪を低減する効果が1/2程度から、3/4程度になった。従って、単にコーティング層201を設けただけでは、エポキシ樹脂で封止する歪の低減が、必ずしも十分ではないので、コーティング層201の厚さを10μm程度にして塗布することが重要である。本実施例IGBTモジュールはコーティング層201を備えているので、−40℃〜室温(20℃)〜125℃〜室温(20℃)、2時間/サイクルの条件で3000サイクルの試験を実施しても、界面には剥離が見られなかった。   On the other hand, when the thickness of the coating layer 201 is about 0.1 mm (100 μm), the effect of reducing solder strain is reduced from about 1/2 to about 3/4. Therefore, simply providing the coating layer 201 does not necessarily reduce the strain sealed with the epoxy resin, so it is important to apply the coating layer 201 with a thickness of about 10 μm. Since the IGBT module of this example is provided with the coating layer 201, even if the test of 3000 cycles is performed under the condition of −40 ° C. to room temperature (20 ° C.) to 125 ° C. to room temperature (20 ° C.), 2 hours / cycle. No peeling was observed at the interface.

本実施例のIGBTモジュールの断面構造の模式図を図3に、外部主配線を接続した断面模式図を図5に示す。本実施例のIGBTモジュール300では、ネジ穴が付いた円筒形の主端子301に特徴がある。その他の部材構成、寸法、材質は図1に示した実施例1と同じである。主端子301は、材質が無酸素銅であり、その表面がニッケルメッキ処理されている。本実施例では主端子301に、M5ボルト用のネジ穴を内部に設けてあり、このネジ穴が封止樹脂302の上面に露出している。図5に示すように、PNバスバー500がM5ボルトの取り付けボルト501で、出力配線502が同じくM5ボルトの取り付けボルト501で主端子301に接続されている。   FIG. 3 shows a schematic diagram of a cross-sectional structure of the IGBT module of this embodiment, and FIG. 5 shows a schematic cross-sectional diagram of the external main wiring connected thereto. The IGBT module 300 of this embodiment is characterized by a cylindrical main terminal 301 with a screw hole. Other member configurations, dimensions, and materials are the same as those of the first embodiment shown in FIG. The main terminal 301 is made of oxygen-free copper and has a nickel-plated surface. In this embodiment, the main terminal 301 is provided with a screw hole for the M5 bolt inside, and this screw hole is exposed on the upper surface of the sealing resin 302. As shown in FIG. 5, the PN bus bar 500 is connected to the main terminal 301 by an M5 bolt mounting bolt 501 and the output wiring 502 is also an M5 bolt mounting bolt 501.

また、外部配線との接触抵抗をできるだけ低減させるために、主端子301の外部配線との接触部は、外径15mmφと、それ以外の接続端子の外径9mmφに比べて大きくなっている。また、部材の破損を防止するために、実施例1、実施例2と同様に主端子301を焼鈍してある。さらに、主端子301の封止樹脂302との接触面は、樹脂との密着を強固にするため、網目型の凹凸(ローレット処理)が設けてある。このようにローレット処理を施したので、この種のボルト締めの標準的な締め付けトルクである、2.45N・mのトルクを印加しても、封止樹脂302から主端子301が剥離する等の問題は全く発生しなかった。このように、本実施例のIGBTモジュールは実装性が優れている。   In order to reduce the contact resistance with the external wiring as much as possible, the contact portion of the main terminal 301 with the external wiring is larger than the outer diameter of 15 mmφ and the outer diameter of other connection terminals of 9 mmφ. Further, in order to prevent the member from being damaged, the main terminal 301 is annealed in the same manner as in the first and second embodiments. Further, the contact surface of the main terminal 301 with the sealing resin 302 is provided with a mesh-type unevenness (knurling treatment) in order to strengthen the adhesion with the resin. Since the knurling process is performed in this way, the main terminal 301 is peeled off from the sealing resin 302 even when a torque of 2.45 N · m, which is a standard tightening torque of this type of bolt tightening, is applied. No problem occurred. Thus, the IGBT module of the present embodiment is excellent in mountability.

本実施例のパワー半導体モジュールの断面構造の模式図を図4に、制御基板を接続した断面模式図を図6に示す。本実施例は、制御端子の接続に特徴がある。図4に示すIGBTモジュール400は、IGBTチップ404のゲートワイヤ402が、ボンディングされて回路パタンに接続し、制御端子401が回路パタンにはんだ等で接着されている。図4に示す制御端子401は、電気的な接触を高い信頼性で実現するメスコネクタになっている。制御端子401の上面が封止樹脂405に露出されている点は実施例3と同様である。図6は、IGBTモジュール400を制御する制御基板601に設けたピンタイプの信号端子600をIGBTモジュール400のメスコネクタになっている制御端子401に実装した断面模式図である。図6の信号端子600のピンは1mm角である。制御基板601の固定手段は特に図示していないが、IGBTモジュール400と一体で固定されているので、振動等による接続信頼性の劣化は問題にならない。   FIG. 4 shows a schematic diagram of a cross-sectional structure of the power semiconductor module of this example, and FIG. 6 shows a schematic diagram of a cross-section to which a control board is connected. This embodiment is characterized by connection of control terminals. In the IGBT module 400 shown in FIG. 4, the gate wire 402 of the IGBT chip 404 is bonded and connected to the circuit pattern, and the control terminal 401 is bonded to the circuit pattern with solder or the like. The control terminal 401 shown in FIG. 4 is a female connector that realizes electrical contact with high reliability. The point that the upper surface of the control terminal 401 is exposed to the sealing resin 405 is the same as in the third embodiment. FIG. 6 is a schematic cross-sectional view in which a pin-type signal terminal 600 provided on a control board 601 that controls the IGBT module 400 is mounted on a control terminal 401 that is a female connector of the IGBT module 400. The pin of the signal terminal 600 in FIG. 6 is 1 mm square. The fixing means of the control board 601 is not particularly shown, but since it is fixed integrally with the IGBT module 400, deterioration of connection reliability due to vibration or the like does not pose a problem.

本実施例は、放熱板/セラミックス一体構造を実現した実施例である。本実施例のIGBTモジュール900の断面構造の模式図を図9に示す。図9で、符号901は回路パタン、902はセラミックス層、903は銅ベース、904は基板、905は放熱フィンである。   The present embodiment is an embodiment that realizes a heat sink / ceramic integrated structure. A schematic diagram of a cross-sectional structure of the IGBT module 900 of this embodiment is shown in FIG. In FIG. 9, reference numeral 901 is a circuit pattern, 902 is a ceramic layer, 903 is a copper base, 904 is a substrate, and 905 is a radiation fin.

封止樹脂を従来技術の柔らかいシリコーンゲルから硬いエポキシ樹脂へと替えることは、実施例1や実施例2で説明したように、内蔵部品の歪分散、低減を実現し、長寿命化できる。本実施例では、エポキシ樹脂が硬質樹脂であるという特性そのものを活かした。従来技術で、銅ベースとセラミックス基板との一体構造が実現できなかったのは、銅ベースが通常3mm以上と厚く、ロー付け等の手段で銅ベースにセラミックス基板を接着すると、反りが激しく、最悪の場合、セラミックス基板の破壊をもたらす可能性があるためであった。一方、セラミックス基板を、例えば1mm程度以下と薄くすると、反りは低減し、セラミックス基板の破壊の懸念は低減するが、従来技術の柔らかいシリコーンゲル封止ではモジュールの強度に問題が残るので、モジュールを放熱フィンなどに取り付けることが困難であった。   Replacing the sealing resin from the soft silicone gel of the prior art to the hard epoxy resin can realize the strain dispersion and reduction of the built-in components and extend the life as described in the first and second embodiments. In this example, the characteristic itself that the epoxy resin is a hard resin was utilized. The integrated structure of the copper base and the ceramic substrate could not be realized with the prior art because the copper base is usually thicker than 3mm, and if the ceramic substrate is bonded to the copper base by means such as brazing, the warp is severe and the worst In this case, the ceramic substrate may be destroyed. On the other hand, if the ceramic substrate is thinned to about 1 mm or less, for example, the warpage is reduced and the concern about the destruction of the ceramic substrate is reduced. It was difficult to attach to heat radiating fins.

しかし、本実施例では、硬いエポキシ樹脂で封止して、この問題を解決した。本実施例では銅ベース903の厚さは1mm、回路パタン901厚さは1.2mmである。セラミックス層902の材質はSiNであり、その厚さは0.6mmである。表裏面の銅板厚さは、基板904が反らないように配慮して決めた。セラミックスとしてSiNを選択した理由は、SiNがAlNに比べて、高強度であり、銅ベースとセラミックスとを一体にした基板904を、ロー付けで製造する際の応力に耐えることができるためである。本実施例の放熱フィン905の形状は、実施例1から実施例4で説明したものと同じである。   However, in this example, this problem was solved by sealing with a hard epoxy resin. In this embodiment, the thickness of the copper base 903 is 1 mm and the thickness of the circuit pattern 901 is 1.2 mm. The material of the ceramic layer 902 is SiN, and its thickness is 0.6 mm. The copper plate thicknesses on the front and back surfaces were determined in consideration of the substrate 904 not warping. The reason for selecting SiN as the ceramic is that SiN has higher strength than AlN, and can withstand the stress when brazing the substrate 904 in which the copper base and the ceramic are integrated. . The shape of the radiating fin 905 of the present embodiment is the same as that described in the first to fourth embodiments.

本実施例のモジュールの場合、IGBTチップ104、FWDチップ105からの発熱が、グリースを介して放熱器に銅ベースを固着したモジュールの場合のように、銅ベース中で横方向への熱が広がるのではなく、銅ベースの厚さ方向に熱が流れる。従って、本実施例のパワーモジュールのような薄い銅ベース903では、熱が多く流れて来る放熱フィン905側を、直接水冷する直接水冷型モジュール構造が適している。本実施例のIGBTモジュール900の寿命を支配する部分は、Alワイヤ103の接合部、及びはんだ106の接合部のみである。本実施例のIGBTモジュールでは、エポキシ樹脂によって歪を分散しているので、飛躍的に長い寿命を実現できる。   In the case of the module of the present embodiment, the heat generated from the IGBT chip 104 and the FWD chip 105 spreads in the lateral direction in the copper base as in the case of the module in which the copper base is fixed to the radiator via grease. Instead, heat flows in the thickness direction of the copper base. Therefore, in the thin copper base 903 like the power module of the present embodiment, a direct water cooling type module structure in which the heat radiation fin 905 side where a lot of heat flows is directly water cooled is suitable. The only part that dominates the life of the IGBT module 900 of this embodiment is the joint part of the Al wire 103 and the joint part of the solder 106. In the IGBT module of the present embodiment, since the strain is dispersed by the epoxy resin, a significantly long life can be realized.

本実施例のIGBTモジュール1000の断面構造を図10に模式図で示す。本実施例では、端子を樹脂でモールドした主端子ブロック1001と、制御端子ブロック1004とを備えている。これらの端子ブロックは、銅ベース1005上に固着され、封止部材と一緒にトランスファモールドされる。封止される際、封止樹脂1010上面に露出され、外部配線と接続される点は、実施例1から実施例5と同様である。また、封止樹脂と銅ベースとのかしめ領域1009は、図10に示すように、端子ブロック近傍の外側に配置される。端子をモールドする樹脂は、PPS樹脂(ポリフェニレンスルフェート樹脂)である。主端子ブロック1001と、制御端子ブロック1004とには、Alワイヤ1002、1003の接続用パッドが露出しており、Alワイヤ1002、1003によって内部回路と接続される。主端子ブロック1001は配線をボルト接続するためのナット1007と、ボルト逃げ用空隙1008を有しており、制御端子ブロック1004の制御ピン接続部の形状は、実施例4で説明した制御端子401と同一である。本実施例のIGBTモジュールでは、以上説明した構造で、AlN基板1006の大きさを小さくでき、はんだ1011の寿命を長くできるとともに、モジュールのコストも低くできる。   A cross-sectional structure of the IGBT module 1000 of this embodiment is schematically shown in FIG. In this embodiment, a main terminal block 1001 in which terminals are molded with resin and a control terminal block 1004 are provided. These terminal blocks are fixed on the copper base 1005 and transfer molded together with the sealing member. When sealed, it is exposed to the top surface of the sealing resin 1010 and connected to external wiring, as in the first to fifth embodiments. Further, the caulking region 1009 between the sealing resin and the copper base is arranged outside the vicinity of the terminal block as shown in FIG. The resin for molding the terminal is PPS resin (polyphenylene sulfate resin). In the main terminal block 1001 and the control terminal block 1004, connection pads for Al wires 1002 and 1003 are exposed, and are connected to the internal circuit by the Al wires 1002 and 1003. The main terminal block 1001 has a nut 1007 for connecting the wiring with bolts and a bolt escape clearance 1008. The shape of the control pin connection portion of the control terminal block 1004 is the same as that of the control terminal 401 described in the fourth embodiment. Are the same. In the IGBT module of this embodiment, with the structure described above, the size of the AlN substrate 1006 can be reduced, the life of the solder 1011 can be increased, and the cost of the module can be reduced.

実施例1のパワー半導体モジュールの断面模式図である。1 is a schematic cross-sectional view of a power semiconductor module of Example 1. FIG. 実施例2のパワー半導体モジュールの断面模式図である。6 is a schematic cross-sectional view of a power semiconductor module of Example 2. FIG. 実施例3のパワー半導体モジュールの断面模式図である。6 is a schematic cross-sectional view of a power semiconductor module of Example 3. FIG. 実施例4のパワー半導体モジュールの一部断面の模式図である。It is a schematic diagram of a partial cross section of the power semiconductor module of Example 4. 実施例3のパワー半導体モジュールに外部配線を実装した説明図である。It is explanatory drawing which mounted the external wiring in the power semiconductor module of Example 3. FIG. 実施例4のパワー半導体モジュールに制御基板を接続した説明図である。It is explanatory drawing which connected the control board to the power semiconductor module of Example 4. FIG. 実施例1のパワー半導体モジュールの金属ベースの平面模式図である。3 is a schematic plan view of a metal base of the power semiconductor module of Example 1. FIG. 図7のかしめ領域の部分拡大図である。It is the elements on larger scale of the crimping area | region of FIG. 実施例5のパワー半導体モジュールの断面模式図である。10 is a schematic cross-sectional view of a power semiconductor module of Example 5. FIG. 実施例6のパワー半導体モジュールの断面模式図である。10 is a schematic cross-sectional view of a power semiconductor module of Example 6. FIG. 実施例1のパワー半導体モジュールのフィン長手方向の断面模式図である。It is a cross-sectional schematic diagram of the fin longitudinal direction of the power semiconductor module of Example 1. FIG. 従来技術のエポキシ樹脂封止型IGBTモジュールの断面構造模式図である。It is a cross-sectional structure schematic diagram of the epoxy resin sealing type IGBT module of a prior art.

符号の説明Explanation of symbols

100、200、300、400、900、1000、1100…IGBTモジュール、101、301、1207…主端子、102、701…かしめ用溝、103、1002、1003、1209…Alワイヤ、104、404…IGBTチップ、105…FWDチップ、106、108、1011、1203…はんだ、107、1006、1103…AlN基板、109、903、1005、1101…銅ベース、110、905、1104…放熱フィン、111、302、405、1010、1102…封止樹脂、112…貫通穴、113…封止領域厚さ、201…コーティング層、401、1208…制御端子、402…ゲートワイヤ、403…エミッタワイヤ、500…PNバスバー、501…取り付けボルト、502…出力配線、600…信号端子、601…制御基板、702…突起、703…かしめ用逆テーパ領域、901…回路パタン、902…セラミックス層、904…基板、1001…主端子ブロック、1004…制御端子ブロック、1007…ナット、1008…ボルト逃げ用空隙、1009…かしめ領域、1105…樹脂かしめ領域、1200…パッケージ、1201…エポキシ樹脂、1202…パワー半導体チップ、1204…絶縁樹脂シート、1205…絶縁樹脂シート保護用銅箔、1206…ヒートスプレッダ。
100, 200, 300, 400, 900, 1000, 1100 ... IGBT module, 101, 301, 1207 ... main terminal, 102, 701 ... caulking groove, 103, 1002, 1003, 1209 ... Al wire, 104, 404 ... IGBT Chip, 105 ... FWD chip, 106, 108, 1011, 1203 ... Solder, 107, 1006, 1103 ... AlN substrate, 109, 903, 1005, 1101 ... Copper base, 110, 905, 1104 ... Radiation fin, 111, 302, 405, 1010, 1102 ... sealing resin, 112 ... through hole, 113 ... sealing region thickness, 201 ... coating layer, 401, 1208 ... control terminal, 402 ... gate wire, 403 ... emitter wire, 500 ... PN bus bar, 501 ... Mounting bolt, 502 ... Output wiring 600 ... Signal terminal, 601 ... Control board, 702 ... Protrusion, 703 ... Reverse taper area for caulking, 901 ... Circuit pattern, 902 ... Ceramic layer, 904 ... Board, 1001 ... Main terminal block, 1004 ... Control terminal block, 1007 ... Nut, 1008 ... Bolt clearance gap, 1009 ... Caulking area, 1105 ... Resin caulking area, 1200 ... Package, 1201 ... Epoxy resin, 1202 ... Power semiconductor chip, 1204 ... Insulating resin sheet, 1205 ... Copper foil for insulating resin sheet protection 1206 ... Heat spreader.

Claims (17)

少なくとも、電流をスイッチングするパワー半導体素子、該パワー半導体素子が接着され電気的に接続される回路パタン付絶縁基板、該回路パタン付絶縁基板を接着する金属ベース、を有し、前記パワー半導体素子は、アルミ等の金属ワイヤ或いは銅等のリードフレームにより、前記回路パタン付絶縁基板の回路パタン或いは前記回路パタン付絶縁基板外に配置された端子に電気的に接続されるパワー半導体モジュールにおいて、
前記回路パタン付絶縁基板周囲近傍の前記金属ベース表面に、2列以上の溝、或いは1本以上の突起を配置し、前記回路パタン付絶縁基板は、前記溝或いは突起とともに硬質樹脂で封止され、該封止領域は前記金属ベースの最外周を直線的に結んだ領域の内側であり、前記封止領域外側の露出した金属ベースには、金属ベースの取り付け穴が存在することを特徴とするパワー半導体モジュール。
At least a power semiconductor element for switching current, an insulating substrate with a circuit pattern to which the power semiconductor element is bonded and electrically connected, and a metal base to which the insulating substrate with a circuit pattern is bonded. In a power semiconductor module that is electrically connected to a circuit pattern of the insulating substrate with a circuit pattern or a terminal disposed outside the insulating substrate with a circuit pattern by a metal wire such as aluminum or a lead frame such as copper,
Two or more grooves or one or more protrusions are arranged on the surface of the metal base near the periphery of the insulating substrate with circuit patterns, and the insulating substrate with circuit patterns is sealed with a hard resin together with the grooves or protrusions. The sealing region is inside the region where the outermost periphery of the metal base is linearly connected, and the exposed metal base outside the sealing region has a mounting hole for the metal base. Power semiconductor module.
請求項1において、前記封止樹脂の室温での線膨張係数は、前記金属ベースの線膨張係数と概略一致していることを特徴とするパワー半導体モジュール。   2. The power semiconductor module according to claim 1, wherein a linear expansion coefficient of the sealing resin at room temperature is approximately equal to a linear expansion coefficient of the metal base. 請求項2において、前記金属ベースは銅、前記回路パタン付絶縁基板は銅貼りSiN基板であり、前記封止樹脂の室温での線膨張係数は概略16ppm であることを特徴とするパワー半導体モジュール。   3. The power semiconductor module according to claim 2, wherein the metal base is copper, the insulating substrate with circuit pattern is a copper-coated SiN substrate, and the linear expansion coefficient of the sealing resin at room temperature is approximately 16 ppm. 請求項2において、前記金属ベースは銅、前記回路パタン付絶縁基板は銅又はアルミ貼りAlN基板であり、前記封止樹脂の室温での線膨張係数は概略16ppm であることを特徴とするパワー半導体モジュール。   3. The power semiconductor according to claim 2, wherein the metal base is copper, the insulating substrate with circuit pattern is an AlN substrate with copper or aluminum, and the linear expansion coefficient of the sealing resin at room temperature is approximately 16 ppm. module. 請求項2において、前記金属ベースはアルミ又はアルミ合金、前記回路パタン付絶縁基板は銅貼りアルミナ基板であり、前記封止樹脂の室温での線膨張係数は概略23ppm であることを特徴とするパワー半導体モジュール。   3. The power according to claim 2, wherein the metal base is aluminum or an aluminum alloy, the insulating substrate with a circuit pattern is a copper-coated alumina substrate, and the linear expansion coefficient of the sealing resin at room temperature is approximately 23 ppm. Semiconductor module. 請求項1において、前記硬質封止樹脂と、前記絶縁基板、Siチップ、金属ベース等の被封止物の界面には、全領域に渡って前記封止樹脂よりも硬度が低いコーティング樹脂が介在していることを特徴とするパワー半導体モジュール。   2. The coating resin having a hardness lower than that of the sealing resin over the entire region is interposed at an interface between the hard sealing resin and an object to be sealed such as the insulating substrate, Si chip, and metal base. A power semiconductor module characterized by that. 請求項6において、前記コーティング樹脂はポリアミド樹脂であり、線膨張係数、弾性係数は各々封止樹脂の2倍以上、1/5以下であり、厚さは10μm以下であることを特徴とするパワー半導体モジュール。   7. The power according to claim 6, wherein the coating resin is a polyamide resin, the linear expansion coefficient and the elastic coefficient are each not less than twice and not more than 1/5 of the sealing resin, and the thickness is not more than 10 μm. Semiconductor module. 請求項1において、前記回路パタン付絶縁基板周囲近傍の前記金属ベース表面の溝は矩形であり、該溝の各一辺には、少なくとも一箇所、溝間の突起が先端に向かって広くなる、逆テーパ形状の領域が存在することを特徴とするパワー半導体モジュール。   2. The groove on the surface of the metal base in the vicinity of the periphery of the insulating substrate with circuit pattern is a rectangle, and at least one point on each side of the groove has a protrusion between the grooves that widens toward the tip. A power semiconductor module having a tapered region. 請求項1において、前記回路パタン付絶縁基板の回路パタン上に銅等の金属体を接合し、該金属体をパワー半導体の主電流が流れる主端子、及び、パワー半導体を制御する制御端子とし、これらの端子は、硬質樹脂で封止された領域の表面に全て露出することを特徴とするパワー半導体モジュール。   In claim 1, a metal body such as copper is joined on a circuit pattern of the insulating substrate with a circuit pattern, and the metal body is used as a main terminal through which a main current of a power semiconductor flows, and a control terminal for controlling the power semiconductor, The power semiconductor module is characterized in that all of these terminals are exposed on the surface of the region sealed with the hard resin. 請求項9において、封止領域の表面に露出する端子は、全て窪みを有しているメス型コネクタであり、該窪みに外部接続端子が差し込まれる事により接続される、或いは、該窪みを利用して外部配線に接続されることを特徴とするパワー半導体モジュール。   The terminal exposed to the surface of the sealing region according to claim 9 is a female connector that has a depression, and is connected by inserting an external connection terminal into the depression or uses the depression. The power semiconductor module is connected to external wiring. 請求項10において、封止領域の表面に露出する主端子は、中心部にネジ穴が形製されていることを特徴とするパワー半導体モジュール。   11. The power semiconductor module according to claim 10, wherein the main terminal exposed on the surface of the sealing region is formed with a screw hole at the center. 請求項10において、封止領域の表面に露出する制御端子は、中心部に窪みが設けられ、該窪みにピン端子が挿入されると、該ピン端子はかしめられる手段が形成されていることを特徴とするパワー半導体モジュール。   11. The control terminal exposed on the surface of the sealing region according to claim 10, wherein a depression is provided in a central portion, and means for caulking the pin terminal when the pin terminal is inserted into the depression is formed. A featured power semiconductor module. 請求項9から請求項12の何れか1つにおいて、封止領域の表面に露出する端子は、その降伏応力が概略50MPa以下であることを特徴とするパワー半導体モジュール。   13. The power semiconductor module according to claim 9, wherein the terminal exposed on the surface of the sealing region has a yield stress of approximately 50 MPa or less. 請求項13において、前記端子は、銅、又は、銅合金、或いは、アルミ、又は、アルミ合金製で、焼鈍されていることを特徴とするパワー半導体モジュール。   14. The power semiconductor module according to claim 13, wherein the terminal is made of copper, copper alloy, aluminum, or aluminum alloy, and is annealed. 請求項1において、前記回路パタン付絶縁基板は、一枚の前記金属ベース上に複数接着されており、一枚以上の前記回路パタン付絶縁基板を内蔵した前記封止領域が、一枚の前記金属ベース上に複数存在することを特徴とするパワー半導体モジュール。   The insulating substrate with circuit pattern according to claim 1, wherein a plurality of the insulating substrates with circuit patterns are bonded onto one metal base, and the sealing region containing one or more insulating substrates with circuit patterns is one piece of the one. A power semiconductor module comprising a plurality of metal bases. 請求項15において、一つの前記封止領域は、三相モジュール中の一相分の回路を封止しており、全体で三つの封止領域を有し、かつ、金属ベースはフィン付き銅ベースであって、前記三つの封止領域境界の下でフィンが分割されており、全体で3分割されていることを特徴とするパワー半導体モジュール。   16. The sealing area according to claim 15, wherein one sealing area seals a circuit for one phase in a three-phase module, and has three sealing areas as a whole, and the metal base is a finned copper base. The power semiconductor module is characterized in that the fin is divided under the boundary of the three sealing regions, and is divided into three as a whole. 少なくとも、電流をスイッチングするパワー半導体素子、該パワー半導体素子が接着され電気的に接続される回路パタン付絶縁基板、該回路パタン付絶縁基板を接着する金属ベース、パワー半導体素子の主電流を通電する主端子、パワー半導体の制御信号を入力する制御端子を有し、前記パワー半導体素子は、アルミ等の金属ワイヤ或いは銅等のリードフレームにより、前記回路パタン付絶縁基板の回路パタン及び前記回路パタン付絶縁基板外の前記金属ベース上に配置された前記主端子、制御端子に電気的に接続されるパワー半導体モジュールにおいて、
前記回路パタン付絶縁基板、前記主端子、及び、前記制御端子を包含する最小領域の周囲近傍の前記金属ベース表面に、2列以上の溝、或いは1本以上の突起が存在し、
前記回路パタン付絶縁基板、前記主端子、及び、前記制御端子は、前記溝或いは突起とともに硬質樹脂で封止され、
該封止領域は前記金属ベース領域表面の内側であり、前記主端子、及び、前記制御端子は該封止領域の上面に露出し、
前記封止領域外側の露出した金属ベースには、金属ベースの取り付け穴が存在することを特徴とするパワー半導体モジュール。

At least a power semiconductor element for switching current, an insulating substrate with a circuit pattern to which the power semiconductor element is bonded and electrically connected, a metal base to which the insulating substrate with a circuit pattern is bonded, and a main current of the power semiconductor element to energize The power semiconductor element has a control terminal for inputting a control signal for a main terminal and a power semiconductor, and the power semiconductor element has a circuit pattern of the insulating substrate with a circuit pattern and a circuit pattern with a metal wire such as aluminum or a lead frame such as copper. In the power semiconductor module electrically connected to the main terminal and the control terminal disposed on the metal base outside the insulating substrate,
There are two or more rows of grooves or one or more protrusions on the surface of the metal base in the vicinity of the minimum region including the insulating substrate with circuit pattern, the main terminal, and the control terminal,
The insulating substrate with circuit pattern, the main terminal, and the control terminal are sealed with a hard resin together with the groove or protrusion,
The sealing region is inside the surface of the metal base region, and the main terminal and the control terminal are exposed on an upper surface of the sealing region,
The power semiconductor module is characterized in that a metal base mounting hole exists in the exposed metal base outside the sealing region.

JP2006000018A 2006-01-04 2006-01-04 Resin-encapsulated power semiconductor module Active JP4569473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000018A JP4569473B2 (en) 2006-01-04 2006-01-04 Resin-encapsulated power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000018A JP4569473B2 (en) 2006-01-04 2006-01-04 Resin-encapsulated power semiconductor module

Publications (2)

Publication Number Publication Date
JP2007184315A true JP2007184315A (en) 2007-07-19
JP4569473B2 JP4569473B2 (en) 2010-10-27

Family

ID=38340161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000018A Active JP4569473B2 (en) 2006-01-04 2006-01-04 Resin-encapsulated power semiconductor module

Country Status (1)

Country Link
JP (1) JP4569473B2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090734A1 (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corporation Semiconductor device for power
JP2008199022A (en) * 2007-02-12 2008-08-28 Infineon Technologies Ag Power semiconductor module and its manufacturing method
JP2009059923A (en) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp Semiconductor device
JP2009088386A (en) * 2007-10-02 2009-04-23 Rohm Co Ltd Power module
JP2009123953A (en) * 2007-11-15 2009-06-04 Omron Corp Transfer mold power module
JP2010027814A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2010027813A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2010056186A (en) * 2008-08-27 2010-03-11 Hitachi Ltd Electrical and electronic module
JP2010118429A (en) * 2008-11-12 2010-05-27 Denso Corp Electronic apparatus and manufacturing method for the same
JP2010129670A (en) * 2008-11-26 2010-06-10 Mitsubishi Electric Corp Power semiconductor module
JP2010129795A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Semiconductor module for power
DE102009055882A1 (en) 2008-11-28 2010-07-01 Mitsubishi Electric Corporation, Tokyo Power semiconductor device
DE102009042600A1 (en) 2008-11-28 2010-07-08 Mitsubishi Electric Corp. Power semiconductor module and manufacturing method for this
DE102009055648A1 (en) 2008-11-25 2010-07-22 Mitsubishi Electric Corp. The power semiconductor module
EP2216814A2 (en) 2009-02-05 2010-08-11 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method therefor
DE102009055691A1 (en) 2008-11-26 2010-08-19 Mitsubishi Electric Corp. The power semiconductor module
DE102009042390A1 (en) 2009-02-04 2010-08-19 Mitsubishi Electric Corp. Power semiconductor module and method for its production
DE102009049613A1 (en) 2009-02-13 2010-08-26 Mitsubishi Electric Corp. Power semiconductor device
DE102009042399A1 (en) 2009-02-13 2010-10-14 Mitsubishi Electric Corp. Power semiconductor device and manufacturing method therefor
JP2010267873A (en) * 2009-05-15 2010-11-25 Toyota Motor Corp Semiconductor device
JP2010267794A (en) * 2009-05-14 2010-11-25 Mitsubishi Electric Corp Power module
DE102010038826A1 (en) 2009-08-27 2011-03-03 Mitsubishi Electric Corp. Power semiconductor device and method of manufacturing the same
JP2011077280A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Power semiconductor device and method of manufacturing the same
JP2011138998A (en) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp Semiconductor device
DE102010043839A1 (en) 2010-01-20 2011-07-21 Mitsubishi Electric Corp. Semiconductor device, has outer base whose upper section is arranged higher than upper section of inner base, where inner peripheral surface of outer base is in contact with outer peripheral surface of inner base
JP2011165836A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Power semiconductor device
JP2011187564A (en) * 2010-03-05 2011-09-22 Keihin Corp Semiconductor device
JP2011228528A (en) * 2010-04-21 2011-11-10 Mitsubishi Electric Corp Power block and power semiconductor module using the same
JP2011258814A (en) * 2010-06-10 2011-12-22 Toyota Motor Corp Semiconductor device cooler
JP2012004218A (en) * 2010-06-15 2012-01-05 Mitsubishi Electric Corp Semiconductor device
JP2012178528A (en) * 2011-02-28 2012-09-13 Sansha Electric Mfg Co Ltd Semiconductor device
DE102008029829B4 (en) * 2008-06-25 2012-10-11 Danfoss Silicon Power Gmbh Vertical upwardly contacting semiconductor and method of making the same
JP2013030579A (en) * 2011-07-28 2013-02-07 Toyota Motor Corp Power conversion apparatus
JP2013062407A (en) * 2011-09-14 2013-04-04 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2013074254A (en) * 2011-09-29 2013-04-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
CN103081097A (en) * 2010-09-02 2013-05-01 丰田自动车株式会社 Semiconductor module
JP2013102242A (en) * 2013-03-05 2013-05-23 Mitsubishi Electric Corp Power semiconductor device
JP2013183022A (en) * 2012-03-01 2013-09-12 Toyota Industries Corp Semiconductor device and manufacturing apparatus of the same
CN103367299A (en) * 2013-07-03 2013-10-23 株洲南车时代电气股份有限公司 Device and method for power interconnection of semiconductor module
WO2014006724A1 (en) * 2012-07-05 2014-01-09 三菱電機株式会社 Semiconductor device
DE102013215392A1 (en) 2012-09-13 2014-03-13 Mitsubishi Electric Corporation Power semiconductor device and method for its production
JP2014112585A (en) * 2012-12-05 2014-06-19 Mitsubishi Electric Corp Semiconductor device
JP2014123618A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Semiconductor module, manufacturing method of the same, and connection method of the same
DE102013226544A1 (en) 2013-02-13 2014-08-14 Mitsubishi Electric Corporation Semiconductor device
WO2014141346A1 (en) * 2013-03-15 2014-09-18 三菱電機株式会社 Semiconductor device
KR101443970B1 (en) * 2012-10-30 2014-09-23 삼성전기주식회사 Power module package
WO2014181426A1 (en) * 2013-05-09 2014-11-13 三菱電機株式会社 Semiconductor module and semiconductor device
JP2015008215A (en) * 2013-06-25 2015-01-15 株式会社デンソー Electronic apparatus
JP2015056513A (en) * 2013-09-12 2015-03-23 ニチコン株式会社 Resin mold type capacitor
US8987912B2 (en) 2010-04-28 2015-03-24 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
KR20150043923A (en) * 2013-10-15 2015-04-23 페어차일드코리아반도체 주식회사 Power module package and method for manufacturing the same
WO2015198724A1 (en) * 2014-06-23 2015-12-30 富士電機株式会社 Semiconductor module integrated with cooling device
JP2016012612A (en) * 2014-06-27 2016-01-21 三菱マテリアル株式会社 Base plate for power module with heat sink, manufacturing method and power module
WO2016016985A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Semiconductor device
US9324630B2 (en) 2012-02-14 2016-04-26 Mitsubishi Electric Corporation Semiconductor device
JP2016115704A (en) * 2014-12-11 2016-06-23 トヨタ自動車株式会社 Semiconductor device
JP2016171124A (en) * 2015-03-11 2016-09-23 株式会社東芝 Semiconductor device and manufacturing method of the same
DE112015007166T5 (en) 2015-12-04 2018-08-09 Mitsubishi Electric Corporation POWER SEMICONDUCTOR DEVICE
US10068825B2 (en) 2014-04-28 2018-09-04 Mitsubishi Electric Corporation Semiconductor device
JP2019040971A (en) * 2017-08-24 2019-03-14 富士電機株式会社 Semiconductor device
CN109817612A (en) * 2019-03-14 2019-05-28 华北电力大学 A kind of encapsulating structure improving solder type silicon carbide power module electric heating property
US10361294B2 (en) 2016-11-02 2019-07-23 Fuji Electric Co., Ltd. Semiconductor device
WO2019176380A1 (en) * 2018-03-16 2019-09-19 富士電機株式会社 Semiconductor device
US10643969B2 (en) 2016-02-24 2020-05-05 Mitsubishi Electric Corporation Semiconductor module and method for manufacturing the same
JP2020136495A (en) * 2019-02-20 2020-08-31 中央電子工業株式会社 Hollow package structure, manufacturing method of the same, semiconductor device, and manufacturing method of the same
WO2020245890A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Power module and power conversion device
JP2021040065A (en) * 2019-09-04 2021-03-11 ローム株式会社 Mounting structure of semiconductor device
US11031355B2 (en) 2017-07-03 2021-06-08 Mitsubishi Electric Corporation Semiconductor device
CN113437026A (en) * 2020-03-23 2021-09-24 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
US11239123B2 (en) 2013-08-29 2022-02-01 Mitsubishi Electric Corporation Semiconductor module, semiconductor device, and vehicle
DE112016002302B4 (en) 2015-05-21 2022-05-05 Mitsubishi Electric Corporation power semiconductor device
CN115565971A (en) * 2022-10-26 2023-01-03 弘大芯源(深圳)半导体有限公司 Chip packaging structure with good heat dissipation performance
WO2023214500A1 (en) * 2022-05-02 2023-11-09 ローム株式会社 Semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406121B2 (en) * 2015-05-14 2018-10-17 三菱電機株式会社 High frequency high power device
KR101668035B1 (en) * 2016-06-15 2016-10-21 제엠제코(주) Improved semiconductor chip package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283681A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Semiconductor device
JP2003124406A (en) * 2001-08-06 2003-04-25 Denso Corp Semiconductor device
JP2004228286A (en) * 2003-01-22 2004-08-12 Mitsubishi Electric Corp Power semiconductor device
JP2004349324A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Direct water-cooled power semiconductor module structure
JP2005191178A (en) * 2003-12-25 2005-07-14 Mitsubishi Electric Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283681A (en) * 1996-04-16 1997-10-31 Hitachi Ltd Semiconductor device
JP2003124406A (en) * 2001-08-06 2003-04-25 Denso Corp Semiconductor device
JP2004228286A (en) * 2003-01-22 2004-08-12 Mitsubishi Electric Corp Power semiconductor device
JP2004349324A (en) * 2003-05-20 2004-12-09 Hitachi Ltd Direct water-cooled power semiconductor module structure
JP2005191178A (en) * 2003-12-25 2005-07-14 Mitsubishi Electric Corp Semiconductor device

Cited By (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299603B2 (en) 2007-01-22 2012-10-30 Mitsubishi Electric Corporation Power semiconductor device
WO2008090734A1 (en) * 2007-01-22 2008-07-31 Mitsubishi Electric Corporation Semiconductor device for power
JP5350804B2 (en) * 2007-01-22 2013-11-27 三菱電機株式会社 Power semiconductor device
JP2008199022A (en) * 2007-02-12 2008-08-28 Infineon Technologies Ag Power semiconductor module and its manufacturing method
JP2009059923A (en) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp Semiconductor device
JP2009088386A (en) * 2007-10-02 2009-04-23 Rohm Co Ltd Power module
JP2009123953A (en) * 2007-11-15 2009-06-04 Omron Corp Transfer mold power module
DE102008029829B4 (en) * 2008-06-25 2012-10-11 Danfoss Silicon Power Gmbh Vertical upwardly contacting semiconductor and method of making the same
JP2010027813A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
DE102009033321A1 (en) 2008-07-18 2010-02-11 Mitsubishi Electric Corp. Power semiconductor device
DE102009033321B4 (en) * 2008-07-18 2014-07-17 Mitsubishi Electric Corp. Power semiconductor device
US8952520B2 (en) 2008-07-18 2015-02-10 Mitsubishi Electric Corporation Power semiconductor device
US8253236B2 (en) 2008-07-18 2012-08-28 Mitsubishi Electric Corporation Power semiconductor device
JP4576448B2 (en) * 2008-07-18 2010-11-10 三菱電機株式会社 Power semiconductor device
JP4567773B2 (en) * 2008-07-18 2010-10-20 三菱電機株式会社 Power semiconductor device
US8994165B2 (en) 2008-07-18 2015-03-31 Mitsubishi Electric Corporation Power semiconductor device
JP2010027814A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Power semiconductor device
JP2010056186A (en) * 2008-08-27 2010-03-11 Hitachi Ltd Electrical and electronic module
JP2010118429A (en) * 2008-11-12 2010-05-27 Denso Corp Electronic apparatus and manufacturing method for the same
DE102009055648B4 (en) 2008-11-25 2023-07-27 Mitsubishi Electric Corp. power semiconductor module
US8319333B2 (en) 2008-11-25 2012-11-27 Mitsubishi Electric Corporation Power semiconductor module
DE102009055648A1 (en) 2008-11-25 2010-07-22 Mitsubishi Electric Corp. The power semiconductor module
DE102009055691A1 (en) 2008-11-26 2010-08-19 Mitsubishi Electric Corp. The power semiconductor module
DE102009055691B4 (en) * 2008-11-26 2015-05-28 Mitsubishi Electric Corp. The power semiconductor module
US8258618B2 (en) 2008-11-26 2012-09-04 Mitsubishi Electric Corporation Power semiconductor module
JP2010129670A (en) * 2008-11-26 2010-06-10 Mitsubishi Electric Corp Power semiconductor module
US8610261B2 (en) 2008-11-28 2013-12-17 Mitsubishi Electric Corporation Power semiconductor device
DE102009042600A1 (en) 2008-11-28 2010-07-08 Mitsubishi Electric Corp. Power semiconductor module and manufacturing method for this
JP2010129795A (en) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp Semiconductor module for power
DE102009055882A1 (en) 2008-11-28 2010-07-01 Mitsubishi Electric Corporation, Tokyo Power semiconductor device
JP4634498B2 (en) * 2008-11-28 2011-02-16 三菱電機株式会社 Power semiconductor module
DE102009055882B4 (en) * 2008-11-28 2013-12-05 Mitsubishi Electric Corporation Power semiconductor device
US8299601B2 (en) 2008-11-28 2012-10-30 Mitsubishi Electric Corporation Power semiconductor module and manufacturing method thereof
US8436459B2 (en) 2008-11-28 2013-05-07 Mitsubishi Electric Corporation Power semiconductor module
DE102009044659A1 (en) 2008-11-28 2010-07-29 Mitsubishi Electric Corp. The power semiconductor module
DE102009042390A1 (en) 2009-02-04 2010-08-19 Mitsubishi Electric Corp. Power semiconductor module and method for its production
EP2816599A3 (en) * 2009-02-05 2015-04-15 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method therefor
EP2216814A2 (en) 2009-02-05 2010-08-11 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method therefor
EP2216814A3 (en) * 2009-02-05 2011-05-18 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method therefor
EP2816599A2 (en) 2009-02-05 2014-12-24 Mitsubishi Electric Corporation Power semiconductor device and manufacturing method therefor
JP2010186931A (en) * 2009-02-13 2010-08-26 Mitsubishi Electric Corp Power semiconductor device
DE102009049613A1 (en) 2009-02-13 2010-08-26 Mitsubishi Electric Corp. Power semiconductor device
DE102009042399B4 (en) * 2009-02-13 2015-08-20 Mitsubishi Electric Corp. Power semiconductor device and manufacturing method therefor
DE102009061178B3 (en) * 2009-02-13 2015-08-20 Mitsubishi Electric Corp. Power semiconductor device
DE102009042399A1 (en) 2009-02-13 2010-10-14 Mitsubishi Electric Corp. Power semiconductor device and manufacturing method therefor
JP2010267794A (en) * 2009-05-14 2010-11-25 Mitsubishi Electric Corp Power module
JP2010267873A (en) * 2009-05-15 2010-11-25 Toyota Motor Corp Semiconductor device
US8313986B2 (en) 2009-08-27 2012-11-20 Mitsubishi Electric Corporation Method of manufacturing power semiconductor device
DE102010038826B4 (en) 2009-08-27 2021-09-16 Mitsubishi Electric Corp. Power semiconductor device and method of manufacturing the same
US8304882B2 (en) 2009-08-27 2012-11-06 Mitsubishi Electric Corporation Power semiconductor device
DE102010038826A1 (en) 2009-08-27 2011-03-03 Mitsubishi Electric Corp. Power semiconductor device and method of manufacturing the same
JP2011077280A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Power semiconductor device and method of manufacturing the same
JP2011138998A (en) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp Semiconductor device
DE102010043839B4 (en) * 2010-01-20 2015-06-18 Mitsubishi Electric Corp. Semiconductor device with an insulating substrate
JP2011150833A (en) * 2010-01-20 2011-08-04 Mitsubishi Electric Corp Semiconductor device
DE102010043839A1 (en) 2010-01-20 2011-07-21 Mitsubishi Electric Corp. Semiconductor device, has outer base whose upper section is arranged higher than upper section of inner base, where inner peripheral surface of outer base is in contact with outer peripheral surface of inner base
JP2011165836A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Power semiconductor device
JP2011187564A (en) * 2010-03-05 2011-09-22 Keihin Corp Semiconductor device
JP2011228528A (en) * 2010-04-21 2011-11-10 Mitsubishi Electric Corp Power block and power semiconductor module using the same
US8987912B2 (en) 2010-04-28 2015-03-24 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
JP2011258814A (en) * 2010-06-10 2011-12-22 Toyota Motor Corp Semiconductor device cooler
US8637979B2 (en) 2010-06-15 2014-01-28 Mitsubishi Electric Corporation Semiconductor device
JP2012004218A (en) * 2010-06-15 2012-01-05 Mitsubishi Electric Corp Semiconductor device
US9331001B2 (en) 2010-09-02 2016-05-03 Toyota Jidosha Kabushiki Kaisha Semiconductor module
CN103081097A (en) * 2010-09-02 2013-05-01 丰田自动车株式会社 Semiconductor module
JP2012178528A (en) * 2011-02-28 2012-09-13 Sansha Electric Mfg Co Ltd Semiconductor device
JP2013030579A (en) * 2011-07-28 2013-02-07 Toyota Motor Corp Power conversion apparatus
JP2013062407A (en) * 2011-09-14 2013-04-04 Shindengen Electric Mfg Co Ltd Semiconductor device
JP2013074254A (en) * 2011-09-29 2013-04-22 Mitsubishi Electric Corp Semiconductor device and manufacturing method of the same
US9425065B2 (en) 2011-09-29 2016-08-23 Mitsubishi Electric Corporation Semiconductor device and method of manufacture thereof
US9324630B2 (en) 2012-02-14 2016-04-26 Mitsubishi Electric Corporation Semiconductor device
JP2013183022A (en) * 2012-03-01 2013-09-12 Toyota Industries Corp Semiconductor device and manufacturing apparatus of the same
JP5900620B2 (en) * 2012-07-05 2016-04-06 三菱電機株式会社 Semiconductor device
DE112012006656B4 (en) 2012-07-05 2021-08-05 Mitsubishi Electric Corporation Semiconductor device
WO2014006724A1 (en) * 2012-07-05 2014-01-09 三菱電機株式会社 Semiconductor device
US9418910B2 (en) 2012-07-05 2016-08-16 Mitsubishi Electric Corporation Semiconductor device
DE102013215392A1 (en) 2012-09-13 2014-03-13 Mitsubishi Electric Corporation Power semiconductor device and method for its production
KR101443970B1 (en) * 2012-10-30 2014-09-23 삼성전기주식회사 Power module package
JP2014112585A (en) * 2012-12-05 2014-06-19 Mitsubishi Electric Corp Semiconductor device
JP2014123618A (en) * 2012-12-20 2014-07-03 Mitsubishi Electric Corp Semiconductor module, manufacturing method of the same, and connection method of the same
US9048227B2 (en) 2013-02-13 2015-06-02 Mitsubishi Electric Corporation Semiconductor device
DE102013226544B4 (en) * 2013-02-13 2021-02-18 Arigna Technology Ltd. Semiconductor device
DE102013226544A1 (en) 2013-02-13 2014-08-14 Mitsubishi Electric Corporation Semiconductor device
JP2013102242A (en) * 2013-03-05 2013-05-23 Mitsubishi Electric Corp Power semiconductor device
WO2014141346A1 (en) * 2013-03-15 2014-09-18 三菱電機株式会社 Semiconductor device
CN105144373A (en) * 2013-03-15 2015-12-09 三菱电机株式会社 Semiconductor device
JP6065973B2 (en) * 2013-05-09 2017-01-25 三菱電機株式会社 Semiconductor module
WO2014181426A1 (en) * 2013-05-09 2014-11-13 三菱電機株式会社 Semiconductor module and semiconductor device
US9362219B2 (en) 2013-05-09 2016-06-07 Mitsubishi Electric Corporation Semiconductor module and semiconductor device
JP2015008215A (en) * 2013-06-25 2015-01-15 株式会社デンソー Electronic apparatus
CN103367299A (en) * 2013-07-03 2013-10-23 株洲南车时代电气股份有限公司 Device and method for power interconnection of semiconductor module
US11239123B2 (en) 2013-08-29 2022-02-01 Mitsubishi Electric Corporation Semiconductor module, semiconductor device, and vehicle
JP2015056513A (en) * 2013-09-12 2015-03-23 ニチコン株式会社 Resin mold type capacitor
KR20150043923A (en) * 2013-10-15 2015-04-23 페어차일드코리아반도체 주식회사 Power module package and method for manufacturing the same
US11004698B2 (en) 2013-10-15 2021-05-11 Semiconductor Components Industries, Llc Power module package
US11615967B2 (en) 2013-10-15 2023-03-28 Semiconductor Components Industries, Llc Power module package and method of manufacturing the same
KR102143890B1 (en) 2013-10-15 2020-08-12 온세미컨덕터코리아 주식회사 Power module package and method for manufacturing the same
DE112015002024B4 (en) 2014-04-28 2022-06-30 Mitsubishi Electric Corporation semiconductor device
US10068825B2 (en) 2014-04-28 2018-09-04 Mitsubishi Electric Corporation Semiconductor device
US9530713B2 (en) 2014-06-23 2016-12-27 Fuji Electric Co., Ltd. Cooler-integrated semiconductor module
CN106415827A (en) * 2014-06-23 2017-02-15 富士电机株式会社 Semiconductor module integrated with cooling device
WO2015198724A1 (en) * 2014-06-23 2015-12-30 富士電機株式会社 Semiconductor module integrated with cooling device
JPWO2015198724A1 (en) * 2014-06-23 2017-04-20 富士電機株式会社 Cooler integrated semiconductor module
JP2016012612A (en) * 2014-06-27 2016-01-21 三菱マテリアル株式会社 Base plate for power module with heat sink, manufacturing method and power module
WO2016016985A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Semiconductor device
JP2016115704A (en) * 2014-12-11 2016-06-23 トヨタ自動車株式会社 Semiconductor device
JP2016171124A (en) * 2015-03-11 2016-09-23 株式会社東芝 Semiconductor device and manufacturing method of the same
DE112016002302B4 (en) 2015-05-21 2022-05-05 Mitsubishi Electric Corporation power semiconductor device
US10483175B2 (en) 2015-12-04 2019-11-19 Mitsubishi Electric Corporation Power semiconductor device
DE112015007166T5 (en) 2015-12-04 2018-08-09 Mitsubishi Electric Corporation POWER SEMICONDUCTOR DEVICE
US10643969B2 (en) 2016-02-24 2020-05-05 Mitsubishi Electric Corporation Semiconductor module and method for manufacturing the same
US10361294B2 (en) 2016-11-02 2019-07-23 Fuji Electric Co., Ltd. Semiconductor device
US11031355B2 (en) 2017-07-03 2021-06-08 Mitsubishi Electric Corporation Semiconductor device
JP7031172B2 (en) 2017-08-24 2022-03-08 富士電機株式会社 Semiconductor device
JP2019040971A (en) * 2017-08-24 2019-03-14 富士電機株式会社 Semiconductor device
JPWO2019176380A1 (en) * 2018-03-16 2020-12-03 富士電機株式会社 Semiconductor device
US11107784B2 (en) 2018-03-16 2021-08-31 Fuji Electric Co., Ltd. Semiconductor device having circuit board to which contact part is bonded
CN111052510A (en) * 2018-03-16 2020-04-21 富士电机株式会社 Semiconductor device with a plurality of semiconductor chips
JP7070658B2 (en) 2018-03-16 2022-05-18 富士電機株式会社 Semiconductor device
WO2019176380A1 (en) * 2018-03-16 2019-09-19 富士電機株式会社 Semiconductor device
JP2020136495A (en) * 2019-02-20 2020-08-31 中央電子工業株式会社 Hollow package structure, manufacturing method of the same, semiconductor device, and manufacturing method of the same
CN109817612A (en) * 2019-03-14 2019-05-28 华北电力大学 A kind of encapsulating structure improving solder type silicon carbide power module electric heating property
CN109817612B (en) * 2019-03-14 2024-05-03 华北电力大学 Encapsulation structure for improving electrothermal performance of welded silicon carbide power module
JPWO2020245890A1 (en) * 2019-06-03 2021-10-21 三菱電機株式会社 Power module and power converter
JP7094447B2 (en) 2019-06-03 2022-07-01 三菱電機株式会社 Power module and power converter
WO2020245890A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Power module and power conversion device
JP2021040065A (en) * 2019-09-04 2021-03-11 ローム株式会社 Mounting structure of semiconductor device
CN113437026A (en) * 2020-03-23 2021-09-24 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN113437026B (en) * 2020-03-23 2024-04-26 株式会社东芝 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
WO2023214500A1 (en) * 2022-05-02 2023-11-09 ローム株式会社 Semiconductor device
CN115565971A (en) * 2022-10-26 2023-01-03 弘大芯源(深圳)半导体有限公司 Chip packaging structure with good heat dissipation performance
CN115565971B (en) * 2022-10-26 2024-02-23 弘大芯源(深圳)半导体有限公司 Chip packaging structure with good heat dissipation performance

Also Published As

Publication number Publication date
JP4569473B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP4569473B2 (en) Resin-encapsulated power semiconductor module
JP4635564B2 (en) Semiconductor device
US6979843B2 (en) Power semiconductor device
US8058722B2 (en) Power semiconductor module and method of manufacturing the same
US9171773B2 (en) Semiconductor device
US8610263B2 (en) Semiconductor device module
JP2007311441A (en) Power semiconductor module
WO2014097798A1 (en) Semiconductor device
JP2010027814A (en) Power semiconductor device
CN101335263A (en) Semiconductor module and manufacturing method thereof
JP2009536458A (en) Semiconductor module and manufacturing method thereof
WO2015111202A1 (en) Semiconductor module
JP2011142124A (en) Semiconductor device
CN109698179B (en) Semiconductor device and method for manufacturing semiconductor device
US20150130042A1 (en) Semiconductor module with radiation fins
US20230187311A1 (en) Semiconductor device and manufacturing method thereof
US7229855B2 (en) Process for assembling a double-sided circuit component
CN111276447A (en) Double-side cooling power module and manufacturing method thereof
JP4906650B2 (en) Power semiconductor module and manufacturing method thereof
JPH11214612A (en) Power semiconductor module
JP2008211168A (en) Semiconductor device and semiconductor module
WO2020245998A1 (en) Semiconductor device, power conversion device, and manufacturing method of semiconductor device
JP2000228490A (en) Power semiconductor module
KR102603439B1 (en) Semiconductor package having negative patterned substrate and method of fabricating the same
US11887933B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4569473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350