JPH07128139A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH07128139A
JPH07128139A JP27277093A JP27277093A JPH07128139A JP H07128139 A JPH07128139 A JP H07128139A JP 27277093 A JP27277093 A JP 27277093A JP 27277093 A JP27277093 A JP 27277093A JP H07128139 A JPH07128139 A JP H07128139A
Authority
JP
Japan
Prior art keywords
thin film
thermistor
electrode
infrared
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27277093A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Koichi Aizawa
浩一 相澤
Takayoshi Awai
崇善 粟井
Takuo Ishida
拓郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP27277093A priority Critical patent/JPH07128139A/en
Publication of JPH07128139A publication Critical patent/JPH07128139A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the reliability, especially the resistant strength, of the infrared detector to its temperature cycle by a method wherein an electrode is formed as a separated shape in terms of a plane and a semiconductor thin layer whose resistance is lower than that of a thin-film thermistor is inserted between the electrode and the thin-film thermistor. CONSTITUTION:An infrared absorption film 6, a semiconductor film thermistor 4 whose resistance value is changed due to a temperature change received from the absorption film 6 and an upper-part electrode 5 and a lower-part electrode 3 which sandwich the thermistor 4 from the upper part and the lower part are formed respectively on an insulating thin film 2. The circumference of the thin film 2 is supported by a semiconductor substrate 1, a diaphragm structure in which the side opposite to the formation face of an infrared absorption part becomes a hollow part is formed, and the electrodes 3, 5 are changed to a separated shape in terms of a plane, e.g. a spiral shape. A high-concentration doping layer 7 whose resistance is lower than that of the thermistor 4 is inserted between the electrode 3 or the electrode 5 and the thermistor 4. Thereby, since the doping layer 7 fulfills the role of an electrode, a stress due to the difference in a coefficient of thermal expansion can be relaxed without reducing an effective area S.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、温度による抵抗値の変
化を利用して赤外線を検出する赤外線検出素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detecting element for detecting infrared rays by utilizing a change in resistance value with temperature.

【0002】[0002]

【従来の技術】人体検知等に用いられる熱型赤外線検出
素子は、微弱な赤外線の輻射エネルギーを検出するた
め、高感度が要求され、一般に焦電素子がよく用いられ
ている。最近焦電素子に代わりSiマイクロマシニング
技術を用いて作られるダイアフラム型断熱構造体と薄膜
サーミスタからなる熱型赤外線検出素子の開発が盛んに
行われている。半導体製造プロセスを利用するため、バ
ッチ処理による大量生産、低コスト、ICとの集積化が
可能等の特徴がある。そして焦電素子を上回る感度を達
成するために、断熱性を高めたり、サーミスタのB定数
を向上させたり、様々な技術開発がなされてきた。とこ
ろが断熱性を高めるために非常に薄いダイアフラムにな
らざるを得ず、信頼性に問題が生じている。特に、信頼
性の保証に欠かすことのできない温度サイクル試験にお
いて、ダイアフラムの破壊を起こしやすく大きな問題と
なっている。
2. Description of the Related Art A thermal infrared detecting element used for human body detection or the like is required to have high sensitivity because it detects weak infrared radiant energy, and a pyroelectric element is generally often used. Recently, a thermal infrared detecting element consisting of a diaphragm type heat insulating structure and a thin film thermistor made by using Si micromachining technology instead of the pyroelectric element has been actively developed. Since the semiconductor manufacturing process is used, there are features such as mass production by batch processing, low cost, and integration with IC. In order to achieve a sensitivity higher than that of the pyroelectric element, various technical developments have been made such as improving the heat insulating property and improving the B constant of the thermistor. However, in order to improve the heat insulating property, the diaphragm must be very thin, which causes a problem in reliability. Particularly, in the temperature cycle test which is indispensable to guarantee the reliability, the diaphragm is easily broken, which is a big problem.

【0003】図2に従来のSiマイクロマシニングを応
用したサーミスタ型赤外線検出素子の構造及び製造プロ
セスを示す。シリコン基板1に絶縁性薄膜2を形成し、
以下、フォトリソグラフィとエッチング加工によって下
部電極3、薄膜サーミスタ4、上部電極5、赤外線吸収
膜6を形成し、最後に薄膜サーミスタ4裏面のシリコン
をエッチング除去して完成する。検出原理は、入射され
た赤外線のエネルギーを赤外線吸収膜6が熱に変換し、
薄膜サーミスタ4がその温度変化を抵抗値の変化に変換
して検出する。ここでは、薄膜サーミスタ4の材料とし
て、アモルファスSi,アモルファスSiC等半導体薄
膜サーミスタが用いられる。検出部の裏側のシリコンが
異方性エッチングにより堀りこまれた構造をもってお
り、この様な構造を取ることによって、赤外線検出部
は、熱絶縁された状態になり、微小な入射エネルギーで
も温度変化を大きく取ることができる。
FIG. 2 shows the structure and manufacturing process of a conventional thermistor type infrared detecting element to which Si micromachining is applied. Forming an insulating thin film 2 on a silicon substrate 1,
Then, the lower electrode 3, the thin film thermistor 4, the upper electrode 5, and the infrared absorbing film 6 are formed by photolithography and etching, and finally, the silicon on the back surface of the thin film thermistor 4 is removed by etching to complete the process. The detection principle is that the infrared absorption film 6 converts the energy of the incident infrared rays into heat,
The thin film thermistor 4 converts the temperature change into a change in resistance value and detects it. Here, a semiconductor thin film thermistor such as amorphous Si or amorphous SiC is used as the material of the thin film thermistor 4. Silicon on the back side of the detector has a structure that is dug by anisotropic etching. By adopting such a structure, the infrared detector is in a thermally insulated state, and temperature changes even with minute incident energy. It can be taken large.

【0004】[0004]

【発明の解決しようとする課題】このような構造をもつ
赤外線検出素子の大きな問題点として、前述したように
温度サイクル試験におけるダイアフラムの破壊がある
が、その原因として、それを構成する薄膜の熱膨張率の
差によるストレスが、繰り返し加わることによる疲労破
壊と考えられる。
As described above, a major problem of the infrared detecting element having such a structure is the destruction of the diaphragm in the temperature cycle test, which is caused by the heat of the thin film constituting the diaphragm. It is considered that the stress due to the difference in expansion rate is fatigue failure due to repeated application.

【0005】具体的には、熱絶縁性薄膜には、SiO2
が用いられる。ただし圧縮応力が強く残留するめ、ダイ
アフラムを形成するためには、図4に示すように引っ張
り応力を持つSi3 4 と多層膜にして残留応力のバラ
ンスをとる。ところが、熱膨張率はSiO2 が0.54
×10-6,Si3 4 が2.8×10-6と5倍以上の差
があり、ここで強いストレスが発生する。
Specifically, the heat insulating thin film is made of SiO 2
Is used. However, since the compressive stress remains strongly, in order to form the diaphragm, the residual stress is balanced by forming Si 3 N 4 having a tensile stress and a multilayer film as shown in FIG. However, the coefficient of thermal expansion is 0.54 for SiO 2.
The difference between × 10 -6 and Si 3 N 4 is 2.8 × 10 -6 , which is more than 5 times, and a strong stress is generated here.

【0006】また上下電極と絶縁性薄膜の熱膨張率の差
も大きい。例えば電極材料としてよく用いられるCrの
熱膨張率は6.2×10-6と大きく、下部電極3とSi
3 4 の間、または、図2における上部電極5と赤外線
吸収膜SiO2 6との間に強いストレスが発生する。
The difference in the coefficient of thermal expansion between the upper and lower electrodes and the insulating thin film
Is also big. For example, Cr, which is often used as an electrode material,
The coefficient of thermal expansion is 6.2 × 10-6And the lower electrode 3 and Si
3N FourIn between, or the upper electrode 5 and infrared rays in FIG.
Absorption film SiO2Strong stress occurs between 6 and.

【0007】本発明は、上記の点に鑑みてなされたもの
であり、その目的とするところは、信頼性、特に温度サ
イクルに対する耐性の強い赤外線検出素子を提供するこ
とにある。
The present invention has been made in view of the above points, and it is an object of the present invention to provide an infrared detection element having high reliability, particularly resistance to temperature cycles.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は、
絶縁性薄膜上に赤外線を吸収する赤外線吸収膜と、赤外
線吸収膜より受ける温度の変化によって抵抗値が変化す
る半導体薄膜サーミスタと、半導体薄膜サーミスタを上
下から挟むように取り付けられた上部および下部の電極
とが形成され、前記絶縁性薄膜の周囲が半導体基板によ
って支持され、赤外線吸収部が形成された面と反対側が
中空部となるダイアフラム構造を有する赤外線検出素子
において、上部電極と下部電極が平面的に分離した形状
にするとともに、、半導体薄膜サーミスタと上部電極ま
たは下部電極との間に、半導体薄膜サーミスタより低抵
抗な高濃度ドーピング層を形成したことを特徴とする。
The invention according to claim 1 is
An infrared absorption film that absorbs infrared rays on an insulating thin film, a semiconductor thin film thermistor whose resistance value changes according to changes in temperature received from the infrared absorption film, and upper and lower electrodes mounted so as to sandwich the semiconductor thin film thermistor from above and below In the infrared detection element having a diaphragm structure in which the periphery of the insulating thin film is supported by the semiconductor substrate and the side opposite to the surface on which the infrared absorption section is formed is a hollow part, the upper electrode and the lower electrode are planar. It is characterized in that it has a separated shape and that a high-concentration doping layer having a lower resistance than the semiconductor thin film thermistor is formed between the semiconductor thin film thermistor and the upper electrode or the lower electrode.

【0009】請求項2の発明は、絶縁性薄膜上に赤外線
を吸収する赤外線吸収膜と、赤外線吸収膜より受ける温
度の変化によって抵抗値が変化する半導体薄膜サーミス
タと、半導体薄膜サーミスタを上下から挟むように取り
付けられた上部および下部の電極とが形成され、前記絶
縁性薄膜の周囲が半導体基板によって支持され、赤外線
吸収部が形成された面と反対側が中空部となるダイアフ
ラム構造を有する赤外線検出素子において、前記絶縁性
薄膜が酸化シリコンと窒化シリコンの多層膜からなり、
酸化シリコンと窒化シリコンとの間に中間の熱膨張率を
持つバッファ層を形成したことを特徴とする。
According to a second aspect of the present invention, an infrared absorbing film that absorbs infrared rays on an insulating thin film, a semiconductor thin film thermistor whose resistance value changes according to a change in temperature received by the infrared absorbing film, and a semiconductor thin film thermistor are sandwiched from above and below. Infrared detection element having a diaphragm structure in which upper and lower electrodes attached as described above are formed, the periphery of the insulating thin film is supported by a semiconductor substrate, and the side opposite to the surface on which the infrared absorption section is formed is a hollow section. In, the insulating thin film is composed of a multilayer film of silicon oxide and silicon nitride,
A buffer layer having an intermediate coefficient of thermal expansion is formed between silicon oxide and silicon nitride.

【0010】[0010]

【作用】本発明による赤外線検出素子は、上述したよう
に、電極を平面的に分離された形にして、薄膜サーミス
タとの間に薄膜サーミスタより抵抗の低い半導体薄膜層
を挿入してやることによって、有効面積を減らさずに、
熱膨張率の差によるストレスを緩和させてやることがで
る。また絶縁性薄膜を構成するSiO2 とSi34
間に、中間の熱膨張率を持つバッファ層を挿入してやる
ことによって熱膨張率の差によるストレスを緩和させて
やることができる。
As described above, the infrared detecting element according to the present invention is effective when the electrodes are separated in a plane and the semiconductor thin film layer having a resistance lower than that of the thin film thermistor is inserted between the electrodes. Without reducing the area
It is possible to reduce the stress caused by the difference in the coefficient of thermal expansion. Further, by inserting a buffer layer having an intermediate coefficient of thermal expansion between SiO 2 and Si 3 N 4 forming the insulating thin film, stress due to the difference in coefficient of thermal expansion can be relieved.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。図3は、本発明の一実施例を示す赤外線検出素子
の絶縁性薄膜の断面図である。図1は本発明の一実施例
を示す赤外線検出素子の構造断面図及び平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a cross-sectional view of an insulating thin film of an infrared detection element showing an embodiment of the present invention. FIG. 1 is a structural sectional view and a plan view of an infrared detecting element showing an embodiment of the present invention.

【0012】SiO2 とSi3 4 の多層膜である絶縁
性薄膜では、図3に示すように、SiO2 とSi3 4
の中間の熱膨張率を持つバッファ層10を挿入してやる
ことにより、熱膨張率の差によるストレスを緩和させて
やることができる。具体的にはSiOX Y 膜が前後の
層との馴染みが良く、ストレス緩和の効果が大きい。
In the case of an insulating thin film which is a multilayer film of SiO 2 and Si 3 N 4 , as shown in FIG. 3, SiO 2 and Si 3 N 4 are formed.
By inserting the buffer layer 10 having an intermediate coefficient of thermal expansion, the stress due to the difference in coefficient of thermal expansion can be relieved. Specifically, the SiO X N Y film is well compatible with the front and rear layers, and has a great effect of relieving stress.

【0013】また、上部電極5と赤外線吸収膜6絶縁膜
の間では、中間の熱膨張率を持つ層の形成が困難なた
め、本発明では、図1に示すように、例えば渦巻き状の
ように平面的に分離した形状の電極を考案した。ただ
し、これでは有効面積が減少し、同じ抵抗値を得るため
に、薄膜サーミスタ4の膜厚を減らさなければならな
い。そうすると、耐圧の減少等の問題を引き起こす。そ
こで薄膜サーミスタ4より抵抗の低い半導体薄膜層とし
ての高濃度ドーピング層7を挿入してやると、電極の役
目を果たすため、有効面積が減ることは無い。なお、電
極3、5の形状は渦巻き状に限定されるものではなく、
くし歯状など平面的に分離した形状であればよい。
Further, since it is difficult to form a layer having an intermediate coefficient of thermal expansion between the upper electrode 5 and the infrared absorbing film 6 insulating film, in the present invention, as shown in FIG. We devised an electrode with a two-dimensionally separated shape. However, this reduces the effective area, and the film thickness of the thin film thermistor 4 must be reduced in order to obtain the same resistance value. This causes problems such as a decrease in breakdown voltage. Therefore, if the high-concentration doping layer 7 as a semiconductor thin film layer having a lower resistance than the thin film thermistor 4 is inserted, it serves as an electrode, so that the effective area is not reduced. The shape of the electrodes 3 and 5 is not limited to the spiral shape,
Any shape, such as a comb tooth shape, that is separated in a plane may be used.

【0014】以下、赤外線検出素子の作製方法について
説明する。まず最初にシリコン基板1上に絶縁性薄膜8
〜10を形成する。絶縁性薄膜8〜10は減圧CVDに
よりSi3 4 を0.1μm,SiONを0.05μ
m,SiO2 を0.5μm,SiONを0.05μm,
Si3 4 を0.1μm連続形成した5層膜から成る。
SiON膜は、SiH4 ,N2 O,N2 の混合ガスを用
いて形成することが可能である。
The method of manufacturing the infrared detecting element will be described below. First, the insulating thin film 8 is formed on the silicon substrate 1.
To form 10. The insulating thin films 8 to 10 were formed by low pressure CVD with Si 3 N 4 of 0.1 μm and SiON of 0.05 μm.
m, SiO 2 0.5 μm, SiON 0.05 μm,
It is composed of a five-layer film in which Si 3 N 4 is continuously formed in a thickness of 0.1 μm.
The SiON film can be formed by using a mixed gas of SiH 4 , N 2 O and N 2 .

【0015】次に赤外線検出部を形成する。まずEB蒸
着により下部電極3となるCrを0. 2μm形成してフ
ォトリソグラフィにより渦巻き状のパターンに加工す
る。そしてプラズマCVDによりアモルファスSiにボ
ロンをドーピングした高農度ドーピング層7を0.1μ
m,アモルファスSi薄膜サーミスタ4を1μm形成
し,さらにEB蒸着により上部電極5を0.2μm形成
してやはり渦巻き状のパターンに加工する。そして赤外
線吸収膜の役割を兼ねるSiO2 保護膜6をプラズマC
VDにより1.5μmを形成する。
Next, an infrared detecting section is formed. First, 0.2 μm of Cr to be the lower electrode 3 is formed by EB vapor deposition and processed into a spiral pattern by photolithography. Then, a high agriculture doping layer 7 in which amorphous Si is doped with boron by plasma CVD is added to 0.1 μm.
m, an amorphous Si thin film thermistor 4 is formed to a thickness of 1 μm, and an upper electrode 5 is formed to a thickness of 0.2 μm by EB vapor deposition to form a spiral pattern. The SiO 2 protective film 6 also serving as an infrared absorbing film is treated with plasma C
Form 1.5 μm by VD.

【0016】次に、水酸化カリウム溶液を用いて裏面の
シリコンを除去する。シリコンが除去された絶縁性薄膜
部2の面積は1.5mm2 である。そして以上のように
して作製された赤外線検出素子を実装して、温度サイク
ル試験を行った。試験条件は、−40°C,30分、1
50°C、30分を1サイクルとして、1 00サイクル
行った。従来例による構造の素子では約60%が破壊し
たのに対し、本実施例による素子は、まったく破壊が発
生しなかった。
Next, the silicon on the back surface is removed using a potassium hydroxide solution. The area of the insulating thin film portion 2 from which silicon has been removed is 1.5 mm 2 . Then, the infrared detection element manufactured as described above was mounted and a temperature cycle test was conducted. Test conditions are -40 ° C, 30 minutes, 1
100 cycles were carried out with 50 ° C. and 30 minutes as one cycle. About 60% of the element having the structure according to the conventional example was destroyed, whereas the element according to the present example did not occur at all.

【0017】[0017]

【発明の効果】以上のように、請求項1記載の発明によ
れば、電極を渦巻き状のように、分離された形にして、
薄膜サーミスタとの間に薄膜サーミスタより抵抗の低い
高濃度ドーピング層を挿入してやることによって、熱膨
張率の差によるストレスが緩和されるようにし、また請
求項2記載の発明によれば、絶縁性薄膜を構成するSi
2 とSi3 4 の間に、中間の熱膨張率を持つバッフ
ァ層を挿入してやることによって熱膨張率の差によるス
トレスが緩和されるようにしたので、信頼性、特に温度
サイクルに対する耐性の強い赤外線検出素子を提供する
ことができた。
As described above, according to the first aspect of the present invention, the electrodes are separated into a spiral shape,
By inserting a high-concentration doping layer having a resistance lower than that of the thin film thermistor between the thin film thermistor and the thin film thermistor, the stress due to the difference in the coefficient of thermal expansion can be alleviated, and according to the invention of claim 2, the insulating thin film. Composing Si
By inserting a buffer layer having an intermediate coefficient of thermal expansion between O 2 and Si 3 N 4, the stress due to the difference in coefficient of thermal expansion was relieved, so that reliability, particularly resistance to temperature cycling, was improved. It was possible to provide a strong infrared detecting element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる赤外線検出素子の構
造断面図および平面図である。
FIG. 1 is a structural sectional view and a plan view of an infrared detection element according to an embodiment of the present invention.

【図2】従来の技術に係わる赤外線検出素子の構造断面
図および平面図である。
FIG. 2 is a structural sectional view and a plan view of an infrared detection element according to a conventional technique.

【図3】本発明の一実施例に係わる赤外線検出素子の絶
縁膜の断面図である。
FIG. 3 is a sectional view of an insulating film of an infrared detection element according to an embodiment of the present invention.

【図4】従来の技術に係わる赤外線検出素子の絶縁膜の
断面図である。
FIG. 4 is a sectional view of an insulating film of an infrared detection element according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 絶縁性薄膜 3 下部電極 4 薄膜サーミスタ 5 上部電極 6 保護膜 7 高濃度ドーピング層 8 Si3 4 膜 9 SiO2 膜 10 バッファ層1 Silicon Substrate 2 Insulating Thin Film 3 Lower Electrode 4 Thin Film Thermistor 5 Upper Electrode 6 Protective Film 7 High Concentration Doping Layer 8 Si 3 N 4 Film 9 SiO 2 Film 10 Buffer Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 拓郎 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuro Ishida 1048, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁性薄膜上に赤外線を吸収する赤外線吸
収膜と、赤外線吸収膜より受ける温度の変化によって抵
抗値が変化する半導体薄膜サーミスタと、半導体薄膜サ
ーミスタを上下から挟むように取り付けられた上部およ
び下部の電極とが形成され、前記絶縁性薄膜の周囲が半
導体基板によって支持され、赤外線吸収部が形成された
面と反対側が中空部となるダイアフラム構造を有する赤
外線検出素子において、上部電極と下部電極が平面的に
分離した形状にするとともに、半導体薄膜サーミスタと
上部電極または下部電極との間に、半導体薄膜サーミス
タより低抵抗な半導体薄膜層を形成したことを特徴とす
る赤外線検出素子。
1. An infrared absorbing film that absorbs infrared rays, a semiconductor thin film thermistor whose resistance value changes according to a change in temperature received from the infrared absorbing film, and a semiconductor thin film thermistor mounted so as to sandwich the semiconductor thin film thermistor from above and below. In an infrared detecting element having a diaphragm structure in which upper and lower electrodes are formed, the periphery of the insulating thin film is supported by a semiconductor substrate, and the side opposite to the surface on which the infrared absorbing section is formed is a hollow portion, An infrared detecting element, characterized in that the lower electrode has a planarly separated shape, and a semiconductor thin film layer having a resistance lower than that of the semiconductor thin film thermistor is formed between the semiconductor thin film thermistor and the upper electrode or the lower electrode.
【請求項2】絶縁性薄膜上に赤外線を吸収する赤外線吸
収膜と、赤外線吸収膜より受ける温度の変化によって抵
抗値が変化する半導体薄膜サーミスタと、半導体薄膜サ
ーミスタを上下から挟むように取り付けられた上部およ
び下部の電極とが形成され、前記絶縁性薄膜の周囲が半
導体基板によって支持され、赤外線吸収部が形成された
面と反対側が中空部となるダイアフラム構造を有する赤
外線検出素子において、前記絶縁性薄膜が酸化シリコン
と窒化シリコンの多層膜からなり、酸化シリコンと窒化
シリコンとの間に中間の熱膨張率を持つバッファ層を形
成したことを特徴とする赤外線検出素子。
2. An infrared absorbing film for absorbing infrared rays, a semiconductor thin film thermistor whose resistance value changes according to a change in temperature received by the infrared absorbing film, and a semiconductor thin film thermistor mounted so as to sandwich the semiconductor thin film thermistor from above and below. In an infrared detecting element having a diaphragm structure in which upper and lower electrodes are formed, the periphery of the insulating thin film is supported by a semiconductor substrate, and the side opposite to the surface on which the infrared absorbing section is formed is a hollow part, An infrared detecting element characterized in that a thin film is composed of a multilayer film of silicon oxide and silicon nitride, and a buffer layer having an intermediate coefficient of thermal expansion is formed between silicon oxide and silicon nitride.
JP27277093A 1993-10-29 1993-10-29 Infrared detector Withdrawn JPH07128139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27277093A JPH07128139A (en) 1993-10-29 1993-10-29 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27277093A JPH07128139A (en) 1993-10-29 1993-10-29 Infrared detector

Publications (1)

Publication Number Publication Date
JPH07128139A true JPH07128139A (en) 1995-05-19

Family

ID=17518504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27277093A Withdrawn JPH07128139A (en) 1993-10-29 1993-10-29 Infrared detector

Country Status (1)

Country Link
JP (1) JPH07128139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033032A1 (en) * 1998-12-01 2000-06-08 Daewoo Electronics Co., Ltd. Infrared bolometer with an enhanced structural stability and integrity
WO2000037907A1 (en) * 1998-12-18 2000-06-29 Daewoo Electronics Co., Ltd. Structurally stable infrared bolometer
CN104071742A (en) * 2014-06-12 2014-10-01 南方科技大学 Single-walled carbon nanotube based double-cantilever-beam infrared detector and forming method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033032A1 (en) * 1998-12-01 2000-06-08 Daewoo Electronics Co., Ltd. Infrared bolometer with an enhanced structural stability and integrity
WO2000037907A1 (en) * 1998-12-18 2000-06-29 Daewoo Electronics Co., Ltd. Structurally stable infrared bolometer
US6242738B1 (en) 1998-12-18 2001-06-05 Daewoo Electronics Co., Ltd. Structurally stable infrared bolometer
CN104071742A (en) * 2014-06-12 2014-10-01 南方科技大学 Single-walled carbon nanotube based double-cantilever-beam infrared detector and forming method thereof
WO2015188430A1 (en) * 2014-06-12 2015-12-17 南方科技大学 Infrared detector with double cantilever beams based on single-walled carbon nanotube and method of forming same

Similar Documents

Publication Publication Date Title
JP3097591B2 (en) Thermal infrared detector
EP1045232B1 (en) Infrared sensor and method of manufacturing the same
US5545300A (en) Low power consumption type thin film gas sensor
JPH06317475A (en) Infrared sensor and fabrication thereof
US6023091A (en) Semiconductor heater and method for making
CN101375140A (en) Infrared absorber and thermal infrared detector
JPH07128139A (en) Infrared detector
JP2737597B2 (en) Infrared detector
JP2994881B2 (en) Thermal insulation film for diaphragm structure and method of manufacturing the same
JP3594923B2 (en) Manufacturing method of thermopile infrared sensor
JPH06137941A (en) Infrared detecting element
JPH06137936A (en) Infrared detecting element
JPH07106643A (en) Infrared detection element and manufacture thereof
JP3546151B2 (en) Distortion detecting element and method for manufacturing distortion detecting element
JPH10300603A (en) Method for manufacturing semiconductor type displacement detector
JP2725965B2 (en) Infrared sensor
JPH06137935A (en) Infrared sensor
JPH0196548A (en) Sensor element
KR100339395B1 (en) pile bolometer sensor and fabrication methode of the same
JPH06137937A (en) Infrared detecting element
JPH05231926A (en) Heat insulating film for diaphragm structure and its manufacture
JPH05231947A (en) Infrared detector
JP2689907B2 (en) Thermal infrared sensor
JPH06252452A (en) Semiconductor device and manufacture thereof
JPH06137939A (en) Infrared detecting element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130