JP2015213097A - Heat radiator, manufacturing method thereof and package for storing semiconductor device - Google Patents

Heat radiator, manufacturing method thereof and package for storing semiconductor device Download PDF

Info

Publication number
JP2015213097A
JP2015213097A JP2014094347A JP2014094347A JP2015213097A JP 2015213097 A JP2015213097 A JP 2015213097A JP 2014094347 A JP2014094347 A JP 2014094347A JP 2014094347 A JP2014094347 A JP 2014094347A JP 2015213097 A JP2015213097 A JP 2015213097A
Authority
JP
Japan
Prior art keywords
heat
brazing material
brazing
heat dissipation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014094347A
Other languages
Japanese (ja)
Inventor
志水 大助
Daisuke Shimizu
大助 志水
中井 博
Hiroshi Nakai
博 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014094347A priority Critical patent/JP2015213097A/en
Publication of JP2015213097A publication Critical patent/JP2015213097A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To easily improve the adhesion of a substrate constituting a heat radiator as well as the heat dissipation performance.SOLUTION: After supplying a brazing filler metal 104 to the front and rear surfaces of a second metal substrate 103, the heat the brazing filler metal 104 is heated to temporarily solder without a first metal substrate 102. After disposing the first metal substrate 102 on the brazing filler metal 104, the brazing filler metal 104 is heated again to solder to join the first metal substrate 102 and the second metal substrate 103. With this, no void is generated in the brazed filler metal 104 and the adhesion force between the first metal substrate 103 and the second metal substrate 102 is increased and the heat dissipation is improved.

Description

本発明は、半導体素子で発熱した熱を放熱する放熱体およびその製造方法ならびにこの放熱体を備える半導体素子収納用パッケージに関するものである。   The present invention relates to a heat radiating body that radiates heat generated by a semiconductor element, a manufacturing method thereof, and a package for housing a semiconductor element including the heat radiating body.

従来、半導体素子を収納するための半導体収納パッケージは、上面に半導体素子が載置固定される載置部を有する金属放熱体と、酸化アルミニウム質焼結体から成り、内部に半導体素子を収容する空所を形成するための開孔と、開孔周辺から外周部にかけて導出される複数個のメタライズ配線層を有する枠状の絶縁体とから構成されており、金属放熱体上面に枠状の絶縁体を、枠状の絶縁体が金属放熱体の半導体素子載置部を囲むようにろう付けされて形成されている。前記金属放熱体は、酸化アルミニウム質焼結体から成る絶縁体が強固にろう付けされ、かつ半導体素子の作動時に発生する熱を大気中に良好に放散させるため、例えば、モリブデン板の上下両面に銅板を圧延加工により一体的に接合させた熱膨張係数が絶縁体の熱膨張係数に近似し、かつ熱伝導率が約150W/mKの複合材料が使用される(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a semiconductor storage package for storing a semiconductor element includes a metal radiator having a mounting portion on which a semiconductor element is mounted and fixed, and an aluminum oxide sintered body, and stores the semiconductor element therein. It consists of an opening for forming a void and a frame-like insulator having a plurality of metallized wiring layers led out from the periphery of the opening to the outer periphery. The body is brazed so that a frame-like insulator surrounds the semiconductor element mounting portion of the metal heat sink. In order to dissipate the heat generated during the operation of the semiconductor element well into the atmosphere, for example, on the upper and lower surfaces of the molybdenum plate A composite material in which the thermal expansion coefficient obtained by integrally bonding copper plates by rolling is close to the thermal expansion coefficient of the insulator and the thermal conductivity is about 150 W / mK is used (see, for example, Patent Document 1).

またモリブデン板の上下両面に銅板をろう付けして金属放熱体を形成し、銅板の厚みをモリブデン板の厚みの1.25〜4倍にすることで、熱伝導率を250W/mK以上とし、その際のろう材厚を、ろう材内部にボイドを形成し熱伝導率低下することを防止するために0.02mm以上の厚さとする場合もあった。   Moreover, a copper plate is brazed to the upper and lower surfaces of the molybdenum plate to form a metal radiator, and the thickness of the copper plate is 1.25 to 4 times the thickness of the molybdenum plate, so that the thermal conductivity is 250 W / mK or more, In some cases, the thickness of the brazing material at that time was 0.02 mm or more in order to prevent voids from forming inside the brazing material and thereby reducing the thermal conductivity.

図8は従来の半導体素子収納用パッケージ金属放熱体の製造方法を説明する図であり、従来のモリブデン板を銅板で挟み込む半導体素子収納用パッケージ金属放熱体の製造方法を示す。   FIG. 8 is a diagram for explaining a conventional method for manufacturing a package metal heat sink for housing a semiconductor element, and shows a conventional method for manufacturing a package metal heat sink for storing a semiconductor element in which a molybdenum plate is sandwiched between copper plates.

図8において、金属放熱体501は、モリブデン板503を2枚の銅板502で挟み込む構成であり、モリブデン板503と銅板502とをろう材504で接合させている。モリブデン板503と銅板502とを接合する際には、モリブデン板503と銅板502との間にろう材504を配置し、還元雰囲気中で800℃以上に加熱する熱処理を行っていた。銅板およびモリブデンを張り合わせる際、お互いの反りにより接合面に空間(空気層)が生じるが、最終的にろう材が溶融し濡れ広がることにより空気層が押し出される。このとき、ろう材504の厚みが0.02mm未満であると、モリブデン板503の上下両面に銅板502をろう材504を介してろう付けする際、銅板およびモリブデン板の反りを吸収できないため、ろう材504の内部に多数のボイドが形成される。ボイドにより、金属放熱体501の熱伝導率が低下してしまう危険性があるため、ろう材504は0.02mm以上の厚さにしていた(例えば、特許文献2参照)。   In FIG. 8, the metal radiator 501 has a configuration in which a molybdenum plate 503 is sandwiched between two copper plates 502, and the molybdenum plate 503 and the copper plate 502 are joined by a brazing material 504. When joining the molybdenum plate 503 and the copper plate 502, a brazing material 504 is disposed between the molybdenum plate 503 and the copper plate 502, and heat treatment is performed to heat to 800 ° C. or higher in a reducing atmosphere. When the copper plate and molybdenum are bonded together, a space (air layer) is generated on the joint surface due to the warpage of each other, but the air layer is finally pushed out by melting and spreading the brazing material. At this time, if the thickness of the brazing material 504 is less than 0.02 mm, when the copper plate 502 is brazed to the upper and lower surfaces of the molybdenum plate 503 via the brazing material 504, the warpage of the copper plate and the molybdenum plate cannot be absorbed. A large number of voids are formed inside the material 504. Since there is a risk that the thermal conductivity of the metal heat radiating body 501 is lowered due to voids, the brazing material 504 has a thickness of 0.02 mm or more (see, for example, Patent Document 2).

特開平3−200353号公報Japanese Patent Laid-Open No. 3-200333 特開平7−211822号公報JP 7-211182 A

しかしながら、前記従来の金属放熱体501の構成では、Ag−Cu系のろう材504(例えばBAg−8相当)を用いてろう付けを行う際、0.05mm厚のろう材504を用いても、異種材料である銅板502および電解Niめっき505を施したモリブデン板503に銀ろうが濡れ広がる特性差があるため、前述した空気層の追い出しが不十分になり、結果としてろう材504にボイドが発生した。従来の金属放熱体では、Φ2.0mm以上のボイドが生じており、基板全体のボイド占有率は20%になる場合があった。その結果、モリブデン板と銅板との密着性が低下し、金属放熱体501の放熱性が低下するという課題を有していた。特に、半導体素子直下部にボイドが発生した場合、著しく放熱性が低下する。なお、電解Niめっき505は、銀ロウの濡れを確保するために、モリブデン板503に施されている。   However, in the structure of the conventional metal radiator 501, when brazing using an Ag—Cu-based brazing material 504 (e.g., equivalent to BAg-8), even if a brazing material 504 having a thickness of 0.05 mm is used, Since there is a difference in the characteristics of silver brazing and spreading between the dissimilar copper plate 502 and the molybdenum plate 503 subjected to electrolytic Ni plating 505, the air layer is not sufficiently expelled, resulting in voids in the brazing material 504. did. In the conventional metal radiator, voids of Φ2.0 mm or more are generated, and the void occupancy ratio of the entire substrate may be 20%. As a result, there was a problem that the adhesion between the molybdenum plate and the copper plate was reduced, and the heat dissipation of the metal radiator 501 was reduced. In particular, when a void is generated immediately below the semiconductor element, the heat dissipation is significantly reduced. The electrolytic Ni plating 505 is applied to the molybdenum plate 503 in order to ensure the wetness of the silver solder.

半導体素子直下部へのボイド発生を低減させる方法として、板状の銀ろうを使用する場合がある。しかし、重ね合わせる銅板502に反りがあったり、平面度が不均一である場合には、銅板502とろう材504との間に隙間が生じ、ろう材504が濡れ広がっても気泡が抜けにくく、モリブデン板と銅板との密着性が低下し、放熱性が低下するという課題が残る。   As a method for reducing the generation of voids directly below the semiconductor element, a plate-like silver solder may be used. However, when the copper plate 502 to be overlapped is warped or the flatness is not uniform, a gap is formed between the copper plate 502 and the brazing material 504, and even if the brazing material 504 spreads out, air bubbles are difficult to escape. The problem remains that the adhesion between the molybdenum plate and the copper plate is lowered, and the heat dissipation is reduced.

ここで、上述する銀ろうの濡れ特性差によって生じるボイドについて説明する。Ag−Cu系のろう材504を用いて銅板502を接合する場合、ろう材504の銀成分が銅板502内部に拡散する。一方、Ag−Cu系のろう材504を用いてNiめっき505が施されたモリブデン板503を接合する場合、ろう材504の銀成分はNiめっき505の層へ拡散しない。したがって、銅板502とモリブデン板503とでAg−Cu系のろう材504を挟み込むと、ろう材504の銀成分が銅板502に拡散するため、ろう材504のモリブデン503側に銅成分が銅板502側より多くなり、ろう材504の成分比率に変化が生じて分離が進む。このため、銅板502とモリブデン板503との間に、ろう材504の濡れ広がりやすさ・速さに違いが生じるため、ろう材504内に生じた気泡が抜けにくくなる。   Here, the void produced by the difference in the wetting characteristics of the silver solder described above will be described. When the copper plate 502 is bonded using the Ag—Cu-based brazing material 504, the silver component of the brazing material 504 diffuses into the copper plate 502. On the other hand, when the molybdenum plate 503 on which the Ni plating 505 is applied is joined using the Ag—Cu-based brazing material 504, the silver component of the brazing material 504 does not diffuse into the Ni plating 505 layer. Therefore, when the Ag—Cu brazing material 504 is sandwiched between the copper plate 502 and the molybdenum plate 503, the silver component of the brazing material 504 diffuses into the copper plate 502, so that the copper component is on the molybdenum 503 side of the brazing material 504. More, the component ratio of the brazing material 504 changes and separation proceeds. For this reason, there is a difference in the ease and speed of wetting and spreading of the brazing material 504 between the copper plate 502 and the molybdenum plate 503, so that bubbles generated in the brazing material 504 are difficult to escape.

モリブデン板503表面に施されているNiめっき505表面上に、素材の特性を銀ろうに近づけて、前述した銀ろう濡れ特性差を解消するために、銅めっきあるいは金めっきを二重に施し、銀ろうの濡れ広がり特性差を改善することが試みられている。しかし、銀ろうを800℃以上に加熱すると、下地Niめっき505の銅めっき膜あるいは金めっき膜への拡散が進むため、結果としてNiめっき505と銅板502の接合という構図が変わらず、課題解決に至らない。   On the surface of the Ni plating 505 applied on the surface of the molybdenum plate 503, in order to bring the characteristics of the material closer to that of silver brazing and eliminate the above-mentioned difference in silver brazing wetting characteristics, copper plating or gold plating is applied twice. Attempts have been made to improve the difference in wetting and spreading characteristics of silver solder. However, when the silver brazing is heated to 800 ° C. or more, the base Ni plating 505 diffuses into the copper plating film or the gold plating film. As a result, the composition of joining the Ni plating 505 and the copper plate 502 does not change, and the problem is solved. It does n’t come.

また、金属放熱体501全体のろう材504に生じるボイドを低減するため、所望の金属放熱体501形状と同寸の銀ろうシートを用いる場合もあった。しかし、張り合わせる銅板502の平面度、反り方向、同寸にすることによる金属放熱体501側面への銀ろうの回りこみ、広げた面積分の銀ろう使用量を抑制するため、銀ろうシートの厚みを薄くする必要があり、ろう材504を高精度に管理する必要が生じるという課題がある。   Further, in order to reduce voids generated in the brazing material 504 of the entire metal radiator 501, a silver brazing sheet having the same size as the desired metal radiator 501 shape may be used. However, in order to suppress the amount of silver brazing around the side surface of the metal radiator 501 by making the flatness, warping direction, and the same size of the copper plate 502 to be bonded together, There is a problem that it is necessary to reduce the thickness and to manage the brazing material 504 with high accuracy.

本発明は、前記従来の課題を解決するもので、容易に放熱体を構成する基板の密着性を向上させ、放熱性を向上させることを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to easily improve the adhesion of a substrate constituting a heat radiator and improve the heat radiation.

前記目的を達成するために、本発明の放熱体の製造方法は、第2の放熱基板の表裏表面に、ろう材を介して2つの第1の放熱基板が接合される放熱体の製造方法であって、前記第2の放熱基板の表裏表面に前記ろう材を供給するろう材供給工程と、前記ろう材を加熱する仮ろう付け工程と、仮ろう付けされた前記ろう材上に前記第1の放熱基板を重ね合わせる放熱基板積層工程と、前記ろう材を加熱して前記第1の放熱基板と前記第2の放熱基板とを接合させる本ろう付け工程とを有することを特徴とする。   In order to achieve the above object, a method of manufacturing a radiator according to the present invention is a method of manufacturing a radiator in which two first heat dissipation substrates are joined to the front and back surfaces of a second heat dissipation substrate via a brazing material. The brazing material supplying step of supplying the brazing material to the front and back surfaces of the second heat dissipation substrate, the temporary brazing step of heating the brazing material, and the first brazing material on the temporarily brazed brazing material A heat dissipating substrate laminating step of superposing the heat dissipating substrates, and a main brazing step of heating the brazing material to join the first heat dissipating substrate and the second heat dissipating substrate.

また、本発明の放熱体は、2つの第1の放熱基板と、2つの前記第1の放熱基板の間に設けられる第2の放熱基板と、前記第1の放熱基板と前記第2の放熱基板とを接合するろう材とを有し、前記ろう材内のボイドが、平均直径が0mmより大きく1.9mm以下であり、前記ろう材内における占有率が0%より大きく1%以下であることを特徴とする。   Moreover, the heat radiator of the present invention includes two first heat radiating boards, a second heat radiating board provided between the two first heat radiating boards, the first heat radiating board, and the second heat radiating board. A brazing material that joins the substrate, the void in the brazing material has an average diameter of greater than 0 mm and 1.9 mm or less, and an occupancy in the brazing material of greater than 0% and 1% or less. It is characterized by that.

また、本発明の半導体素子収納用パッケージは、放熱体と、前記放熱体の表面に設けられて半導体素子の搭載領域となる搭載部と、前記放熱体の前記表面の前記搭載部の周囲に取着される絶縁体と、前記絶縁体上に形成されるリード端子と、絶縁体上面に前記リード端子を挟んで取着される蓋体とを有することを特徴とする。   The package for housing a semiconductor element of the present invention is mounted around the radiator, a mounting portion provided on the surface of the radiator and serving as a semiconductor element mounting region, and the mounting portion on the surface of the radiator. It has an insulator to be attached, a lead terminal formed on the insulator, and a lid attached to the upper surface of the insulator with the lead terminal interposed therebetween.

以上のように、容易に放熱体を構成する基板の密着性を向上させ、放熱性を向上させることができる。   As mentioned above, the adhesiveness of the board | substrate which comprises a heat radiator can be improved easily, and heat dissipation can be improved.

実施の形態1における金属放熱体の断面図Sectional drawing of the metal heat radiator in Embodiment 1. FIG. 実施の形態1の放熱体の製造方法における仮ろう付け工程を説明する図The figure explaining the temporary brazing process in the manufacturing method of the heat radiator of Embodiment 1. 実施の形態1の放熱体の製造方法における本ろう付け工程を説明する図The figure explaining this brazing process in the manufacturing method of the heat radiator of Embodiment 1. 実施の形態2の半導体素子収納用パッケージを示す分解断面図FIG. 6 is an exploded cross-sectional view showing a package for housing semiconductor elements according to the second embodiment. 熱解析シミュレーションのモデル図Model diagram of thermal analysis simulation モデルの特性を示す図Diagram showing model characteristics ボイドの発生状態と半導体素子のジャンクション温度のシミュレーション結果を示す図The figure which shows the simulation result of the generation state of a void and the junction temperature of a semiconductor element 従来の半導体素子収納用パッケージ金属放熱体の製造方法を説明する図The figure explaining the manufacturing method of the conventional package metal heat sink for semiconductor element accommodation

本発明の放熱体は、第2の放熱基板を2枚の第1の放熱基板で挟み込む構成であり、第1の放熱基板と第2の放熱基板とをろう材により接合している。
本発明の放熱体において、第1の放熱基板と第2の放熱基板とをろう材により接合する際には、ろう材を第2の放熱基板に貼り付けた状態で、加熱して仮ろう付けを行い、その後、第1の放熱基板を張り合わせた後、さらに加熱して本ろう付けを行う。
The heat radiator of the present invention has a configuration in which a second heat radiation board is sandwiched between two first heat radiation boards, and the first heat radiation board and the second heat radiation board are joined together by a brazing material.
In the heat dissipating body of the present invention, when joining the first heat dissipating substrate and the second heat dissipating substrate with a brazing material, the brazing material is heated and temporarily brazed while being bonded to the second heat dissipating substrate. After that, after the first heat dissipation substrate is pasted together, it is further heated to perform the main brazing.

これにより、仮ろう付けの際にはろう材と第1の放熱基板が接していないので、第1の放熱基板にろう材の材料が拡散せず、ろう材が均一に第1の放熱基板および第2の放熱基板上に濡れ拡がるため、ろう材内にボイドが発生することを抑制することができ、第1の放熱基板と第2の放熱基板との密着力を高くでき、放熱性を向上させることができる。   Thereby, since the brazing material and the first heat radiating substrate are not in contact with each other during the temporary brazing, the brazing material does not diffuse into the first heat radiating substrate, and the brazing material is uniformly distributed to the first heat radiating substrate and Since wetting and spreading on the second heat dissipation substrate, it is possible to suppress the generation of voids in the brazing material, and the adhesion between the first heat dissipation substrate and the second heat dissipation substrate can be increased, improving heat dissipation. Can be made.

なお、本発明の放熱体は、半導体素子を搭載しても良いし、半導体素子を搭載し、蓋体で半導体素子を収納する半導体素子収納用パッケージとして用いても良い。
以下、本発明の実施の形態として、金属放熱体および、金属放熱体を備える半導体素子収納用パッケージについて、図面を参照しながら説明する。
Note that the heat radiator of the present invention may be mounted with a semiconductor element, or may be used as a package for housing a semiconductor element in which the semiconductor element is mounted and the semiconductor element is stored with a lid.
Hereinafter, as an embodiment of the present invention, a metal radiator and a package for housing a semiconductor element including the metal radiator will be described with reference to the drawings.

(実施の形態1)
図1は実施の形態1における金属放熱体の断面図である。図1において、図8と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 1)
FIG. 1 is a cross-sectional view of the metal radiator in the first embodiment. In FIG. 1, the same components as those in FIG.

図1において、金属放熱体101は、第2の放熱基板であるNi−Bめっきが施された第2の金属板103と、第2の金属板103を挟み込む第1の放熱基板である2枚の第2の金属板102とを、ろう材104でろう付けして構成される。   In FIG. 1, a metal heat dissipating body 101 is a second heat dissipating substrate that is Ni-B plated second metal plate 103 and a second heat dissipating substrate that sandwiches the second metal plate 103. The second metal plate 102 is brazed with a brazing material 104.

第1の金属板102は、例えば銅、銀、アルミニウム、金等の金属材料、またはこれらの中の少なくとも1つを含む合金材料から成る。
第2の金属板103は、例えばモリブデン、タングステン等の金属材料、またはこれらの中の少なくとも1つを含む合金材料から成る。これら第1の金属板102、第2の金属板103は、基板に圧延加工、打抜き加工といった金属加工を施すことによって形成され、さらに第2の金属板103は表面処理が施されている。
The first metal plate 102 is made of, for example, a metal material such as copper, silver, aluminum, or gold, or an alloy material including at least one of them.
The second metal plate 103 is made of a metal material such as molybdenum or tungsten, or an alloy material containing at least one of them. The first metal plate 102 and the second metal plate 103 are formed by subjecting a substrate to metal processing such as rolling and punching, and the second metal plate 103 is subjected to surface treatment.

第2の金属板103への表面処理として、電解めっき、無電解めっき、スパッタによって、第2の金属板103の表面に金属層106を形成することにより行われる。金属層106としてはニッケルめっき、ニッケル−リン、ニッケル−ボロンめっき等の金属、またはこれらの中の少なくとも1つを含む合金から成る。このような第2の金属板103の表面処理を行うことにより、第2の金属板103に半田付けやろう付けを行うことができる。なお、金属層106として、ニッケルめっきによって第2の金属板103を被覆すると、1000℃以上の耐熱特性を有することができ、銀ろう付けが可能となるため好ましい。   The surface treatment on the second metal plate 103 is performed by forming a metal layer 106 on the surface of the second metal plate 103 by electrolytic plating, electroless plating, or sputtering. The metal layer 106 is made of a metal such as nickel plating, nickel-phosphorus, nickel-boron plating, or an alloy containing at least one of them. By performing the surface treatment of the second metal plate 103 as described above, the second metal plate 103 can be soldered or brazed. Note that it is preferable to coat the second metal plate 103 by nickel plating as the metal layer 106 because the metal layer 106 can have heat resistance characteristics of 1000 ° C. or higher and can be brazed with silver.

例えば、本発明の金属放熱体101は、金属層106として電解Niめっきが施された、第2の金属板103であるモリブデン板の表裏に、所望量のろう材104である銀ろう(例えばBAg−8相当)を介して第1の金属板102である銅板を重ね合わせて形成している。第2の金属板103と銅板との接合は、銀ろうを加熱処理することにより行われる。これにより、第1の金属板102である銅板と金属板103の反りにより生じる空気層を、銀ろうが溶融し、濡れ広がることで追い出すことができる。   For example, the metal heat dissipating body 101 of the present invention has a desired amount of brazing filler metal 104 (for example, BAg) on the front and back surfaces of a molybdenum plate that is the second metal plate 103 that has been subjected to electrolytic Ni plating as the metal layer 106. −8), a copper plate which is the first metal plate 102 is overlapped. The joining of the second metal plate 103 and the copper plate is performed by heat-treating the silver solder. As a result, the air layer generated by the warp between the copper plate and the metal plate 103 as the first metal plate 102 can be expelled by the melting of the silver solder and spreading it.

このとき、ろう材104内のボイドは、一つあたりのボイドの直径が0mmより大きく1.9mm以下、ろう材104内におけるボイド占有率が0%より大きく1%以下であることが好ましく、ボイドが存在しない状態がより好ましい。   At this time, the voids in the brazing material 104 preferably have a void diameter of more than 0 mm and 1.9 mm or less, and the void occupancy in the brazing material 104 is more than 0% and 1% or less. More preferably, no state exists.

次に、本発明の半導体素子収納用パッケージ金属放熱体の放熱特性について、図5〜図7を参照して、ボイドの発生状態と半導体素子のジャンクション温度の関係の熱解析シミュレーション結果を用いて説明する。   Next, with reference to FIGS. 5 to 7, the heat dissipation characteristics of the packaged metal radiator for housing a semiconductor element of the present invention will be described with reference to the results of thermal analysis simulation of the relationship between the void generation state and the junction temperature of the semiconductor element. To do.

図5は熱解析シミュレーションのモデル図であり、本発明の放熱体上に半導体素子が実装された状態を示す。図6はモデルの特性を示す図である。図7はボイドの発生状態と半導体素子のジャンクション温度のシミュレーション結果を示す図であり、図7(a)はボイドの平均直径とボイドのろう材内における占有率を変化させた時の熱抵抗とジャンクション温度の変化を示す表、図7(b)はボイドの占有率が10%の時のボイドの平均直径と熱抵抗およびジャンクション温度との関係を示す表である。   FIG. 5 is a model diagram of a thermal analysis simulation, and shows a state in which a semiconductor element is mounted on the radiator of the present invention. FIG. 6 is a diagram showing model characteristics. FIG. 7 is a diagram showing a simulation result of the void generation state and the junction temperature of the semiconductor element. FIG. 7A shows the thermal resistance when the average diameter of the void and the occupation ratio of the void in the brazing material are changed. FIG. 7B is a table showing the relationship between the average diameter of the void, the thermal resistance, and the junction temperature when the void occupancy is 10%.

図5に示すように、シミュレーションのモデルは、金属放熱体101上に、ダイボンド108により半導体素子107を接合している。金属放熱体101は、第2の金属板103の表裏に、ろう材104により第1の金属板102が貼り合わされた構成である。図6に示す特性において、半導体素子107が動作して発熱する場合のシミュレーション結果を説明する。なお、このシミュレーションでは、半導体素子107はSi系の半導体、ダイボンド108はAuSn半田、ろう材104はBAg−8の銀ろうを用いる。   As shown in FIG. 5, in the simulation model, a semiconductor element 107 is bonded on a metal heat dissipating body 101 by a die bond 108. The metal heat dissipating body 101 has a configuration in which the first metal plate 102 is bonded to the front and back surfaces of the second metal plate 103 with a brazing material 104. A simulation result in the case where the semiconductor element 107 operates and generates heat in the characteristics shown in FIG. 6 will be described. In this simulation, the semiconductor element 107 uses a Si-based semiconductor, the die bond 108 uses AuSn solder, and the brazing material 104 uses BAg-8 silver solder.

ろう材104におけるボイドを、1つのボイドの平均直径が1.9mm以下であり、前記ろう材内におけるボイド占有率1%以下とした時、金属放熱体の熱抵抗が0.49K/Wとなる。そのため、例えば、半導体素子の印加電力を100W、動作温度を60℃とした場合、半導体素子のジャンクション温度Tjは108.7℃となる。一方、1つのボイドの平均直径が0.1mm以下かつボイド占有率が10.0%以上の場合、金属放熱体の熱抵抗が0.34K/Wとなる。そのため、例えば、半導体素子の印加電力を100W、動作温度を60℃とした場合、半導体素子のジャンクション温度Tjは93.9℃となる。半導体素子のジャンクション温度は、一般的に半導体の実使用上の保証温度としては、シリコン半導体では175℃以下、GaAs系半導体では125℃以下が望まれるので、上述したボイド状態の金属放熱体の放熱特性としては十分満足する。そのため、ろう材104に含まれるボイドの直径を1.9mm以下とし、ボイドのろう材104におけるボイド占有率を1%以下とすることにより、金属放熱体101の放熱特性が改善し、半導体素子107の故障率を低下させることが可能となる。同様に、1つのボイドの平均直径が0.1mm以下かつボイド占有率が10.0%以上とすることにより、金属放熱体101の放熱特性が改善し、半導体素子107の故障率を低下させることが可能となる。   When the void in the brazing material 104 has an average diameter of one void of 1.9 mm or less and a void occupancy rate of 1% or less in the brazing material, the thermal resistance of the metal radiator becomes 0.49 K / W. . Therefore, for example, when the applied power of the semiconductor element is 100 W and the operating temperature is 60 ° C., the junction temperature Tj of the semiconductor element is 108.7 ° C. On the other hand, when the average diameter of one void is 0.1 mm or less and the void occupancy is 10.0% or more, the thermal resistance of the metal radiator is 0.34 K / W. Therefore, for example, when the applied power of the semiconductor element is 100 W and the operating temperature is 60 ° C., the junction temperature Tj of the semiconductor element is 93.9 ° C. The junction temperature of the semiconductor element is generally desired to be 175 ° C. or lower for a silicon semiconductor and 125 ° C. or lower for a GaAs-based semiconductor as guaranteed temperatures in actual use of the semiconductor. We are satisfied enough as characteristics. Therefore, by setting the diameter of the void contained in the brazing material 104 to 1.9 mm or less and the void occupancy ratio of the void in the brazing material 104 to 1% or less, the heat dissipation characteristics of the metal radiator 101 are improved, and the semiconductor element 107 It is possible to reduce the failure rate. Similarly, when the average diameter of one void is 0.1 mm or less and the void occupancy is 10.0% or more, the heat dissipation characteristics of the metal radiator 101 are improved and the failure rate of the semiconductor element 107 is reduced. Is possible.

また、ボイド直径4.6mm以上かつボイド占有率が6.0%以上の場合、ろう材104内に熱伝導率の低い空気層がボイドとして存在することになるため、金属放熱体101の熱抵抗が1.17K/W以上となる。そのため、例えば、半導体素子の印加電力を100W、動作温度を60℃とした場合、素子のジャンクション温度Tjは176.5℃となり、一般Si半導体の最高ジャンクション温度である175℃以上となり、金属放熱体101の放熱特性が不足し、半導体素子107が破壊されることが懸念される。   When the void diameter is 4.6 mm or more and the void occupancy is 6.0% or more, an air layer having a low thermal conductivity exists in the brazing material 104 as a void. Becomes 1.17 K / W or more. Therefore, for example, when the applied power of the semiconductor element is 100 W and the operating temperature is 60 ° C., the junction temperature Tj of the element is 176.5 ° C., which is 175 ° C., which is the highest junction temperature of a general Si semiconductor, There is a concern that the heat dissipation characteristic of 101 is insufficient and the semiconductor element 107 is destroyed.

このように、本発明の放熱体では、ろう材104に含まれるボイドの直径を1.9mm以下とし、ボイドのろう材104における占有率を1%以下とすることにより、放熱基板同士の密着性を向上させることができ、金属放熱体101の放熱特性を向上させることができる。   Thus, in the heat radiator of the present invention, the void diameter contained in the brazing material 104 is 1.9 mm or less, and the occupancy ratio of the void in the brazing material 104 is 1% or less. And the heat dissipation characteristics of the metal heat dissipating body 101 can be improved.

次に、図1に示した金属放熱体101の製造方法について、図2、3を参照して説明する。図2は実施の形態1の放熱体の製造方法における仮ろう付け工程を説明する図、図3は実施の形態1の放熱体の製造方法における本ろう付け工程を説明する図である。   Next, a method for manufacturing the metal heat dissipating body 101 shown in FIG. 1 will be described with reference to FIGS. FIG. 2 is a diagram for explaining a temporary brazing process in the method for manufacturing a radiator according to the first embodiment, and FIG. 3 is a diagram for explaining the present brazing process in the method for manufacturing a radiator according to the first embodiment.

まず、図2に示すように、金属層106である電解Niめっきが施された、第2の金属板103であるモリブデン板の表裏に、所望量のろう材104である銀ろう(例えばBAg−8相当)を重ね合わせる。その後、銀ろうが重ねあわされたモリブデン板を、800℃以上の還元雰囲気中で10分間加熱処理し、仮ろう付けを行う。その際、銀ろうの厚みムラを低減するために、例えばカーボン等の平面性のある治具で挟み込んで銀ろう付けを行うと良い。   First, as shown in FIG. 2, a desired amount of brazing filler metal 104 (for example, BAg−) is formed on the front and back surfaces of the molybdenum plate that is the second metal plate 103 that has been subjected to electrolytic Ni plating that is the metal layer 106. 8 equivalent). Thereafter, the molybdenum plate overlaid with the silver brazing is heat-treated in a reducing atmosphere at 800 ° C. or higher for 10 minutes to perform temporary brazing. At that time, in order to reduce the thickness unevenness of the silver brazing, it is preferable to perform silver brazing by sandwiching it with a flat jig such as carbon.

次に、図3に示すように、この両面にろう付けされたモリブデン板を、第1の金属板102である上下2枚の銅板で挟み、重ね合わせる。その後、還元雰囲気中で、800℃以上の加熱処理を10分間行うことにより本ろう付けを行う。これにより、モリブデン板の表裏に銅板を接合して金属放熱板101が形成される。   Next, as shown in FIG. 3, the molybdenum plates brazed on both sides are sandwiched between two upper and lower copper plates, which are the first metal plates 102, and overlapped. Then, this brazing is performed by performing a heat treatment at 800 ° C. or higher for 10 minutes in a reducing atmosphere. Thereby, a copper plate is joined to the front and back of a molybdenum plate, and the metal heat sink 101 is formed.

銀ろうの濡れ特性の差のために、従来技術では、銀ろう構成成分である銀と銅が分離しながら、銀ろうが電解Niめっき上を水平方向に不均一に濡れ広がり、銅板においては、銅板内部(垂直方向)に銀ろう構成成分である銀が拡散するといった懸念があった。そのため、銅板を貼り付けた状態で銀ろうを加熱すると、銀ろう構成成分である銀と銅の比率が不均一に濡れ広がるため、銅板上で局所的に銀ろうの濡れが低下し、各板の反りによって生じる空間、所謂空気層が、銀ろうが濡れ広がることにより追い出されることが不足するため、銀ろう内に気泡が発生していた。   Due to the difference in wetting characteristics of silver brazing, in the prior art, silver brazing component silver and copper are separated while silver brazing spreads unevenly on the electrolytic Ni plating in the horizontal direction. There was a concern that silver, which is a silver brazing component, diffuses into the copper plate (vertical direction). Therefore, when the silver brazing is heated with the copper plate attached, the ratio of silver and copper, which are silver brazing constituents, spreads in a non-uniform manner, so that the wetting of the silver brazing locally on the copper plate is reduced. Since the space created by the warpage of the so-called air layer is insufficient to be expelled when the silver solder is wet and spread, bubbles are generated in the silver solder.

これに対して、実施の形態1の放熱体の製造方法によると、ろう付けの前処理として、銅板を貼り付けない状態で、モリブデン板のNi−Bめっき表面に銀ろうを仮ろう付けをすることで、仮ろう付けにおいて、銀ろうを溶融しながら、銅板に銀ろう中の銀が拡散することがなくなる。そして、その後に銅板を貼り付けて熱処理を行ったとしても、銀ろうを仮ろう付けした状態であるので、Niめっき一面に広がっている銀ろうが銅板内部方向へ一律に拡散していくため、銀ろうを銅板上に十分に濡れ広がらせることができる。そのため、銅板上およびモリブデン板上を、銀ろうが十分に濡れ拡がり、銀ろう内のボイドの発生を抑制することができる。その結果、ろう材の厚みの調整等を行うことなく、容易に銅板とモリブデン板との密着性を向上させ、放熱体の放熱性を向上することができる。   On the other hand, according to the manufacturing method of the radiator of the first embodiment, as a pretreatment for brazing, silver brazing is temporarily brazed on the Ni-B plating surface of the molybdenum plate without attaching the copper plate. Thus, in the temporary brazing, the silver in the silver brazing does not diffuse into the copper plate while the silver brazing is melted. And even if the copper plate is pasted and heat treated, the silver brazing is in a state where the silver brazing is temporarily brazed. The silver solder can be sufficiently wetted and spread on the copper plate. For this reason, the silver brazing sufficiently wets and spreads on the copper plate and the molybdenum plate, and generation of voids in the silver brazing can be suppressed. As a result, the adhesiveness between the copper plate and the molybdenum plate can be easily improved without adjusting the thickness of the brazing material, and the heat dissipation of the radiator can be improved.

(実施の形態2)
図4は実施の形態2の半導体素子収納用パッケージを示す分解断面図である。図4において、図1、図2および図3と同じ構成要素については同じ符号を用い、説明を省略する。
(Embodiment 2)
FIG. 4 is an exploded cross-sectional view showing the semiconductor element storage package of the second embodiment. 4, the same components as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals, and the description thereof is omitted.

図4において、半導体素子収納用パッケージ201は、実施の形態1に示す金属放熱体101、絶縁体203、リード端子205および蓋体206から構成される。また、金属放熱体101の表面には半導体素子202を搭載する搭載部が設けられる。金属放熱体101の表面の搭載部周辺領域には、絶縁体203を介して、1または複数のリード端子205が形成される。このような半導体素子収納用パッケージ201において、金属放熱体101の搭載部に、ダイボンド材207を介して半導体素子202を搭載した後に、配線導体204で半導体素子202とリード端子205を電気的に接続し、絶縁体203上面にリード端子205の一部を挟んで蓋体206を取着し、半導体素子202および配線導体204を封止することにより半導体装置が形成される。   In FIG. 4, a semiconductor element storage package 201 includes the metal heat dissipating body 101, the insulator 203, the lead terminal 205, and the lid 206 shown in the first embodiment. Further, a mounting portion for mounting the semiconductor element 202 is provided on the surface of the metal radiator 101. One or a plurality of lead terminals 205 are formed in the peripheral region of the mounting portion on the surface of the metal heat dissipating member 101 via the insulator 203. In such a semiconductor element housing package 201, the semiconductor element 202 is mounted on the mounting portion of the metal radiator 101 via the die bonding material 207, and then the semiconductor element 202 and the lead terminal 205 are electrically connected by the wiring conductor 204. Then, the lid 206 is attached to the upper surface of the insulator 203 with a part of the lead terminal 205 interposed therebetween, and the semiconductor element 202 and the wiring conductor 204 are sealed, thereby forming a semiconductor device.

実施の形態1と同様に、金属放熱体101の第1の金属板102は、例えば銅、銀、アルミニウム、金等の金属材料、またはこれらの中の少なくとも1つを含む合金材料から成る。   As in the first embodiment, the first metal plate 102 of the metal radiator 101 is made of a metal material such as copper, silver, aluminum, gold, or an alloy material containing at least one of them.

第2の金属板103は、例えばモリブデン、タングステン等の金属材料、またはこれらの中の少なくとも1つを含む合金材料から成る。これら第1の金属板102、第2の金属板103は、基板に圧延加工、打抜き加工といった金属加工を施すことによって形成され、さらに第2の金属板103は表面処理が施されている。   The second metal plate 103 is made of a metal material such as molybdenum or tungsten, or an alloy material containing at least one of them. The first metal plate 102 and the second metal plate 103 are formed by subjecting a substrate to metal processing such as rolling and punching, and the second metal plate 103 is subjected to surface treatment.

第2の金属板103の表面処理として、電解めっき、無電解めっき、スパッタによって金属層106が施される。金属層106としてはニッケルめっき、ニッケル−リン、ニッケル−ボロンめっき等の金属、またはこれらの中の少なくとも1つを含む合金から成る。このような第2の金属板103への表面処理を行うことにより、半田付けやろう付けを行うことができる。また、電解Niめっきによって第2の金属板103を被覆すると、1000℃以上の耐熱特性を有し、銀ろう付けできるため好ましい。   As the surface treatment of the second metal plate 103, the metal layer 106 is applied by electrolytic plating, electroless plating, or sputtering. The metal layer 106 is made of a metal such as nickel plating, nickel-phosphorus, nickel-boron plating, or an alloy containing at least one of them. By performing such a surface treatment on the second metal plate 103, soldering or brazing can be performed. Further, it is preferable to coat the second metal plate 103 by electrolytic Ni plating because it has heat resistance characteristics of 1000 ° C. or higher and can be brazed with silver.

絶縁体203は、アルミナ(Al)焼結体、窒化アルミニウム(AlN)焼結体、ガラスセラミックス等のセラミックスから成り、第2の金属板103の熱膨張係数と熱膨張係数が近似する材料から選ばれる。絶縁体203は、半導体素子202の搭載部を取り囲むように環状形状に形成され、ロウ材等の接着材を介して金属放熱体101の搭載部を有する表面側に取着される。 The insulator 203 is made of ceramic such as alumina (Al 2 O 3 ) sintered body, aluminum nitride (AlN) sintered body, glass ceramics, and the like, and the thermal expansion coefficient and the thermal expansion coefficient of the second metal plate 103 are approximated. Selected from materials. The insulator 203 is formed in an annular shape so as to surround the mounting portion of the semiconductor element 202, and is attached to the surface side having the mounting portion of the metal heat dissipating member 101 via an adhesive such as a brazing material.

絶縁体203には、その外側にかけて導出されるW,Mo等の高融点金属、Cu等の低抵抗金属等の配線導体からなるリード端子205が形成されており、リード端子205は、外部電気回路基板と接続可能な構成である。   The insulator 203 is formed with a lead terminal 205 made of a wiring conductor such as a refractory metal such as W or Mo and a low resistance metal such as Cu, which is led out to the outside. The lead terminal 205 is an external electric circuit. The configuration is connectable to the substrate.

この時、実施の形態1と同様に、ろう材104内のボイドは、直径1.9mm以下、占有率1%以下であることが好ましい。本発明の半導体素子収納用パッケージ201によれば、ろう材104内のボイドを、占有率1%以下としたとき、金属放熱体101の放熱特性が改善され、熱抵抗が最大0.49K/Wとなる。例えば、半導体素子202の印加電力を100W、動作温度を60℃とした場合、素子のジャンクション温度Tjは108.7℃となり、一般的に望まれるSi半導体の実使用上の保証温度175℃を下回るので、半導体素子202を長期間に渡り安定して作動可能となる。   At this time, it is preferable that the voids in the brazing material 104 have a diameter of 1.9 mm or less and an occupation ratio of 1% or less, as in the first embodiment. According to the semiconductor element storage package 201 of the present invention, when the void in the brazing material 104 is 1% or less, the heat dissipation characteristics of the metal radiator 101 are improved and the thermal resistance is a maximum of 0.49 K / W. It becomes. For example, when the applied power of the semiconductor element 202 is 100 W and the operating temperature is 60 ° C., the junction temperature Tj of the element is 108.7 ° C., which is lower than the generally desired guaranteed temperature of practical use of Si semiconductors, 175 ° C. Therefore, the semiconductor element 202 can be stably operated over a long period of time.

このように、実施の形態1と同様に、ボイドの生成が抑制されたろう材により第1の金属板102と第2の金属板103とを接合することにより、容易に第1の金属板102と第2の金属板103との密着性が向上し、金属放熱体101の放熱性が向上する。そして、この金属放熱体101を備える、実施の形態2の半導体素子収納用パッケージ201に半導体素子202を搭載すると、半導体素子202の放熱性が向上できる。   Thus, as in the first embodiment, the first metal plate 102 can be easily bonded to the first metal plate 102 by joining the first metal plate 102 and the second metal plate 103 with the brazing material in which the generation of voids is suppressed. Adhesiveness with the 2nd metal plate 103 improves, and the heat dissipation of the metal heat sink 101 improves. When the semiconductor element 202 is mounted on the semiconductor element storage package 201 according to the second embodiment that includes the metal radiator 101, the heat dissipation of the semiconductor element 202 can be improved.

本発明は、容易に放熱体を構成する基板の密着性を向上させ、放熱性を向上させることができ、半導体素子で発熱した熱を放熱する放熱体およびその製造方法ならびにこの放熱体を備える半導体素子収納用パッケージ等に有用である。   The present invention can easily improve the adhesion of a substrate constituting a radiator, improve the heat dissipation, and dissipate heat generated by a semiconductor element, a manufacturing method thereof, and a semiconductor including the radiator It is useful for an element storage package.

101 金属放熱体
102 第1の金属板
103 第2の金属板
104 ろう材
105 ボイド
106 金属層
107 半導体素子
108 ダイボンド
201 半導体素子収納用パッケージ
202 半導体素子
203 絶縁体
204 配線導体
205 リード端子
206 蓋体
207 ダイボンド材
501 金属放熱体
502 銅板
503 モリブデン板
504 ろう材
505 Niめっき
DESCRIPTION OF SYMBOLS 101 Metal heat sink 102 1st metal plate 103 2nd metal plate 104 Brazing material 105 Void 106 Metal layer 107 Semiconductor element 108 Die bond 201 Package for semiconductor element storage 202 Semiconductor element 203 Insulator 204 Wiring conductor 205 Lead terminal 206 Lid 207 Die bond material 501 Metal radiator 502 Copper plate 503 Molybdenum plate 504 Brazing material 505 Ni plating

Claims (6)

第2の放熱基板の表裏表面に、ろう材を介して2つの第1の放熱基板が接合される放熱体の製造方法であって、
前記第2の放熱基板の表裏表面に前記ろう材を供給するろう材供給工程と、
前記ろう材を加熱する仮ろう付け工程と、
仮ろう付けされた前記ろう材上に前記第1の放熱基板を重ね合わせる放熱基板積層工程と、
前記ろう材を加熱して前記第1の放熱基板と前記第2の放熱基板とを接合させる本ろう付け工程と
を有することを特徴とする放熱体の製造方法。
A method of manufacturing a heat radiating body in which two first heat radiating substrates are joined to the front and back surfaces of a second heat radiating substrate via a brazing material,
A brazing material supply step of supplying the brazing material to the front and back surfaces of the second heat dissipation substrate;
A temporary brazing step of heating the brazing material;
A heat dissipation substrate laminating step of superimposing the first heat dissipation substrate on the temporarily brazed brazing material;
A method for manufacturing a heat radiator, comprising: a main brazing step in which the brazing material is heated to join the first heat radiation substrate and the second heat radiation substrate.
前記第1の放熱基板および前記第2の放熱基板が金属板であることを特徴とする請求項1記載の放熱体の製造方法。   The method for manufacturing a radiator according to claim 1, wherein the first heat dissipation substrate and the second heat dissipation substrate are metal plates. 前記第1の放熱基板が銅板であり、
前記第2の放熱基板が表面をNi−Bでめっきされたモリブデン板であり、
前記ろう材が銀ろうであり、
前記仮ろう付け工程を還元雰囲気中で800℃以上の加熱処理により行い、
前記本ろう付け工程を還元雰囲気中で800℃以上の加熱処理により行う
ことを特徴とする請求項1記載の放熱体の製造方法。
The first heat dissipation board is a copper plate;
The second heat dissipation substrate is a molybdenum plate whose surface is plated with Ni-B;
The brazing material is silver brazing,
The temporary brazing step is performed by heat treatment at 800 ° C. or higher in a reducing atmosphere,
The method for manufacturing a radiator according to claim 1, wherein the brazing step is performed by heat treatment at 800 ° C or higher in a reducing atmosphere.
2つの第1の放熱基板と、
2つの前記第1の放熱基板の間に設けられる第2の放熱基板と、
前記第1の放熱基板と前記第2の放熱基板とを接合するろう材と
を有し、前記ろう材内のボイドが、平均直径が0mmより大きく1.9mm以下であり、前記ろう材内における占有率が0%より大きく1%以下であることを特徴とする放熱体。
Two first heat dissipation substrates;
A second heat dissipation board provided between the two first heat dissipation boards;
A brazing material that joins the first heat radiating substrate and the second heat radiating substrate, and the voids in the brazing material have an average diameter greater than 0 mm and not greater than 1.9 mm; A heat radiator having an occupation ratio of greater than 0% and not greater than 1%.
前記第1の放熱基板が銅板であり、
前記第2の放熱基板が表面をNi−Bでめっきされたモリブデン板であり、
前記ろう材が銀ろうである
ことを特徴とする請求項4記載の放熱体。
The first heat dissipation board is a copper plate;
The second heat dissipation substrate is a molybdenum plate whose surface is plated with Ni-B;
The heat radiator according to claim 4, wherein the brazing material is silver brazing.
請求項4または請求項5のいずれかに記載の放熱体と、
前記放熱体の表面に設けられて半導体素子の搭載領域となる搭載部と、
前記放熱体の前記表面の前記搭載部の周囲に取着される絶縁体と、
前記絶縁体上に形成されるリード端子と、
絶縁体上面に前記リード端子を挟んで取着される蓋体と
を有することを特徴とする半導体素子収納用パッケージ。
A heat radiator according to claim 4 or claim 5,
A mounting portion provided on the surface of the heat dissipating body and serving as a mounting region of the semiconductor element;
An insulator attached around the mounting portion of the surface of the radiator;
A lead terminal formed on the insulator;
A package for housing a semiconductor element, comprising: a lid attached to an upper surface of the insulator with the lead terminal interposed therebetween.
JP2014094347A 2014-05-01 2014-05-01 Heat radiator, manufacturing method thereof and package for storing semiconductor device Pending JP2015213097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094347A JP2015213097A (en) 2014-05-01 2014-05-01 Heat radiator, manufacturing method thereof and package for storing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094347A JP2015213097A (en) 2014-05-01 2014-05-01 Heat radiator, manufacturing method thereof and package for storing semiconductor device

Publications (1)

Publication Number Publication Date
JP2015213097A true JP2015213097A (en) 2015-11-26

Family

ID=54697223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094347A Pending JP2015213097A (en) 2014-05-01 2014-05-01 Heat radiator, manufacturing method thereof and package for storing semiconductor device

Country Status (1)

Country Link
JP (1) JP2015213097A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073023A1 (en) 2015-10-29 2017-05-04 Canon Kabushiki Kaisha Power transmission apparatus configured to wirelessly transmit power to an electronic device, method of controlling power transmission apparatus, and storage medium
EP3208841A1 (en) * 2016-02-19 2017-08-23 Heraeus Deutschland GmbH & Co. KG Method for producing a heat spreading plate, heat spreading plate, method of manufacturing a semiconductor module and semiconductor module
EP3208842A1 (en) * 2016-02-19 2017-08-23 Heraeus Deutschland GmbH & Co. KG Method for manufacturing a substrate plate, substrate plate, method of manufacturing a semiconductor module and semiconductor module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073023A1 (en) 2015-10-29 2017-05-04 Canon Kabushiki Kaisha Power transmission apparatus configured to wirelessly transmit power to an electronic device, method of controlling power transmission apparatus, and storage medium
EP3208841A1 (en) * 2016-02-19 2017-08-23 Heraeus Deutschland GmbH & Co. KG Method for producing a heat spreading plate, heat spreading plate, method of manufacturing a semiconductor module and semiconductor module
EP3208842A1 (en) * 2016-02-19 2017-08-23 Heraeus Deutschland GmbH & Co. KG Method for manufacturing a substrate plate, substrate plate, method of manufacturing a semiconductor module and semiconductor module
WO2017140571A1 (en) * 2016-02-19 2017-08-24 Heraeus Deutschland GmbH & Co. KG Method for producing a heat-spreading plate, heat-spreading plate, method for producing a semiconductor module and semiconductor module
WO2017140574A1 (en) * 2016-02-19 2017-08-24 Heraeus Deutschland GmbH & Co. KG Method for producing a substrate plate, substrate plate, method for producing a semiconductor module and semiconductor module
CN108701665A (en) * 2016-02-19 2018-10-23 贺利氏德国有限两合公司 Method, heat sink, the method for manufacturing semiconductor module and semiconductor module for manufacturing heat sink
CN108701666A (en) * 2016-02-19 2018-10-23 贺利氏德国有限两合公司 Method, underboarding, the method for manufacturing semiconductor module and semiconductor module for manufacturing underboarding
TWI648115B (en) * 2016-02-19 2019-01-21 賀利氏德國有限兩合公司 Method for producing a heat spreader plate, heat spreader plate, method for producing a semiconductor module and semiconductor module

Similar Documents

Publication Publication Date Title
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
JP5957862B2 (en) Power module substrate
TW201104808A (en) Diffusion bonding circuit submount directly to vapor chamber
US20050258550A1 (en) Circuit board and semiconductor device using the same
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
JP2013229457A (en) Semiconductor device and manufacturing method of the same
WO2013108706A1 (en) Semiconductor device and fabrication method for semiconductor device
JP4407521B2 (en) Insulated heat transfer structure and power module substrate
JP2015213097A (en) Heat radiator, manufacturing method thereof and package for storing semiconductor device
JP2002064169A (en) Heat radiating structure
JP6881304B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
WO2017159024A1 (en) Ceramic substrate, method for producing ceramic substrate and power module
JP2015095625A (en) Resistor and method of manufacturing resistor
KR20180059778A (en) A substrate for a light emitting module, a light emitting module, a substrate for a light emitting module formed with a cooler, and a method for manufacturing a substrate for a light emitting module
JP2019067803A (en) Ceramic circuit board and manufacturing method thereof
JP2014143342A (en) Semiconductor module and manufacturing method of the same
JP5532601B2 (en) Power module substrate and manufacturing method thereof
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP2000183253A (en) Package for housing semiconductor element
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
WO2013021983A1 (en) Semiconductor device and method for manufacturing same
JPH04230063A (en) Multilayer heat sink
JP2018157080A (en) Semiconductor device manufacturing method
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same