JPH05231926A - Heat insulating film for diaphragm structure and its manufacture - Google Patents

Heat insulating film for diaphragm structure and its manufacture

Info

Publication number
JPH05231926A
JPH05231926A JP4038107A JP3810792A JPH05231926A JP H05231926 A JPH05231926 A JP H05231926A JP 4038107 A JP4038107 A JP 4038107A JP 3810792 A JP3810792 A JP 3810792A JP H05231926 A JPH05231926 A JP H05231926A
Authority
JP
Japan
Prior art keywords
insulating film
heat insulating
film
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4038107A
Other languages
Japanese (ja)
Other versions
JP3124815B2 (en
Inventor
Takuo Ishida
拓郎 石田
Atsushi Sakai
淳 阪井
Koichi Aizawa
浩一 相澤
Takayoshi Awai
崇善 粟井
Keiji Kakinote
啓治 柿手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP04038107A priority Critical patent/JP3124815B2/en
Publication of JPH05231926A publication Critical patent/JPH05231926A/en
Application granted granted Critical
Publication of JP3124815B2 publication Critical patent/JP3124815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the excessive distortion or breakage of a heat insulating film and to improve the manufacturing yield by constituting the film of a multi- layered film of oxide silicon with different composition ratios of silicon and oxygen. CONSTITUTION:A heat insulating film 2 is formed on the surface of a substrate 1 formed of silicon or the like. At the central part of the heat insulating film 2, the substrate 1 is etched from below, thus forming an empty room 10. A pair of electrode layers 4 of a conductive metal such as chromium or the like, an a-SiC thermistor layer 5 and an infrared absorbing layer 6 are layered on the heat insulating film 2 at the center of the empty room 10. The heat insulating film 2 is formed of three layers of an SiOx film 20 (x=0.6-1.0), an SiO2 layer 30 and an SiOx layer 20 (x=0.6-1.0) from the closer side to the substrate 1. Therefore, since the residual stress of each layer is different, the residual stress for the whole of the heat insulating film can be reduced. The manufacturing yield is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ダイアフラム構造用
熱絶縁膜に関し、くわしくは、赤外線検出素子のサーミ
スタ膜を搭載する熱絶縁膜のように、熱絶縁膜の一部が
基板で支持されずに中空に浮いた状態にしておく、いわ
ゆるダイアフラム構造を構成するのに適した熱絶縁膜に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating film for a diaphragm structure, and more specifically, a part of the heat insulating film is not supported by a substrate like a heat insulating film on which a thermistor film of an infrared detecting element is mounted. The present invention relates to a heat insulating film suitable for forming a so-called diaphragm structure, which is left in a hollow state.

【0002】[0002]

【従来の技術】従来、サーミスタを利用した赤外線検出
素子の一般的な構造としては、基板上に形成された熱絶
縁膜の上に、サーミスタと、サーミスタの両面を挟む一
対の電極とを重ねて形成しており、赤外線が当たって、
サーミスタの温度が上昇すると、サーミスタの抵抗が変
化するので、この抵抗変化を一対の電極で検出して、赤
外線が検知できるようになっている。
2. Description of the Related Art Conventionally, as a general structure of an infrared detecting element using a thermistor, a thermistor and a pair of electrodes sandwiching both sides of the thermistor are superposed on a heat insulating film formed on a substrate. Is being formed and is hit by infrared rays,
When the temperature of the thermistor rises, the resistance of the thermistor changes. Therefore, it is possible to detect infrared rays by detecting this resistance change with a pair of electrodes.

【0003】赤外線検出素子は、物体や人体から放出さ
れる微弱な赤外線を検出するのに用いられることが多
く、このような用途では特に高感度が要求される。そこ
で、従来の赤外線検出素子では、基板の1部を堀り抜
き、この掘り抜いた中空部分を渡すように熱絶縁膜を形
成し、その上に電極およびサーミスタからなる赤外線検
出部を設置した、いわゆるダイアフラム構造のものがあ
る。この構造では、赤外線検出部で発生した熱が、熱絶
縁膜の外周の基板への支持部を通じてのみ基板側に伝熱
されるので、熱エネルギーが基板側に逃げ難くなり、サ
ーミスタの温度上昇および抵抗変化が敏感に起こり、赤
外線の検出感度が上昇する。
The infrared detecting element is often used for detecting the weak infrared rays emitted from an object or a human body, and particularly high sensitivity is required for such an application. Therefore, in the conventional infrared detection element, a part of the substrate is dug out, a heat insulating film is formed so as to pass through the hollowed out part, and an infrared detection part composed of an electrode and a thermistor is installed on the heat insulating film. There is a so-called diaphragm structure. In this structure, the heat generated in the infrared detection section is transferred to the substrate side only through the support section to the substrate on the outer periphery of the thermal insulation film, so that it is difficult for heat energy to escape to the substrate side and the thermistor temperature rise and resistance increase. Changes occur sensitively, and infrared detection sensitivity increases.

【0004】このようなダイアフラム構造は、上記した
赤外線検出素子における熱絶縁膜だけでなく、各種のセ
ンサ素子あるいは電子素子において、熱絶縁膜を利用す
る場合にも採用されている構造である。従来、ダイアフ
ラム構造用熱絶縁膜としては、酸化シリコンのような熱
伝導率の低い材料が用いられていたが、この酸化シリコ
ンの単層膜は、製造時の残留応力として強い圧縮応力が
生じて、熱絶縁膜に歪みや破壊を起こす問題があった。
そのため、酸化シリコン膜とは逆向きの残留応力を有す
る薄膜を積層した多層構造にすることによって、熱絶縁
膜全体としての残留応力の緩和を図っていた。具体的に
は、例えば、減圧CVD装置などを用い、酸化シリコン
薄膜と窒化シリコン薄膜とを交互に堆積させて多層構造
の熱絶縁膜を作製し、両薄膜の膜厚比を適当に調節する
ことで、酸化シリコン薄膜の圧縮応力と窒化シリコン薄
膜の引張応力が互いに打ち消し合い、熱絶縁膜全体とし
ての残留応力が小さく抑えられるようにしていた。
Such a diaphragm structure is adopted not only in the heat insulating film in the infrared detecting element described above, but also in the case where the heat insulating film is used in various sensor elements or electronic elements. Conventionally, a material having a low thermal conductivity such as silicon oxide has been used as the heat insulating film for the diaphragm structure, but this silicon oxide single layer film has a strong compressive stress as a residual stress during manufacturing. However, there is a problem that the thermal insulation film is distorted or broken.
Therefore, the residual stress of the entire heat insulating film is relaxed by forming a multilayer structure in which thin films having a residual stress opposite to that of the silicon oxide film are laminated. Specifically, for example, by using a low pressure CVD apparatus or the like, a silicon oxide thin film and a silicon nitride thin film are alternately deposited to form a multi-layered heat insulating film, and the film thickness ratio of both thin films is appropriately adjusted. Therefore, the compressive stress of the silicon oxide thin film and the tensile stress of the silicon nitride thin film cancel each other out, and the residual stress of the entire heat insulating film is suppressed to a small level.

【0005】ダイアフラム構造において、熱絶縁膜の残
留応力が問題になるのは、背面が基板で支持されていな
い熱絶縁膜の浮いた部分に過大な残留応力が生じると、
熱絶縁膜が歪んだり、破壊されたりするからである。そ
のため、製造時の歩留りが悪くなり、使用時の耐久性に
も劣るものとなる。図2は、従来のダイアフラム構造に
おける熱絶縁膜の構造を示しており、基板7の上に、窒
化シリコン(Si3 4 )薄膜8と、酸化シリコン(S
iO2 )薄膜9を交互に2層づつ堆積させて、合計4層
の多層構造からなる熱絶縁膜にしている。なお、基板7
の中央部分は、エッチングなどで掘り込まれており、欠
除空間70となっていて、この部分では熱絶縁膜は浮い
た状態て全く支持されていない。
In the diaphragm structure, the residual stress of the thermal insulating film becomes a problem when an excessive residual stress is generated in the floating portion of the thermal insulating film whose back surface is not supported by the substrate.
This is because the heat insulating film may be distorted or destroyed. Therefore, the yield at the time of manufacture becomes poor, and the durability at the time of use becomes poor. FIG. 2 shows a structure of a thermal insulating film in a conventional diaphragm structure, in which a silicon nitride (Si 3 N 4 ) thin film 8 and a silicon oxide (S
Two layers of the iO 2 ) thin film 9 are alternately deposited to form a thermal insulation film having a multilayer structure of four layers in total. The substrate 7
The central portion of the is engraved by etching or the like to form the void space 70, and the thermal insulating film is in a floating state and is not supported at all in this portion.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記のよう
な従来のダイアフラム構造における熱絶縁膜では、多層
構造にしたことによって、熱絶縁膜全体の熱伝導率が大
きくなってしまい、熱絶縁膜本来の機能が十分に発揮で
きなくなってしまう。これは、前記した従来技術では、
酸化シリコン薄膜の圧縮残留応力を相殺するために、引
張残留応力を示す窒化シリコン薄膜を積層しているが、
この窒化シリコン薄膜は、酸化シリコンに比べて熱伝導
率が1桁程度も大きい。そのため、窒化シリコン薄膜を
含む多層構造の熱絶縁膜は、熱伝導率が高くなり、熱絶
縁の機能が低下してしまうのである。
However, in the heat insulating film in the conventional diaphragm structure as described above, the thermal conductivity of the whole heat insulating film becomes large due to the multi-layer structure, and the heat insulating film originally has a large thermal conductivity. The function of will not be fully exerted. This is because in the above-mentioned conventional technology,
In order to offset the compressive residual stress of the silicon oxide thin film, a silicon nitride thin film showing a tensile residual stress is laminated,
This silicon nitride thin film has a thermal conductivity higher than that of silicon oxide by about one digit. Therefore, the thermal insulation film having a multilayer structure including the silicon nitride thin film has a high thermal conductivity and the thermal insulation function is deteriorated.

【0007】熱伝導率が小さく、しかも、残留応力が逆
になる薄膜材料の組み合わせがあればよいが、現在のと
ころ、そのような薄膜材料の組み合わせで容易に実現可
能なものは見当たらない。また、構成材料の異なる薄膜
を積層させて多層膜を形成する場合、薄膜を1層形成す
る毎に、処理装置から取り出して、別の薄膜材料を用い
る処理装置に移し替えたり、処理装置の使用ガスを完全
に入れ換えてから次の処理を行ったりするなど、工程数
が増大し、作業の手間および時間がかかってしまうとい
う問題もある。
It suffices if there is a combination of thin film materials having a small thermal conductivity and an opposite residual stress, but at present, no combination of such thin film materials can be easily realized. Further, in the case of forming a multilayer film by laminating thin films having different constituent materials, each time one thin film is formed, the thin film is taken out from the processing apparatus and transferred to a processing apparatus using another thin film material, or the processing apparatus is used. There is also a problem in that the number of steps is increased, such as performing the next process after completely replacing the gas, resulting in a lot of work and time.

【0008】そこで、この発明の課題は、このような従
来技術の問題点を解消し、残留応力が少ないとともに、
熱絶縁性にも優れ、しかも、製造も容易であって、ダイ
アフラム構造に用いるのに適した熱絶縁膜を提供するこ
とにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, reduce residual stress, and
Another object of the present invention is to provide a heat insulating film which is excellent in heat insulating property, easy to manufacture, and suitable for use in a diaphragm structure.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかるダイアフラム構造用熱絶縁膜は、薄膜の
一部が基板で支持されずに浮いた状態になるダイアフラ
ム構造において前記薄膜として用いられる熱絶縁膜であ
って、シリコンと酸素の組成比が異なる酸化シリコンの
多層膜からなることを特徴としている。
A thermal insulation film for a diaphragm structure according to the present invention which solves the above problems is used as the thin film in a diaphragm structure in which a part of the thin film is floated without being supported by a substrate. The heat insulating film is a multi-layered film of silicon oxide having different composition ratios of silicon and oxygen.

【0010】まず、ダイアフラム構造とは、各種のセン
サ素子あるいは電子素子において、基板上に形成された
薄膜のうち、薄膜の背面の一部に基板が存在せず、薄膜
が中空に浮いた状態になった部分があり、薄膜は外周辺
などの一部だけで基板に支持されているような構造を言
う。ダイアフラム構造では、目的とする機能に合わせ
て、単独あるいは複数の薄膜が積層されるが、この発明
では、薄膜のうちに、少なくとも熱絶縁膜を含むもので
あれば、任意の膜構造を有するものに適用できる。
First, the diaphragm structure means that in various sensor elements or electronic elements, among the thin films formed on the substrate, the substrate does not exist on a part of the back surface of the thin film, and the thin film floats in a hollow state. The thin film has a structure in which it is supported by the substrate only at a part of the outer periphery. In the diaphragm structure, a single film or a plurality of thin films are laminated according to the intended function, but in the present invention, as long as the thin film contains at least a thermal insulating film, it has any film structure. Applicable to

【0011】酸化シリコンは、熱伝導率が小さく、熱絶
縁膜の材料として適した材料である。この酸化シリコン
として、シリコンと酸素の組成比が異なるものを複数層
積層して熱絶縁膜を構成する。具体的には、酸化シリコ
ンを表す化学構造式SiOxで、xの値が0.6〜1.
0の層、xが2の層すなわちSiO2 など、xの値が異
なる酸化シリコンの層を複数層重ねる。このxの値によ
って、残留応力の状態が違ってくる。個々の酸化シリコ
ンの厚みや、そのシリコンと酸素の組成比は、熱絶縁膜
の用途や必要な性能に合わせて、自由に設定できる。積
層する酸化シリコン層の数は、少なくとも2層、あるい
は、3層以上の任意の層数でよい。
Silicon oxide has a low thermal conductivity and is suitable as a material for the heat insulating film. As this silicon oxide, a plurality of layers having different composition ratios of silicon and oxygen are laminated to form a heat insulating film. Specifically, in the chemical structural formula SiOx representing silicon oxide, the value of x is 0.6 to 1.
A plurality of layers of silicon oxide having different values of x, such as a layer of 0 and a layer of x of 2, that is, SiO 2 are stacked. The state of residual stress differs depending on the value of x. The thickness of each silicon oxide and the composition ratio of the silicon and oxygen can be freely set according to the application of the heat insulating film and the required performance. The number of silicon oxide layers to be laminated may be at least two layers or any number of layers of three or more.

【0012】このような酸化シリコン多層膜の作製は、
通常の各種薄膜形成手段を用いて行えるが、つぎに説明
する方法が好ましい。すなわち、酸化シリコン層を形成
する手段として、イオンクラスタービーム(ICB)蒸
着法を採用し、蒸発源としてSiOを用いるとともに、
蒸着中に雰囲気ガスの酸素濃度を変えて、シリコンと酸
素の組成比が異なる酸化シリコンの多層膜を形成する。
上記のようなICB蒸着法では、蒸着中でも、酸化シリ
コン層のSi:Oの組成比を自由に制御できるため、連
続工程で能率良く、前記した酸化シリコンの多層膜を作
製することができる。
The production of such a silicon oxide multilayer film is as follows.
Although various ordinary thin film forming means can be used, the method described below is preferable. That is, as a means for forming a silicon oxide layer, an ion cluster beam (ICB) vapor deposition method is adopted, SiO is used as an evaporation source, and
By changing the oxygen concentration of the atmospheric gas during vapor deposition, a silicon oxide multilayer film having different composition ratios of silicon and oxygen is formed.
In the ICB vapor deposition method as described above, the composition ratio of Si: O in the silicon oxide layer can be freely controlled even during vapor deposition, so that the above-described silicon oxide multilayer film can be efficiently produced in a continuous process.

【0013】[0013]

【作用】酸化シリコンは、一般的には、SiOx の構造
を有している。従来、熱絶縁膜を構成するのに一般的に
使用されていた酸化シリコン薄膜は、上記構造式でxが
2の場合すなわちSiO2 であった。このSiO2 は、
圧縮の残留応力を示すことが判っている。これに対し、
例えば、xが0.6〜1.0の酸化シリコン薄膜では、
引張の残留応力を示すようになる。
The silicon oxide generally has a structure of SiOx. Conventionally, a silicon oxide thin film that has been generally used to form a heat insulating film is SiO 2 when x is 2 in the above structural formula, that is, SiO 2 . This SiO 2 is
It has been found to exhibit compressive residual stress. In contrast,
For example, in a silicon oxide thin film in which x is 0.6 to 1.0,
It shows the residual stress of tension.

【0014】すなわち、酸化シリコンSiOx は、xの
値、言い換えると、SiとOの組成比により、残留応力
の状態が変化するのである。このことから、ダイアフラ
ム構造用の熱絶縁膜を、シリコンと酸素の組成比が異な
る酸化シリコンの多層膜で構成すれば、各酸化シリコン
層毎の残留応力が互いに吸収もしくは緩和されて、熱絶
縁膜全体としては、残留応力が小さなものとなる。
That is, in the silicon oxide SiOx, the state of residual stress changes depending on the value of x, in other words, the composition ratio of Si and O. Therefore, if the thermal insulation film for the diaphragm structure is formed of a multilayer film of silicon oxide having different composition ratios of silicon and oxygen, the residual stress of each silicon oxide layer is absorbed or relieved to each other, and the thermal insulation film is formed. As a whole, the residual stress is small.

【0015】シリコンと酸素の組成比が違っても、酸化
シリコンである限り、その熱伝導率は小さいので、熱絶
縁膜全体の熱伝導率も、十分に小さなものとなり、良好
な熱絶縁性を発揮できることになる。また、熱絶縁膜が
多層構造であっても、基本的にはシリコンと酸素という
同じ材料を用い、同じ処理方法で薄膜形成できるので、
複数の層で全く別の材料を用いる場合に比べて、各層毎
に処理装置を移し替えたりする手間がかからず、同じ処
理装置を用いて能率的に製造することができる。
Even if the composition ratio of silicon and oxygen is different, the thermal conductivity of silicon oxide is small as long as it is silicon oxide. Therefore, the thermal conductivity of the entire thermal insulation film is also sufficiently small, and good thermal insulation is obtained. You will be able to demonstrate it. Further, even if the heat insulating film has a multi-layer structure, basically the same material of silicon and oxygen can be used and the thin film can be formed by the same processing method.
Compared to the case where a completely different material is used for a plurality of layers, it is possible to perform the manufacturing efficiently using the same processing device without the trouble of transferring the processing device for each layer.

【0016】[0016]

【実施例】ついで、この発明の実施例について、図面を
参照しながら以下に説明する。図1は、この発明にかか
るダイアフラム構造用熱絶縁膜を、赤外線検出素子に用
いた実施例を示している。シリコンなどからなる基板1
の表面に、この発明にかかる熱絶縁膜2が形成されてい
る。熱絶縁膜2の中央部分では、基板1が下方側からエ
ッチングなどで掘り込まれて欠除空間10となってい
る。欠除空間10の中央で熱絶縁膜2の上には、クロム
などの導体金属からなる一対の電極層4、4、電極層
4、4に挟まれたa−SiCサーミスタ層5、赤外線吸
収層6が順番に積み重ねて形成されている。電極層4、
4は、外側に延長されていて、この延長部の端部に、基
板1の上部で接続用パッド40が設けられている。この
ような、赤外線検出素子の基本的構造は、通常の赤外線
検出素子と同じである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which the thermal insulating film for a diaphragm structure according to the present invention is used for an infrared detecting element. Substrate 1 made of silicon, etc.
The heat insulating film 2 according to the present invention is formed on the surface of the. In the central portion of the thermal insulating film 2, the substrate 1 is dug from the lower side by etching or the like to form a cutout space 10. A pair of electrode layers 4 and 4 made of a conductive metal such as chromium, an a-SiC thermistor layer 5 sandwiched between the electrode layers 4 and 4, an infrared absorption layer on the heat insulating film 2 in the center of the void space 10. 6 are sequentially stacked and formed. Electrode layer 4,
4 is extended to the outside, and a connection pad 40 is provided on the substrate 1 at the end of this extension. The basic structure of such an infrared detecting element is the same as that of a normal infrared detecting element.

【0017】この発明では、熱絶縁膜2が、基板1に近
い側から、SiOx (x=0.6〜1.0)層20、S
iO2 層30、およびSiOx (x=0.6〜1.0)
層20、の3層で構成された多層膜になっている。つぎ
に、このような熱絶縁膜2の作製方法について、具体的
に説明する。シリコン基板1上に、ICB蒸着法で、S
iOx (x=0.6〜1.0)層20を1500Å、S
iO2 層30を2000Å、さらにSiOx (x=0.
6〜1.0)層20を1500Å作製した。このとき、
蒸着源はSiOを用い、蒸着中に雰囲気の酸素濃度を変
えることで、各層20、30の組成比を変えた。したが
って、各層20、30の作製は、連続して行われた。成
膜条件は、SiOx (x=0.6〜1.0)層20の場
合、酸素濃度0、基板温度200℃、加速電圧1.0kV
であり、SiO2 層30の場合、酸素濃度を1.0×1
-4Torrにした以外は、上記と同じ条件であった。
In the present invention, the thermal insulating film 2 is formed from the side closer to the substrate 1 to the SiOx (x = 0.6 to 1.0) layer 20, S.
iO 2 layer 30 and SiOx (x = 0.6 to 1.0)
It is a multilayer film composed of three layers of layers 20 and 20. Next, a method for manufacturing such a heat insulating film 2 will be specifically described. S is formed on the silicon substrate 1 by the ICB vapor deposition method.
iOx (x = 0.6 to 1.0) layer 20 is 1500 Å, S
The io 2 layer 30 is 2000 Å, and SiOx (x = 0.
6 to 1.0) Layer 20 was manufactured at 1500 Å. At this time,
The vapor deposition source was SiO, and the composition ratio of each layer 20, 30 was changed by changing the oxygen concentration of the atmosphere during vapor deposition. Therefore, the layers 20 and 30 were manufactured continuously. In the case of the SiOx (x = 0.6 to 1.0) layer 20, the film forming conditions are: oxygen concentration 0, substrate temperature 200 ° C., acceleration voltage 1.0 kV.
In the case of the SiO 2 layer 30, the oxygen concentration is 1.0 × 1.
The conditions were the same as above, except that 0-4 Torr was used.

【0018】このような条件で各層20、30の作製を
行ったところ、SiOx (x=0.6〜1.0)層20
には、引張残留応力が生じ、SiO2 層30には圧縮残
留応力が生じていることが確認できた。そして、これら
の層20、30が積層された熱絶縁膜2は、残留応力が
非常に小さなものであった。つぎに、上記熱絶縁膜2の
上に、前記電極層4などを作製して、赤外線検出素子を
製造した。
When the layers 20 and 30 were produced under the above conditions, the SiOx (x = 0.6 to 1.0) layer 20 was obtained.
It was confirmed that the tensile residual stress occurred in the SiO 2 layer and the compressive residual stress occurred in the SiO 2 layer 30. The thermal insulation film 2 in which these layers 20 and 30 were laminated had a very small residual stress. Next, the electrode layer 4 and the like were formed on the heat insulating film 2 to manufacture an infrared detection element.

【0019】熱絶縁膜2の上に、電子ビーム蒸着法によ
り、基板温度200℃で厚さ500Åのクロムを成膜し
た。ついで、フォトリソ工程でパターン化して、下部側
の電極層4を形成した。つぎに、グロー放電分解法で、
厚さ1μmのp型a−SiCを成膜し、フォトリソ工程
で2×2mmの正方形にパターン化して、サーミスタ層5
を形成した。成膜条件は、900モル%のメタン、0.
25モル%のジボランを加えた水素希釈のモノシランを
用い、基板温度180℃、圧力0.9Torr、周波数1
3.56KHz 、放電電力20Wとした。ついで、電子ビ
ーム蒸着法により、基板温度200℃で厚さ500Åの
クロムを成膜し、フォトリソ工程によりパターン化を行
って、上部側の電極層4を形成した。なお、これら上下
の電極層4、4の寸法は、何れも1.9×1.9mmの正
方形であった。
On the heat insulating film 2, a chromium film having a thickness of 500 Å was formed at a substrate temperature of 200 ° C. by an electron beam evaporation method. Then, patterning was performed by a photolithography process to form the lower electrode layer 4. Next, by glow discharge decomposition method,
A p-type a-SiC film having a thickness of 1 μm is formed and patterned into a 2 × 2 mm square by a photolithography process, and then the thermistor layer 5 is formed.
Formed. The film forming conditions were 900 mol% methane and 0.
Using hydrogen-diluted monosilane added with 25 mol% of diborane, substrate temperature 180 ° C., pressure 0.9 Torr, frequency 1
The discharge power was 20 W at 3.56 KHz. Then, an electron beam evaporation method was used to deposit a chromium film having a thickness of 500 Å at a substrate temperature of 200 ° C., and patterning was performed by a photolithography process to form an upper electrode layer 4. The dimensions of the upper and lower electrode layers 4 and 4 were squares of 1.9 × 1.9 mm.

【0020】なお、電極層4、4の材料であるクロム
は、不純物が添加されているほうが、熱伝導率が小さく
なり、検出感度が向上するので、前記材料の代わりに、
熱伝導率の小さいニッケルクロムを用いることもでき
る。つぎに、グロー放電分解法で、厚さ1μmの酸化シ
リコンを成膜し、フォトリソ工程で2×2mmの正方形に
パターン化して、赤外線吸収層6を形成した。成膜条件
は、700モル%の一酸化窒素を用い、基板温度250
℃、圧力1Torr、周波数13.56KHz 、放電電力30
Wとした。つづいて、電子ビーム蒸着法で、アルミを成
膜しパターン化して、接続用パッド40を形成した。
It should be noted that chromium, which is a material of the electrode layers 4 and 4, has a smaller thermal conductivity and a higher detection sensitivity when impurities are added.
Nickel chrome, which has a low thermal conductivity, can also be used. Next, a silicon oxide film having a thickness of 1 μm was formed by a glow discharge decomposition method and patterned into a square of 2 × 2 mm by a photolithography process to form an infrared absorption layer 6. The film forming conditions are 700 mol% of nitric oxide, and the substrate temperature is 250.
℃, pressure 1 Torr, frequency 13.56KHz, discharge power 30
W. Subsequently, an aluminum film was formed and patterned by the electron beam evaporation method to form the connection pad 40.

【0021】最後に、シリコン基板1のうち、熱絶縁膜
2とは反対側から、酸化シリコンからなる熱絶縁膜2を
残すようにして、水酸化カリウムで異方性エッチングを
行って、欠除空間10を形成し、いわゆるダイアフラム
構造の赤外線検出素子を製造した。製造された赤外線検
出素子の寸法は、2.5×2.5mmの正方形であった。
Finally, the silicon substrate 1 is anisotropically etched with potassium hydroxide so as to leave the heat insulating film 2 made of silicon oxide from the side opposite to the heat insulating film 2 and removed. The space 10 was formed, and an infrared detecting element having a so-called diaphragm structure was manufactured. The size of the manufactured infrared detection element was a square of 2.5 × 2.5 mm.

【0022】異方エッチング後の歩留り、すなわち熱絶
縁膜2が破れずに残った割合は、酸化シリコン層と窒化
シリコン層との多層構造からなる従来の熱絶縁膜と同じ
程度であった。しかし、その熱伝導率は、上記従来のも
のに比べて、はるかに小さく、熱絶縁性に優れたもので
あった。この赤外線検出素子を使用したところ、検出感
度も良好で優れた品質性能を有することが確かめられ
た。
The yield after anisotropic etching, that is, the ratio of the thermal insulating film 2 left without being broken was about the same as that of a conventional thermal insulating film having a multilayer structure of a silicon oxide layer and a silicon nitride layer. However, its thermal conductivity was far smaller than that of the conventional one, and was excellent in thermal insulation. When this infrared detecting element was used, it was confirmed that the detection sensitivity was good and that it had excellent quality performance.

【0023】[0023]

【発明の効果】以上に述べた、この発明にかかるダイア
フラム構造用熱絶縁膜は、シリコンと酸素の組成比が異
なる酸化シリコンの多層膜からなり、各層毎の残留応力
が異なることにより、熱絶縁膜全体としての残留応力を
小さくすることができた。その結果、熱絶縁膜によるダ
イアフラム構造を備えた素子の、製造工程における熱絶
縁膜の過大な歪みや破壊を防止して、製造歩留りを向上
させることができる。また、素子を使用中における、熱
絶縁膜の耐久性も向上する。
As described above, the thermal insulating film for the diaphragm structure according to the present invention is composed of a multi-layered film of silicon oxide having different composition ratios of silicon and oxygen, and the residual stress of each layer is different. The residual stress of the entire film could be reduced. As a result, it is possible to prevent excessive strain or breakage of the heat insulating film in the manufacturing process of the element having the diaphragm structure of the heat insulating film, and improve the manufacturing yield. Further, the durability of the heat insulating film during use of the element is also improved.

【0024】しかも、熱絶縁膜を構成する多層構造が、
シリコンと酸素の組成比が異なるだけで、同じ酸化シリ
コンからなるものであるから、製造が容易で処理設備も
簡略になり、生産性の向上あるいは製造コストの削減を
図ることができる。また、多層であっても酸化シリコン
のみで構成された熱絶縁膜なので、熱伝導率は非常に小
さく、熱絶縁膜に要求される高度な熱絶縁性を良好に発
揮することができる。
Moreover, the multi-layer structure forming the heat insulating film is
Since they are made of the same silicon oxide except that the composition ratios of silicon and oxygen are different, the manufacturing is easy and the processing equipment is simplified, so that the productivity can be improved or the manufacturing cost can be reduced. Further, even if it is a multilayer, since it is a thermal insulation film composed of only silicon oxide, its thermal conductivity is very small, and it is possible to satisfactorily exhibit the high degree of thermal insulation required for the thermal insulation film.

【0025】つぎに、上記のような熱絶縁膜の製造を、
イオンクラスタービーム蒸着法で、SiOを蒸発源にし
て、蒸着中に雰囲気ガスの酸素濃度を変えることによ
り、シリコンと酸素の組成比が異なる酸化シリコンの多
層膜を形成するようにすれば、連続した1回の処理工程
で、シリコンと酸素の組成比が異なる酸化シリコン層か
らなる多層構造を有する熱絶縁膜を、簡単かつ能率的に
製造することができ、このようなダイアフラム構造用熱
絶縁膜を備えた素子の生産性向上、コスト低減に大きく
貢献できる。
Next, the production of the heat insulating film as described above is performed.
In the ion cluster beam evaporation method, if SiO is used as an evaporation source and the oxygen concentration of the atmospheric gas is changed during the evaporation, a multi-layered film of silicon oxide having different composition ratios of silicon and oxygen is formed. It is possible to easily and efficiently manufacture a thermal insulating film having a multi-layer structure composed of silicon oxide layers having different composition ratios of silicon and oxygen by one treatment step. It can greatly contribute to the improvement of the productivity of the provided element and the cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例となる熱絶縁膜を備えた赤
外線検出素子断面図
FIG. 1 is a sectional view of an infrared detection element having a heat insulating film according to an embodiment of the present invention.

【図2】 従来例の断面図FIG. 2 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 基板 2 熱絶縁膜 20 SiOx (x=0.6〜1.0)層 30 SiO2 層 4 電極層 5 サーミスタ層 6 赤外線吸収層1 substrate 2 thermally insulating layer 20 SiOx (x = 0.6~1.0) layer 30 SiO 2 layer 4 electrode layer 5 thermistor layer 6 an infrared-absorbing layer

【手続補正書】[Procedure amendment]

【提出日】平成4年5月2日[Submission date] May 2, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】赤外線検出素子は、物体や人体から放出さ
れる微弱な赤外線を検出するのに用いられることが多
く、このような用途では特に高感度が要求される。そこ
で、従来の赤外線検出素子では、基板の部を堀り抜
き、この掘り抜いた中空部分を渡すように熱絶縁膜を形
成し、その上に電極およびサーミスタからなる赤外線検
出部を設置した、いわゆるダイアフラム構造のものがあ
る。この構造では、赤外線検出部で発生した熱が、熱絶
縁膜の外周の基板への支持部を通じてのみ基板側に伝熱
されるので、熱エネルギーが基板側に逃げ難くなり、サ
ーミスタの温度上昇および抵抗変化が敏感に起こり、赤
外線の検出感度が上昇する。
The infrared detecting element is often used for detecting the weak infrared rays emitted from an object or a human body, and particularly high sensitivity is required for such an application. Therefore, in the conventional infrared detector, dug disconnect the part of the substrate, to form a thermally insulating layer to pass hollow portion pulled this digging was installed an infrared detector consisting of the electrodes and the thermistor thereon, There is a so-called diaphragm structure. In this structure, the heat generated in the infrared detection section is transferred to the substrate side only through the support section to the substrate on the outer periphery of the thermal insulation film, so that it is difficult for heat energy to escape to the substrate side and the thermistor temperature rise and resistance increase. Changes occur sensitively, and infrared detection sensitivity increases.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】ダイアフラム構造において、熱絶縁膜の残
留応力が問題になるのは、背面が基板で支持されていな
い熱絶縁膜の浮いた部分に過大な残留応力が生じると、
熱絶縁膜が歪んだり、破壊されたりするからである。そ
のため、製造時の歩留りが悪くなり、使用時の耐久性に
も劣るものとなる。図2は、従来のダイアフラム構造に
おける熱絶縁膜の構造を示しており、基板7の上に、窒
化シリコン(Si)薄膜8と、酸化シリコン(S
iO)薄膜9を交互に堆積させて、合計層の多層構
造からなる熱絶縁膜にしている。なお、基板7の中央部
分は、エッチングなどで掘り込まれており、欠除空間7
0となっていて、この部分では熱絶縁膜は浮いた状態て
全く支持されていない。
In the diaphragm structure, the residual stress of the thermal insulating film becomes a problem when an excessive residual stress is generated in the floating portion of the thermal insulating film whose back surface is not supported by the substrate.
This is because the heat insulating film may be distorted or destroyed. Therefore, the yield at the time of manufacture becomes poor, and the durability at the time of use becomes poor. FIG. 2 shows a structure of a heat insulating film in a conventional diaphragm structure, in which a silicon nitride (Si 3 N 4 ) thin film 8 and a silicon oxide (S
iO 2) a thin film 9 by sedimentary alternately, and the heat insulating film formed of a multilayer structure of a total of five layers. In addition, the central portion of the substrate 7 is dug by etching or the like, so that the space 7
It is 0, and the heat insulating film is not supported at all in this state in a floating state.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟井 崇善 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 柿手 啓治 大阪府門真市大字門真1048番地松下電工株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayoshi Awai 1048 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Works Co., Ltd. (72) Keiji Kakite 1048 Kadoma, Kadoma City, Osaka Matsushita Electric Works Co., Ltd. Within

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 薄膜の一部が基板で支持されずに浮いた
状態になるダイアフラム構造において前記薄膜として用
いられる熱絶縁膜であって、シリコンと酸素の組成比が
異なる酸化シリコンの多層膜からなることを特徴とする
ダイアフラム構造用熱絶縁膜。
1. A thermal insulating film used as the thin film in a diaphragm structure in which a part of the thin film is floated without being supported by a substrate, the multilayer film of silicon oxide having a different composition ratio of silicon and oxygen. A heat insulating film for a diaphragm structure, which is characterized by:
【請求項2】 請求項1のダイアフラム構造用熱絶縁膜
を製造する方法であって、イオンクラスタービーム蒸着
法で、SiOを蒸発源にして、蒸着中に雰囲気ガスの酸
素濃度を変えることにより、シリコンと酸素の組成比が
異なる酸化シリコンの多層膜を形成することを特徴とす
るダイアフラム構造用熱絶縁膜の製造方法。
2. A method for manufacturing a thermal insulating film for a diaphragm structure according to claim 1, wherein SiO is used as an evaporation source in the ion cluster beam vapor deposition method to change the oxygen concentration of the atmospheric gas during vapor deposition, A method of manufacturing a thermal insulating film for a diaphragm structure, which comprises forming a multilayer film of silicon oxide having a different composition ratio of silicon and oxygen.
JP04038107A 1992-02-25 1992-02-25 Thermal insulation film for diaphragm structure and method of manufacturing the same Expired - Lifetime JP3124815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04038107A JP3124815B2 (en) 1992-02-25 1992-02-25 Thermal insulation film for diaphragm structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04038107A JP3124815B2 (en) 1992-02-25 1992-02-25 Thermal insulation film for diaphragm structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05231926A true JPH05231926A (en) 1993-09-07
JP3124815B2 JP3124815B2 (en) 2001-01-15

Family

ID=12516251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04038107A Expired - Lifetime JP3124815B2 (en) 1992-02-25 1992-02-25 Thermal insulation film for diaphragm structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3124815B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225152A (en) * 1993-12-13 1995-08-22 Nec Corp Thermal type infrared ray sensor
US6870086B2 (en) 2001-06-11 2005-03-22 Denso Corporation Thermo pile infrared ray sensor manufactured with screen print and method thereof
WO2005078400A1 (en) * 2004-02-17 2005-08-25 Matsushita Electric Industrial Co., Ltd. Infrared detector and process for fabricating the same
CN111207828A (en) * 2019-12-31 2020-05-29 中国科学院微电子研究所 Thermopile, preparation method thereof and detector
CN112002773A (en) * 2020-08-26 2020-11-27 中国电子科技集团公司第十一研究所 Large-area array infrared detector and chip low-stress cold head structure thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225152A (en) * 1993-12-13 1995-08-22 Nec Corp Thermal type infrared ray sensor
US6870086B2 (en) 2001-06-11 2005-03-22 Denso Corporation Thermo pile infrared ray sensor manufactured with screen print and method thereof
WO2005078400A1 (en) * 2004-02-17 2005-08-25 Matsushita Electric Industrial Co., Ltd. Infrared detector and process for fabricating the same
CN111207828A (en) * 2019-12-31 2020-05-29 中国科学院微电子研究所 Thermopile, preparation method thereof and detector
CN112002773A (en) * 2020-08-26 2020-11-27 中国电子科技集团公司第十一研究所 Large-area array infrared detector and chip low-stress cold head structure thereof
CN112002773B (en) * 2020-08-26 2022-03-11 中国电子科技集团公司第十一研究所 Large-area array infrared detector and chip low-stress cold head structure thereof

Also Published As

Publication number Publication date
JP3124815B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US5132676A (en) Liquid crystal display
GB2085166A (en) Semiconductor gas sensor
US4587171A (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
JPH0449789B2 (en)
JPH05231926A (en) Heat insulating film for diaphragm structure and its manufacture
JP2994881B2 (en) Thermal insulation film for diaphragm structure and method of manufacturing the same
EP4113208A1 (en) Pellicle film, pellicle, film, graphene sheet and method for producing same
JPH05231947A (en) Infrared detector
JP2650946B2 (en) Thin film field effect element
JP3195441B2 (en) Infrared detector
JPH06137941A (en) Infrared detecting element
JP3382141B2 (en) Photoelectric conversion element
JPS58206008A (en) Method of forming transparent conductive laminate
JPH06137939A (en) Infrared detecting element
JPS62165129A (en) Photosensor
JP2737597B2 (en) Infrared detector
CN218896608U (en) Solar blind ultraviolet photocathode
JPH0794788A (en) Semiconductor device
JPH06109535A (en) Infrared detecting element
JPH06112012A (en) Semiconductor thin-film thermistor
JPH09318578A (en) Gas sensor and fabrication thereof
JPH07128139A (en) Infrared detector
JPH0894434A (en) Infrared detection element
JPS61236173A (en) Amorphous silicon optical sensor
JPH0897444A (en) Infrared detection element and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12