JPH07126033A - Orifice plate and glass fiber of noncircular cross section - Google Patents

Orifice plate and glass fiber of noncircular cross section

Info

Publication number
JPH07126033A
JPH07126033A JP6234488A JP23448894A JPH07126033A JP H07126033 A JPH07126033 A JP H07126033A JP 6234488 A JP6234488 A JP 6234488A JP 23448894 A JP23448894 A JP 23448894A JP H07126033 A JPH07126033 A JP H07126033A
Authority
JP
Japan
Prior art keywords
section
glass fiber
cross
orifice plate
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6234488A
Other languages
Japanese (ja)
Inventor
Hideo Taguchi
秀男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP6234488A priority Critical patent/JPH07126033A/en
Publication of JPH07126033A publication Critical patent/JPH07126033A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/083Nozzles; Bushing nozzle plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To efficiently obtain glass fiber having a noncircular cross section in which the cross section of glass fiber is surrounded by plural straight lines and curves. CONSTITUTION:This orifice plate has many orifices at the base thereof. The orifice plate is further provided with protruding edges, surrounding a single orifice outlet and extending from the base of the orifice plate downward. The resultant glass fiber of noncircular cross section formed by this orifice plate has the cross section thereof surrounded by plural straight lines and curves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非円形断面を有するガラ
ス繊維を収率よく製造することが出来るオリフィスプレ
ート及びオリフィスプレートにより紡糸することの出来
る非円形断面ガラス繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orifice plate capable of producing a glass fiber having a non-circular cross section with a high yield and a glass fiber having a non-circular cross section which can be spun by the orifice plate.

【0002】[0002]

【従来の技術】ブッシングに供給された溶融ガラスはオ
リフィスプレートの複数の各対のオリフィスから紡出さ
れ、次いで互いに接合し且つ冷風吹出装置からの冷風又
は冷却フインで急冷、固化され、断面がまゆの形状をし
たフィラメントとなる。多数のフィラメントは集束剤を
塗布された後、集束ローラーでストランドに集束され、
巻取装置の巻取管上に巻取られる。この途中において、
ストランドが集束剤塗布ローラーやガイド上を走行する
際、各フィラメントが扁平に倒れて重なり合い、従来よ
りも扁平なストランドとなる。以上の方法で、断面がま
ゆの形状をしたガラス繊維を集合した扁平なストランド
が製造されることが特開昭61−219734に開示さ
れている。
2. Description of the Prior Art Molten glass supplied to a bushing is spun out from a plurality of pairs of orifices in an orifice plate, then spliced to each other and rapidly cooled and solidified by cold air or cooling fins from a cold air blowing device to have a brow section. It becomes a filament in the shape of. A large number of filaments are coated with a sizing agent and then bundled into strands by a sizing roller,
It is wound on the winding tube of the winding device. In the middle of this,
When the strands run on the sizing agent application roller or guide, the filaments are flattened and overlapped with each other, resulting in a flatter strand than in the past. It is disclosed in Japanese Patent Application Laid-Open No. 61-219734 that a flat strand in which glass fibers having a cocoon-shaped cross section are assembled is produced by the above method.

【0003】特開平3−220260において非円形断
面ガラス繊維が長円形、まゆ形、楕円形、矩形、スリッ
ト状等の孔形状を有するオリフィスを用いて紡糸される
ことが開示されている。
Japanese Patent Laid-Open No. 3-220260 discloses that glass fibers having a non-circular cross section are spun using an orifice having a hole shape such as an oval shape, an eyebrow shape, an elliptical shape, a rectangular shape, and a slit shape.

【0004】[0004]

【発明が解決しようとする課題】しかし特開昭61−2
19734の方法には問題がある。例えばオリフィスか
ら紡出される溶融ガラスは一般に粘度が低く、表面張力
が大きいため、直ちに断面が円形になる傾向が強い。こ
の為一対のノズル孔から紡出した溶融ガラスを接合し、
断面をまゆの形状としても、その溶融ガラスが固化する
までに、表面張力により断面が長円形、楕円形に変形
し、ついには円形になることがある。この傾向は一対の
ノズル孔の間隔が短い程強く、従って一対のノズル孔の
間隔が接近し過ぎると、フィラメントの断面形状は円形
となってしまう。逆に離し過ぎると、各ノズル孔からの
溶融ガラスが接合せず、2本の円形断面のフィラメント
となってしまう。従って、複数の各対のオリフィスの間
隔、オリフィスの凹部の角度等寸法が厳しく限定される
ために、得られる繊維断面の変形比(最長径/最短径)
は比較的小さく、他の多角形等の繊維断面も限定され
る。又品質の安定に問題がある。
However, Japanese Unexamined Patent Application Publication No. 61-2
The 19734 method is problematic. For example, molten glass spun from an orifice generally has a low viscosity and a large surface tension, and therefore tends to immediately have a circular cross section. Therefore, join the molten glass spun from a pair of nozzle holes,
Even if the cross section has a cocoon shape, the cross section may be deformed into an oval or an ellipse due to surface tension before the molten glass is solidified, and finally becomes a circle. This tendency is stronger as the distance between the pair of nozzle holes is shorter. Therefore, if the distance between the pair of nozzle holes is too close, the cross-sectional shape of the filament becomes circular. On the other hand, if they are separated too much, the molten glass from each nozzle hole will not be joined and two filaments with a circular cross section will result. Therefore, the deformation ratio (longest diameter / shortest diameter) of the fiber cross-section obtained is strictly limited because the distance between the orifices of each pair and the angle and other dimensions of the recesses of the orifices are strictly limited.
Is relatively small and the fiber cross section such as other polygons is also limited. Moreover, there is a problem in quality stability.

【0005】又特開平3−220260の方法は非円形
断面を得ようとすると、オリフィスから流出した溶融ガ
ラスのオリフィスプレート表面への濡れ広がりが起こ
り、その結果、フィラメントの切断等の問題がある。
Further, in the method of Japanese Patent Laid-Open No. 3-220260, when an attempt is made to obtain a non-circular cross section, the molten glass flowing out from the orifice wets and spreads on the surface of the orifice plate, resulting in a problem such as filament breakage.

【0006】ガラスフレーク、ガラス繊維、ガラスフレ
ーク及びガラス繊維との混合物が、補強材として用いら
れた成型品の曲げ強度、曲げ弾性率、アイゾッド衝撃強
度等の機械的物性の向上、樹脂の流れ方向の成型収縮率
と樹脂の流れに直角な方向の成型収縮率をほぼ等しくし
(収縮率の異方性が少ない)、且つ収縮率を低下させる
等の寸法安定性の向上、熱変形温度の向上、成型品の表
面の凹凸、ざらつき、補強材の浮き等の無い外観の良さ
等を目的として、熱可塑性樹脂等の補強材として広く用
いられている。
Glass flakes, glass fibers, glass flakes and a mixture of glass fibers are used as a reinforcing material to improve mechanical properties such as flexural strength, flexural modulus and Izod impact strength of a molded product, and resin flow direction. Approximately equals the mold shrinkage of the mold and the mold shrinkage in the direction perpendicular to the resin flow (there is little anisotropy of the shrinkage), and also the shrinkage is improved, and the dimensional stability is improved and the heat distortion temperature is improved. It is widely used as a reinforcing material such as a thermoplastic resin for the purpose of improving the appearance of the molded product without unevenness, roughness and floating of the reinforcing material.

【0007】しかしながら、ガラスフレークを補強材と
して用いた場合、成型品は、収縮率の異方性が少なく、
線膨脹係数の異方性も少ないためにそりがなく、成型品
の表面の凹凸、ざらつき、補強材の浮きが少ないために
外観が良い等の効果があるが、曲げ強度、曲げ弾性率、
アイゾッド衝撃強度等の機械的物性が十分でなく、収縮
率及び線膨脹係数の絶対値についても十分でない等の問
題がある。
However, when glass flakes are used as the reinforcing material, the molded product has a small anisotropy of shrinkage,
Since there is little anisotropy in the linear expansion coefficient, there is no warpage, and there are effects such as unevenness on the surface of the molded product, roughness, and good appearance because there is little lifting of the reinforcing material, but bending strength, bending elastic modulus,
There are problems that mechanical properties such as Izod impact strength are not sufficient, and the absolute values of shrinkage and linear expansion coefficient are not sufficient.

【0008】ガラス繊維を補強材として用いた場合、ガ
ラス繊維の充填量が増すにつれて、曲げ強度、曲げ弾性
率、アイゾッド衝撃強度等の機械的物性、収縮率が向上
する反面、材料の異方性が大きくなる。例えば、寸法安
定性について言えば、線膨脹係数・成型収縮率ともに成
型時の樹脂の流動方向については、小さくできるが、流
動方向に対し直角の方向については、ガラス繊維の充填
量を増しても小さくならないため、実際の製品の寸法安
定性としては不充分であり、ゲート位置等の金型設計及
び製品設計上、大きな制約を受ける。
When glass fiber is used as a reinforcing material, mechanical properties such as bending strength, bending elastic modulus, and Izod impact strength, and shrinkage ratio are improved as the filling amount of glass fiber is increased, but the anisotropy of the material is increased. Grows larger. For example, in terms of dimensional stability, both the linear expansion coefficient and the molding shrinkage can be reduced in the resin flow direction during molding, but in the direction perpendicular to the flow direction even if the glass fiber filling amount is increased. Since it does not become small, it is not sufficient as the dimensional stability of the actual product, and it is greatly restricted by the mold design such as the gate position and the product design.

【0009】材料の異方性が極めて少なく、機械的物性
に極めて優れた補強材、即ち、事務機器、特に複写機、
ファクシミリ用として機械的物性(ボルト等の締め付
け。機械の重量を支える。振動しにくい。)が高く、外
観が良好で、特に線膨脹係数(環境温度による寸法変化
の少ないこと)・成型収縮率(設計寸法と成型品の寸法
との誤差を小さくし、成型品の寸法のバラツキを小さく
する)などの寸法安定性が流動方向・直角方向ともに極
めて優れた樹脂材料が得られる補強材はない。
Reinforcing materials having extremely small anisotropy of materials and excellent mechanical properties, that is, office equipment, especially copying machines,
It has high mechanical properties (tightening bolts, etc., supports the weight of the machine, does not vibrate easily) and has a good appearance, especially for linear expansion coefficient (small dimensional change due to ambient temperature) and molding shrinkage rate (for facsimile). There is no reinforcing material that can obtain a resin material with extremely excellent dimensional stability in both the flow direction and right-angle direction, such as reducing the error between the design dimension and the dimension of the molded product and reducing the variation in the dimension of the molded product.

【0010】[0010]

【課題を解決するための手段】上記問題を解決するため
に、本発明のオリフィスプレートは、底面に多数のオリ
フィスを有するオリフィスプレートにおいて、単数のオ
リフィス出口を囲み該オリフィスプレート底面より下方
に延びる凸状縁を設けた事を特徴とし、上記オリフィス
プレートによって形成された非円形断面ガラス繊維は、
ガラス繊維の横断面が、複数の直線と複数の曲線により
囲まれている事を特徴とする。
In order to solve the above problems, an orifice plate according to the present invention is an orifice plate having a large number of orifices on its bottom surface. The orifice plate surrounds a single orifice outlet and extends downward from the bottom surface of the orifice plate. The non-circular cross-section glass fiber formed by the orifice plate is characterized in that
The cross section of the glass fiber is characterized by being surrounded by a plurality of straight lines and a plurality of curves.

【0011】[0011]

【作用】液状流体、特に溶融ガラスのようにある程度の
粘性を有する流体は、表面平滑なオリフィスプレートの
オリフィスの場合、溶融ガラスはオリフィスからしみ出
して時間と共にオリフィスプレート下面に広がるが、チ
ップオリフィスのように流れを導く壁(チップ)があれ
ば溶融ガラスはチップを伝わって下方に流れるという性
質がある。即ち図3に示されるように単数の長方形のオ
リフィス2出口の周囲に凸状縁1を設けることで単数の
長方形のオリフィスから流れ出た溶融ガラスは凸状縁の
壁に沿って流れ、凸状縁の根元と先端の間で長方形断面
の原形ができる。つまり凸状縁を設けない場合に比べる
と、凸状縁の内壁からの流れがあるため、単数の異形断
面のオリフィスから異形断面の繊維が容易に得られる。
When a liquid fluid, particularly a fluid having a certain viscosity such as molten glass, has an orifice plate having a smooth surface, the molten glass exudes from the orifice and spreads on the lower surface of the orifice plate with time. If there is a wall (chip) that guides the flow, the molten glass has a property of flowing down the chip along the chip. That is, as shown in FIG. 3, by providing the convex edge 1 around the outlet of the single rectangular orifice 2, the molten glass flowing out from the single rectangular orifice flows along the wall of the convex edge, A rectangular cross-section is formed between the root and the tip of the. That is, as compared with the case where the convex edge is not provided, since there is a flow from the inner wall of the convex edge, the fiber having the irregular cross section can be easily obtained from the single orifice having the irregular cross section.

【0012】本発明の非円形断面ガラス繊維は、従来の
円形断面にくらべ、比表面積が大きいので、ガラス繊維
と樹脂との間の全接着力が大きく補強効果が向上する。
さらに、ガラス繊維が、マトリックス中で、例えば、ブ
ロックを並べて積むような相互配置を取り、補強材の充
填量の増大が可能となり、上述の全接着力の増大による
補強効果の向上と相俟って曲げ強度、曲げ弾性率、アイ
ゾッド衝撃強度等の機械的物性を著しく向上させる。
又、特に、扁平な断面形状を有するものについては、異
方性に関しては、ガラスフレークのような効果を示し、
成型品の収縮率の異方性が少なく、線膨脹係数の異方性
も少ないためにそりがなく、成型品の表面の凹凸、ざら
つき、補強材の浮きが少ないために外観が良い。
Since the non-circular cross-section glass fiber of the present invention has a larger specific surface area than the conventional circular cross-section, the total adhesive force between the glass fiber and the resin is large and the reinforcing effect is improved.
Further, the glass fibers are arranged in a matrix such that the blocks are arranged side by side, and the filling amount of the reinforcing material can be increased, which is combined with the improvement of the reinforcing effect due to the increase in the total adhesive force described above. Mechanical properties such as flexural strength, flexural modulus, and Izod impact strength.
In addition, especially for those having a flat cross-sectional shape, with respect to anisotropy, it exhibits an effect similar to glass flakes,
Since the molded product has little anisotropy in shrinkage and little anisotropy in linear expansion coefficient, there is no warpage, and the appearance of the molded product is good because there is little unevenness, roughness, and floating of the reinforcing material.

【0013】[0013]

【実施例】図1及び図5に於いて、ブッシング3に供給
された溶融ガラス9はオリフィスプレート4の単数の異
形断面のオリフィス2から紡出され、次いで凸状縁1の
根元と先端の間で非円形断面の原形ができ、且つ冷風吹
出装置8からの冷風で急冷、固化され、断面が非円形の
形状をしたフィラメント10となる。多数のフィラメン
トは集束剤塗布ローラー5で集束剤を塗布された後、集
束ローラー6でストランド11に集束され、巻取装置7
の巻取管12上に巻取られる。以上の方法で、断面が非
円形の形状、特に断面がリボン状の形状をした変形比の
大きいガラス繊維を集合したストランドが製造される。
又凸状縁1のために非円形断面の原形ができるため、オ
リフィス2から出る溶融ガラス9からは安定した品質の
ストランドが得られる。
1 and 5, a molten glass 9 supplied to a bushing 3 is spun from an orifice 2 having a single cross section of an orifice plate 4 and then between a root and a tip of a convex edge 1. Then, a non-circular cross-section is formed into an original shape, and the filament 10 is rapidly cooled and solidified by the cold air from the cold air blowing device 8 to have a non-circular cross-section. A large number of filaments are coated with a sizing agent by a sizing agent application roller 5, and then are bundled on a strand 11 by a sizing agent roller 6, and a winding device 7
It is wound on the take-up tube 12 of. By the above method, a strand having a non-circular cross section, in particular, a ribbon-like cross section and having a large deformation ratio and having a large deformation ratio is produced.
Further, since the convex edge 1 allows the original shape of the non-circular cross section, the molten glass 9 exiting from the orifice 2 can obtain a strand of stable quality.

【0014】図1のA、B、C、及びDは単数の異形断
面のオリフィス2出口の1部を囲みオリフィスプレート
4底面より下方に延びる複数の凸状縁1を設けたオリフ
ィスプレート4底面の一部を示す。
1A, 1B, 1C and 1D show the bottom of the orifice plate 4 provided with a plurality of convex edges 1 surrounding a part of the outlet of the orifice 2 having a single irregular cross section and extending downward from the bottom of the orifice plate 4. Show some.

【0015】図1のAは長方形のオリフィス2出口の1
部を囲みオリフィスプレート4底面(図5のA)より下
方に延び長方形の短辺のオリフィス2出口を挟む一対の
四角形の板の凸状縁1を設けたオリフィスプレート4底
面の一部を示し、この一対の四角形の板の凸状縁1で挟
まれた長方形のオリフィス2より図4−Aに示されるよ
うに一本の非円形の形状をした図5のAのフィラメント
10が得られる。従ってオリフィスプレート4底面には
この凸状縁1付オリフィス15が多数配置されている。
図1のAの凸状縁1は、図3に示されるごとく正方形で
あるが、凸状縁1の根元と先端の間で非円形断面の原形
ができ、安定した品質のフィラメント10が得られるも
のであれば、いかなる形をも取りうることができる。凸
状縁1の位置は長方形の短辺のオリフィス2出口を挟む
ように、長方形の短辺と平行に一対に設けられている。
この位置においても、凸状縁1の根元と先端の間で非円
形断面の原形ができ、安定した品質のフィラメント10
が得られるものであれば、いかなる位置をも取りうるこ
とができる。さらに、オリフィス2出口の全部を囲む凸
状縁1を設けることもできる。
FIG. 1A shows a rectangular orifice 2 with an outlet 1
A part of the bottom surface of the orifice plate 4 provided with the convex edges 1 of a pair of quadrangular plates that surround the portion and extend below the bottom surface of the orifice plate 4 (A in FIG. 5) and sandwich the orifice 2 of the rectangular short side, From the rectangular orifice 2 sandwiched by the convex edges 1 of the pair of rectangular plates, one filament 10 of FIG. 5A having a non-circular shape is obtained as shown in FIG. 4-A. Therefore, a large number of the orifices 15 with the convex edge 1 are arranged on the bottom surface of the orifice plate 4.
The convex edge 1 of FIG. 1A is square as shown in FIG. 3, but a non-circular cross-section can be formed between the root and the tip of the convex edge 1 to obtain a filament 10 of stable quality. Any shape can be used. The convex edge 1 is provided in a pair in parallel with the short side of the rectangle so as to sandwich the orifice 2 outlet of the short side of the rectangle.
Even in this position, a non-circular cross-section original shape is formed between the root and the tip of the convex edge 1, and the filament 10 of stable quality is obtained.
It can take any position as long as Furthermore, it is also possible to provide a convex edge 1 which surrounds the entire orifice 2 outlet.

【0016】凸状縁1の先端は、図3に示されるように
平坦である事が好ましく、凸状縁1の溶融ガラスに接触
する面は矩形である事が特に好ましい。凸状縁1の溶融
ガラスに接触する面の高さは、0.01−50.00m
mが好ましく、特に好ましくは、0.1−10.0mm
で,更に好ましくは,0.5−5.0mmである。高さ
が0.01mm以下の場合、凸状縁1の効果が小さく、
50.00mm以上の場合は糸切れが発生することがあ
る。凸状縁1の溶融ガラスに接触する面の先端の幅は、
0.005−40.000mmが好ましく、特に好まし
くは、0.1−10.0mmで,更に好ましくは,0.
5−3.0mmである。先端の幅が0.005mm以下
の場合、凸状縁1の効果が小さく、40.000mm以
上の場合は糸切れが発生することがある。
The tip of the convex edge 1 is preferably flat as shown in FIG. 3, and the surface of the convex edge 1 which comes into contact with the molten glass is particularly preferably rectangular. The height of the surface of the convex edge 1 in contact with the molten glass is 0.01-50.00 m.
m is preferable, and 0.1-10.0 mm is particularly preferable.
And more preferably 0.5-5.0 mm. When the height is 0.01 mm or less, the effect of the convex edge 1 is small,
If it is 50.00 mm or more, yarn breakage may occur. The width of the tip of the surface of the convex edge 1 that contacts the molten glass is
0.005-40.000 mm is preferable, 0.1-10.0 mm is particularly preferable, and 0.
It is 5-3.0 mm. When the width of the tip is 0.005 mm or less, the effect of the convex edge 1 is small, and when it is 40.000 mm or more, thread breakage may occur.

【0017】図1のBは、ほぼ正四角形のオリフィス2
出口の1部を囲みオリフィスプレート4底面(図5の
A)より下方に延びほぼ正四角形のオリフィス2出口の
四つの角にそれぞれ凸状縁1を凸設したオリフィスプレ
ート4底面の一部を示し、この凸状縁1付ほぼ正四角形
のオリフィス15より、図4−Bに示されるようにほぼ
正方形の一本の非円形の形状をした図5のAのフィラメ
ント10が得られる。
FIG. 1B shows an orifice 2 having a substantially square shape.
A part of the bottom surface of the orifice plate 4 that surrounds a part of the outlet and extends downward from the bottom surface of the orifice plate 4 (A in FIG. 5) and has a convex edge 1 at each of the four corners of the orifice 2 at the outlet is shown. From the orifice 15 having a substantially square shape with the convex edge 1, the filament 10 of FIG. 5A having a substantially non-circular shape having a substantially square shape is obtained as shown in FIG. 4-B.

【0018】図1には、長方形、ほぼ正四角形、ほぼ正
三角形、ほぼY字形のオリフィスの異形断面が示されて
いるが、その他に、例えば、扁平度の大きい楕円形、五
角形、X字形、C字形、E字形、L字形、M字形、S字
形、T字形、V字形、Z字形等を例示でき、任意の異形
断面のオリフィスに適用可能である。
FIG. 1 shows a modified cross section of a rectangular, substantially regular square, substantially regular triangle, or substantially Y-shaped orifice, but in addition, for example, an elliptical shape with a large flatness, a pentagon, an X-shape, The C-shape, E-shape, L-shape, M-shape, S-shape, T-shape, V-shape, Z-shape and the like can be exemplified, and the invention can be applied to an orifice having any irregular cross section.

【0019】本発明によると、種々の断面形の非円形断
面ガラス繊維の製造が可能である。本発明の非円形断面
ガラス繊維の補強効果について、成型品の曲げ強度、曲
げ弾性率、アイゾッド衝撃強度等の機械的物性を著しく
向上させると同時に、成型品の収縮率、線膨脹係数等の
異方性が少ないためにそりがなく、表面の凹凸、ざらつ
き、補強材の浮きが少ないために外観が良いためには、
ガラス繊維の横断面が、複数の直線と複数の曲線により
囲まれている必要がある。成型品中のガラス繊維が、相
互にその横断の直線で接触し、例えば、ブロックを並べ
て積むような相互配置を取り、補強材の充填量の増大が
可能となるからである。好ましくは、ガラス繊維の横断
面が、全曲線の長さより大きい全直線の長さの線で囲ま
れていることである。さらに好ましくは、ガラス繊維の
横断面が、全曲線の長さの3倍以上の全直線の長さの線
で囲まれていることである。
According to the invention, it is possible to produce non-circular cross-section glass fibers of various cross-sections. Regarding the reinforcing effect of the non-circular cross-section glass fiber of the present invention, mechanical properties such as flexural strength, flexural modulus and Izod impact strength of the molded product are remarkably improved, and at the same time, the molded product has different shrinkage ratio, linear expansion coefficient and the like. There is no warpage due to the lack of directionality, and there is less unevenness on the surface, roughness, and less floating of the reinforcing material so that the appearance is good,
The cross section of the glass fiber must be surrounded by straight lines and curved lines. This is because the glass fibers in the molded product come into contact with each other in a straight line across them, and for example, the mutual arrangement such that the blocks are stacked side by side is taken, and the filling amount of the reinforcing material can be increased. Preferably, the cross-section of the glass fiber is surrounded by a line of total straight length greater than the length of the total curve. More preferably, the cross section of the glass fiber is surrounded by a line having a total straight line length that is at least three times the total curve length.

【0020】本発明の種々の断面形の非円形断面ガラス
繊維の内、図4のAに示されるようなリボン状の断面形
の非円形断面ガラス繊維の補強効果について、成型品の
機械的物性を著しく向上させると同時に、そりがなく、
外観が良いためには、好ましくは、ガラス繊維の横断面
における最長径の短径に対する比が2.3以上であるこ
とである。さらに好ましくは、ガラス繊維の横断面にお
ける最長径の短径に対する比が5−12であることであ
る。
Among the non-circular cross-section glass fibers of various cross-sections according to the present invention, the mechanical properties of the molded product with respect to the reinforcing effect of the non-circular cross-section glass fiber of ribbon-like cross-section as shown in FIG. 4A. And at the same time there is no warpage,
In order to have a good appearance, the ratio of the longest diameter to the short diameter in the cross section of the glass fiber is preferably 2.3 or more. More preferably, the ratio of the longest diameter to the short diameter in the cross section of the glass fiber is 5-12.

【0021】本発明の非円形断面ガラス繊維の太さにつ
いては任意であるが、横断面における短径が0.5−2
5ミクロン、横断面における最長径が0.6−300ミ
クロンであることが好ましい。細すぎる場合、ガラス繊
維の紡糸が困難な場合があり、太すぎる場合、樹脂との
接触面積の減少等により補強材の補強効果が減少する場
合がある。
The thickness of the non-circular cross-section glass fiber of the present invention is arbitrary, but the minor axis in the cross section is 0.5-2.
It is preferably 5 microns and the longest diameter in the cross section is 0.6-300 microns. If it is too thin, it may be difficult to spin the glass fiber, and if it is too thick, the reinforcing effect of the reinforcing material may be reduced due to a decrease in the contact area with the resin.

【0022】ガラス繊維の組成は、溶融ガラスよりガラ
ス繊維化が可能な組成であればよく、好ましい組成とし
て、Eガラス組成、Cガラス組成、Sガラス組成、耐ア
ルカリガラス組成等をあげることができる。
The composition of the glass fiber may be any composition as long as it can be made into glass fiber from molten glass, and preferable compositions include E glass composition, C glass composition, S glass composition and alkali resistant glass composition. .

【0023】本発明の非円形断面ガラス繊維は、例え
ば、γーメタクリルオキシプロピルトリメトキシシラ
ン、γーグリシドキシプロピルトリメトキシシラン、γ
ーアミノプロピルトリエトキシシラン等のシランカップ
リング剤等で表面処理されていることが望ましく、ガラ
ス繊維重量の0.01重量%以上とすることが好まし
い。さらに必要に応じて、脂肪酸アミド化合物、シリコ
ーンオイル等の潤滑剤、第4級アンモニウンム塩等の帯
電防止剤、エポキシ樹脂、ウレタン樹脂等の被膜形成能
を有する樹脂、被膜形成能を有する樹脂と熱安定剤、難
燃剤等を併用したもの等によって表面処理されたものを
用いることもできる。
The non-circular cross-section glass fiber of the present invention is, for example, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ
It is desirable that the surface treatment is performed with a silane coupling agent such as aminopropyltriethoxysilane, and it is preferably 0.01% by weight or more of the weight of the glass fiber. Further, if necessary, a fatty acid amide compound, a lubricant such as silicone oil, an antistatic agent such as a quaternary ammonium salt, a resin having a film forming ability such as an epoxy resin or a urethane resin, a resin having a film forming ability and a heat treatment. It is also possible to use a material surface-treated with a material such as a stabilizer and a flame retardant.

【0024】本発明の非円形断面ガラス繊維は、熱可塑
性樹脂の補強材として好適である。特に、ナイロン、飽
和ポリエステル、ポリカーボネート等の補強材として好
適である。本発明のガラス繊維の上述の樹脂への好まし
い充填量は、5−70重量%である。
The non-circular cross-section glass fiber of the present invention is suitable as a reinforcing material for thermoplastic resins. In particular, it is suitable as a reinforcing material for nylon, saturated polyester, polycarbonate and the like. The preferable loading amount of the glass fiber of the present invention in the above-mentioned resin is 5-70% by weight.

【0025】[実験例1][Experimental Example 1]

【0015】で説明した図1のAのタイプで、オリフィ
ス2の横断面の長辺が3.0mm、短辺が1.2mm、
短辺と平行に高さ3.0mm、幅1.2mm、厚さ0.
6mmの凸状縁1がオリフィス2出口を挟むように、一
対に凸設された凸状縁1付オリフィス15を有し、この
凸状縁1付オリフィス15が300個配置されたオリフ
ィスプレート4を有するガラス繊維紡糸用ブッシング3
を用いて、Eガラス組成で、紡糸温度1240℃、紡糸
速度3000m/minで紡糸し、γーアミノプロピル
トリエトキシシランを主成分とする集束剤を0.35重
量%付着させて表面処理し、図4のAに概略示されるガ
ラス繊維の横断面が、全曲線の長さの3.3倍の全直線
の長さの線で囲まれ、横断面における最長径の短径に対
する比が6.1の非円形断面を有するガラス繊維を得
た。この条件で、約3時間の連続紡糸を行なったが、切
断は一度も見られなかった。
In the type A shown in FIG. 1 described in section 1, the long side of the cross section of the orifice 2 is 3.0 mm, the short side is 1.2 mm,
The height is 3.0 mm, the width is 1.2 mm, and the thickness is 0.
A 6 mm convex edge 1 has a pair of convex edge 1-orifice 15 provided so as to sandwich the orifice 2 outlet, and an orifice plate 4 in which 300 convex edge 1-orifices 15 are arranged is used. Glass fiber spinning bushing 3
Using E, a spinning temperature of 1240 ° C. and a spinning speed of 3000 m / min were used for spinning, and 0.35% by weight of a sizing agent having γ-aminopropyltriethoxysilane as a main component was applied for surface treatment. The cross section of the glass fiber schematically shown in FIG. 4A is surrounded by a line having a total straight line length of 3.3 times the length of the entire curve, and the ratio of the longest diameter to the short diameter in the cross section is 6. A glass fiber having a non-circular cross section of 1 was obtained. Under these conditions, continuous spinning was carried out for about 3 hours, but no cutting was observed.

【0026】[実験例2][Experimental Example 2]

【0017】で説明した図1のBのタイプで、オリフィ
ス2の横断面の各辺が2.4mmの正四角形のオリフィ
ス2出口の1部を囲みオリフィスプレート4底面(図5
のA)より下方に延び正四角形のオリフィス2出口の四
つの角に高さ2.0mm、幅1.2mm、厚さ0.6m
mの凸状縁1がオリフィス2出口を挟むように、それぞ
れ凸状縁1を凸設した凸状縁1付オリフィス15を有
し、この凸状縁1付オリフィス15が300個配置され
たオリフィスプレート4を有するガラス繊維紡糸用ブッ
シング3を用いて、Eガラス組成で、紡糸温度1220
℃、紡糸速度3000m/minで紡糸し、γーメタク
リルオキシプロピルトリメトキシシランを主成分とする
集束剤を0.41重量%付着させて表面処理し、図4の
Bに概略示されるガラス繊維の横断面が、全曲線の長さ
の3.8倍の全直線の長さの線で囲まれた非円形断面を
有するガラス繊維を得た。得られたガラス繊維の断面は
ほぼ4角形でその角はほぼ円弧の形であった。この条件
で、約3時間の連続紡糸を行なったが、切断は一度も見
られなかった。
In the type B shown in FIG. 1 described in 1., a part of the outlet of the orifice 2 of the square shape of each side of the orifice 2 is 2.4 mm, and each side of the orifice 2 surrounds a part of the outlet of the orifice plate 4 (see FIG. 5).
2.0 mm in height, width 1.2 mm, thickness 0.6 m at the four corners of the regular orifice 2 outlet extending downward from A)
An orifice 15 with convex edges 1 provided with convex edges 1 so that the convex edges 1 of m sandwich the outlet of the orifice 2, and 300 orifices 15 with the convex edges 1 are arranged. Using a glass fiber spinning bushing 3 having a plate 4, an E glass composition and a spinning temperature of 1220.
C., spinning speed 3000 m / min, 0.41% by weight of a sizing agent having .gamma.-methacryloxypropyltrimethoxysilane as a main component was adhered and surface-treated, and a glass fiber A glass fiber was obtained whose cross-section had a non-circular cross section surrounded by a line with a total length of 3.8 times the length of the whole curve. The cross section of the obtained glass fiber was substantially quadrangular, and the corners were substantially arc-shaped. Under these conditions, continuous spinning was carried out for about 3 hours, but no cutting was observed.

【0027】[実験例3]図1のCのタイプで、オリフ
ィス2の横断面の各辺が3.0mmの正三角形のオリフ
ィス2出口の1部を囲みオリフィスプレート4底面(図
5のA)より下方に延び正三角形のオリフィス2出口の
各頂点に高さ2.0mm、幅1.5mm、厚さ0.5m
mの凸状縁1がオリフィス2出口を挟むように、それぞ
れ凸状縁1を凸設した凸状縁1付オリフィス15を有
し、この凸状縁1付オリフィス15が300個配置され
たオリフィスプレート4を有するガラス繊維紡糸用ブッ
シング3を用いて、Eガラス組成で、紡糸温度1230
℃、紡糸速度3000m/minで紡糸し、γーグリシ
ドキシプロピルトリメトキシシラン4重量部及びシリコ
ーンオイル1重量部の混合物を主成分とする集束剤を
0.28重量%付着させて表面処理し、図4のCに概略
示されるガラス繊維の横断面が、全曲線の長さの5.7
倍の全直線の長さの線で囲まれた非円形断面を有するガ
ラス繊維を得た。得られたガラス繊維の断面はほぼ3角
形でその角はほぼ円弧の形であった。この条件で、約3
時間の連続紡糸を行なったが、切断は一度も見られなか
った。
[Experimental Example 3] In the type C shown in FIG. 1, a part of the outlet of an orifice 2 of a regular triangle having a cross section of the orifice 2 of 3.0 mm on each side is surrounded by a part of the orifice plate 4 bottom surface (A in FIG. 5). 2.0 mm in height, 1.5 mm in width, and 0.5 m in thickness at each vertex of the exit of the equilateral triangular orifice 2
An orifice 15 with convex edges 1 provided with convex edges 1 so that the convex edges 1 of m sandwich the outlet of the orifice 2, and 300 orifices 15 with the convex edges 1 are arranged. Using a glass fiber spinning bushing 3 having a plate 4, an E glass composition and a spinning temperature of 1230.
C., spinning speed 3000 m / min, spinning was performed, and 0.28% by weight of a sizing agent containing a mixture of 4 parts by weight of .gamma.-glycidoxypropyltrimethoxysilane and 1 part by weight of silicone oil as a main component was applied to the surface treatment. , The cross section of the glass fiber schematically shown in FIG. 4C has a total curve length of 5.7.
A glass fiber was obtained having a non-circular cross section surrounded by a line of double the total straight length. The cross section of the obtained glass fiber was substantially triangular, and the angle was substantially arcuate. Under this condition, about 3
After continuous spinning for a period of time, no cutting was seen.

【0028】[実験例4]図1のDのタイプで、オリフ
ィス2の横断面が中心から120度の角度で三方に広が
りをもつ形であって、三方に広がるオリフィス2の幅w
が1.2mm、オリフィス2の中心から三方に広がるオ
リフィス2の端までの長さが2.6mmのY字形のオリ
フィス2出口の1部を囲みオリフィスプレート4底面
(図5のA)より下方に延びY字形のオリフィス2出口
の三つの端に高さ1.9mm、幅1.1mm、厚さ0.
3の凸状縁1がオリフィス2出口を挟むように、それぞ
れ凸状縁1を凸設した凸状縁1付オリフィス15を有
し、この凸状縁1付オリフィス15が300個配置され
たオリフィスプレート4を有するガラス繊維紡糸用ブッ
シング3を用いて、Eガラス組成で、紡糸温度1250
℃、紡糸速度3000m/minで紡糸し、ウレタンオ
リゴマー5重量部、γーアミノプロピルトリエトキシシ
ラン0.5重量部、ポリオキシプロピレンポリオキシエ
チレンブロック共重合体0.7重量部及び脱イオン水9
3.8重量部からなる集束剤を3.8重量%付着させて
表面処理し、図4のDに概略示されるガラス繊維の横断
面が、全曲線の長さの1.0倍の全直線の長さの線で囲
まれた非円形断面を有するガラス繊維を得た。得られた
ガラス繊維の横断面について図4のDに示されるaとb
の比率は1:4.8であった。この条件で、約3時間の
連続紡糸を行なったが、切断は一度も見られなかった。
[Experimental Example 4] In the type D of FIG. 1, the cross-section of the orifice 2 has a shape that expands in three directions at an angle of 120 degrees from the center, and the width w of the orifice 2 that expands in three directions.
Is 1.2 mm, and the length from the center of the orifice 2 to the end of the orifice 2 that spreads in three directions is 2.6 mm, and surrounds a part of the outlet of the Y-shaped orifice 2 below the bottom surface of the orifice plate 4 (A in FIG. 5). At the three ends of the extended Y-shaped orifice 2, the height is 1.9 mm, the width is 1.1 mm, and the thickness is 0.1 mm.
An orifice 15 having convex edges 1 provided with convex edges 1 so that the convex edges 1 of 3 sandwich the outlet of the orifice 2, and 300 orifices 15 having the convex edges 1 are arranged. Using a glass fiber spinning bushing 3 having a plate 4, an E glass composition and a spinning temperature of 1250.
C., spinning speed 3000 m / min, 5 parts by weight of urethane oligomer, 0.5 parts by weight of .gamma.-aminopropyltriethoxysilane, 0.7 parts by weight of polyoxypropylene polyoxyethylene block copolymer and 9 parts of deionized water.
3.8% by weight of 3.8% by weight of a sizing agent was applied to the surface treatment, and the cross section of the glass fiber schematically shown in FIG. 4D had a straight line of 1.0 times the length of the entire curve. A glass fiber having a non-circular cross section surrounded by a line of the length: The cross section of the obtained glass fiber is shown in FIG.
The ratio was 1: 4.8. Under these conditions, continuous spinning was carried out for about 3 hours, but no cutting was observed.

【0029】[比較例1] [実験例1]に用いたオリフィスプレート4の凸状縁1
を取除いたことを除いては[実験例1]と同様のオリフ
ィスプレート4を有するガラス繊維紡糸用ブッシング3
を用いて、[実験例1]と同様の条件で紡糸した結果、
2つの長辺と2つの短辺からなるオリフィス孔の断面の
1つの短辺側に溶融ガラスの流れが偏り、切断が頻繁に
起こり、紡糸は困難を極めた。得られたガラス繊維の横
断面は円形で、[実験例1]の非円形断面を有するガラ
ス繊維は得られなかった。
Comparative Example 1 Convex edge 1 of orifice plate 4 used in [Experimental Example 1]
Glass fiber spinning bushing 3 having an orifice plate 4 similar to that in [Experimental Example 1] except that
As a result of spinning under the same conditions as in [Experimental Example 1],
The flow of the molten glass was biased to one short side of the cross section of the orifice hole having two long sides and two short sides, cutting frequently occurred, and spinning was extremely difficult. The cross section of the obtained glass fiber was circular, and the glass fiber having the non-circular cross section of [Experimental Example 1] could not be obtained.

【0030】[0030]

【発明の効果】実験例1及び比較例1にて得られたガラ
ス繊維をそれぞれ70重量%を飽和ポリエステル(ポリ
プラスチックス(株)製、品名ジュラネックス200
0)に添加し、エクストルーダーを用いてシリンダー温
度270℃で溶融混合した。得られた飽和ポリエステル
組成物をチップ化し、射出成形機を用いて成形温度27
0℃、成形サイクルを一次圧(油圧:800kg/cm
2 )、及び冷却時間20秒とし、型温度100℃で厚さ
1/4インチ、幅1/2インチ、長さ5インチの板状体
(A1)及び厚さ1/24インチ、3インチ角の板状体
(A2)とを成形した。得られた成形品A1は、AST
M−D−256に準拠してアイゾッド衝撃強度(ノッチ
付き)を測定し、ASTM−D−790に準拠して曲げ
強度及び曲げ弾性率を測定した。A2を用い、A2表面
に樹脂の流動方向(縦方向)及び直角方向(横方向)に
付けられたマーク間の距離を三次元寸法測定装置を用い
て測定し、金型の実際の寸法との比率から収縮率を算出
した。結果を表1に示す。本発明の単数のオリフィス2
出口を囲み該オリフィスプレート4底面より下方に延び
る凸状縁1を設けたオリフィスプレート4を有するガラ
ス繊維紡糸用ブッシング3を用いて溶融ガラスを引出
し、固化することにより、ガラス繊維の横断面が、複数
の直線と複数の曲線により囲まれている非円形断面有す
るガラス繊維を効率よく製造することが出来る。本発明
の非円形断面ガラス繊維は、従来の円形断面にくらべ、
比表面積が大きいので、ガラス繊維と樹脂との間の全接
着力が大きく補強効果が向上する。さらに、ガラス繊維
が、マトリックス中で、例えば、ブロックを並べて積む
ような相互配置を取り、補強材の充填量の増大が可能と
なり、上述の全接着力の増大による補強効果の向上と相
俟って曲げ強度、曲げ弾性率、アイゾッド衝撃強度等の
機械的物性を著しく向上させる。又、特に、扁平な断面
形状を有しているものについて、異方性に関しては、ガ
ラスフレークのような効果を示し、成型品の収縮率の異
方性が少なく、線膨脹係数の異方性も少ないためにそり
がなく、成型品の表面の凹凸、ざらつき、補強材の浮き
が少ないために外観が良い。これらの効果は表1に示さ
れる実験例1及び比較例1にて得られたガラス繊維の補
強効果より明白である。
[Effect of the Invention] 70% by weight of each of the glass fibers obtained in Experimental Example 1 and Comparative Example 1 is saturated polyester (manufactured by Polyplastics Co., Ltd., product name: DURANEX 200).
0) and melt-mixed using an extruder at a cylinder temperature of 270 ° C. The obtained saturated polyester composition is made into chips and molded at an injection temperature of 27 using an injection molding machine.
Primary pressure at 0 ° C, molding cycle (hydraulic pressure: 800 kg / cm
2) and a cooling time of 20 seconds, a plate-like body (A1) having a thickness of 1/4 inch, a width of 1/2 inch, and a length of 5 inch at a mold temperature of 100 ° C. and a thickness of 1/24 inch, 3 inch square And the plate-shaped body (A2) of. The obtained molded product A1 is AST
The Izod impact strength (with a notch) was measured according to MD-256, and the bending strength and the flexural modulus were measured according to ASTM-D-790. A2 is used to measure the distance between marks on the A2 surface in the resin flow direction (longitudinal direction) and the right angle direction (horizontal direction) using a three-dimensional dimension measuring device, and the actual dimension of the mold is measured. The shrinkage rate was calculated from the ratio. The results are shown in Table 1. Single Orifice 2 of the Invention
The glass fiber spinning bushing 3 having the orifice plate 4 provided with the convex edge 1 surrounding the outlet and extending downward from the bottom surface of the orifice plate 4 is used to draw out the molten glass and solidify it, whereby the cross section of the glass fiber is It is possible to efficiently manufacture a glass fiber having a non-circular cross section surrounded by a plurality of straight lines and a plurality of curves. The non-circular cross-section glass fiber of the present invention, compared to the conventional circular cross-section,
Since the specific surface area is large, the total adhesive force between the glass fiber and the resin is large and the reinforcing effect is improved. Further, the glass fibers can be arranged in a matrix such that the blocks are arranged side by side, and the filling amount of the reinforcing material can be increased, which is combined with the improvement of the reinforcing effect due to the increase in the total adhesive force. Mechanical properties such as flexural strength, flexural modulus, and Izod impact strength. In addition, especially for those having a flat cross-sectional shape, regarding the anisotropy, it exhibits an effect similar to that of glass flakes, the anisotropy of the shrinkage ratio of the molded product is small, and the anisotropy of the linear expansion coefficient is small. There is no warp because there is little, and the appearance is good because there is little unevenness on the surface of the molded product, roughness, and floating of the reinforcing material. These effects are obvious from the reinforcing effect of the glass fibers obtained in Experimental Example 1 and Comparative Example 1 shown in Table 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】A、B、C及びDは本発明の実施例のオリフィ
スプレートの底面の一部を示す図である。
1A, 1B, 1C and 1D are views showing a part of a bottom surface of an orifice plate according to an embodiment of the present invention.

【図2】図1のA、B、C及びDのX−Yの断面図であ
る。
FIG. 2 is a cross-sectional view taken along the line XY in FIGS. 1A, 1B, C and D.

【図3】図1のAの斜視図である。FIG. 3 is a perspective view of A in FIG.

【図4】Aは実験例1により得られた本発明の非円形断
面を有するガラス繊維の概略図で、Bは実験例2により
得られた本発明の非円形断面を有するガラス繊維の概略
図で、Cは実験例3により得られた本発明の非円形断面
を有するガラス繊維の概略図で、Dは実験例4により得
られた本発明の非円形断面を有するガラス繊維の概略図
である。
FIG. 4A is a schematic view of a glass fiber having a non-circular cross section of the present invention obtained in Experimental Example 1, and B is a schematic view of a glass fiber having a non-circular cross section of the present invention obtained in Experimental Example 2. C is a schematic view of the glass fiber having a non-circular cross section of the present invention obtained in Experimental Example 3, and D is a schematic view of the glass fiber having a non-circular cross section of the present invention obtained in Experimental Example 4. .

【図5】Aは本発明のオリフィスプレートの実施に用い
る装置の概略側面図の一例で、Bはその要部の正面図で
ある。
FIG. 5A is an example of a schematic side view of an apparatus used for implementing the orifice plate of the present invention, and B is a front view of a main part thereof.

【符号の説明】[Explanation of symbols]

1 凸状縁 2 オリフィス 3 ブッシング 4 オリフィスプレート 5 集束剤塗布ローラー 6 集束ローラー 7 巻取装置 8 冷風吹出装置 9 溶融ガラス 10 フィラメント 11 ストランド 12 巻取管 13 冷風吹出パイプ 15 凸状縁付オリフィス 1 Convex Edge 2 Orifice 3 Bushing 4 Orifice Plate 5 Converging Agent Applying Roller 6 Focusing Roller 7 Winding Device 8 Cold Air Blowing Device 9 Molten Glass 10 Filament 11 Strand 12 Winding Pipe 13 Cold Air Blowing Pipe 15 Orifice with Convex Edge

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08J 5/08 7310−4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C08J 5/08 7310-4F

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 底面に多数のオリフィスを有するオリフ
ィスプレートにおいて、単数のオリフィス出口を囲み該
オリフィスプレート底面より下方に延びる凸状縁を設け
た事を特徴とするオリフィスプレート。
1. An orifice plate having a plurality of orifices on a bottom surface, wherein an orifice plate surrounding a single orifice outlet is provided with a convex edge extending downward from the bottom surface of the orifice plate.
【請求項2】 前記単数のオリフィス出口の一部を囲み
前記オリフィスプレート底面より下方に延びる複数の前
記凸状縁を設けた請求項1のオリフィスプレート。
2. The orifice plate according to claim 1, further comprising a plurality of the convex edges that surround a part of the outlet of the single orifice and extend downward from a bottom surface of the orifice plate.
【請求項3】 前記単数のオリフィス出口の一部を囲み
前記オリフィスプレート底面より下方に延びる前記凸状
縁は前記単数のオリフィス出口を挟む一対の四角形の板
である請求項2のオリフィスプレート。
3. The orifice plate according to claim 2, wherein the convex edge surrounding a part of the single orifice outlet and extending downward from the bottom surface of the orifice plate is a pair of rectangular plates sandwiching the single orifice outlet.
【請求項4】 前記凸状縁は、前記凸状縁の溶融ガラス
に接する面の高さが0.01−50.00mmである請
求項2のオリフィスプレート。
4. The orifice plate according to claim 2, wherein the convex edge has a height of a surface of the convex edge in contact with the molten glass of 0.01 to 50.00 mm.
【請求項5】 前記凸状縁は、前記凸状縁の溶融ガラス
に接する面の先端の幅がが0.005−40.000m
mである請求項2のオリフィスプレート。
5. A width of a tip of a surface of the convex edge that is in contact with the molten glass is 0.005-40.000 m.
The orifice plate of claim 2, wherein m is m.
【請求項6】 ガラス繊維の横断面が、複数の直線と複
数の曲線により囲まれている事を特徴とする非円形断面
ガラス繊維。
6. A non-circular cross-section glass fiber characterized in that the cross section of the glass fiber is surrounded by a plurality of straight lines and a plurality of curves.
【請求項7】 前期直線の長さの合計は、前期曲線の長
さの合計より大きい事を特徴とする請求項4の非円形断
面ガラス繊維。
7. The non-circular cross-section glass fiber according to claim 4, wherein the total length of the straight lines is larger than the total length of the straight lines.
【請求項8】 前期直線の長さの合計は前期曲線の長さ
の合計の3倍以上である事を特徴とする請求項5の非円
形断面ガラス繊維。
8. The non-circular cross-section glass fiber according to claim 5, wherein the total length of the straight lines is 3 times or more the total length of the straight lines.
【請求項9】 前期横断面の最長径の最短径に対する比
が2.3以上であることを特徴とする請求項4の非円形
断面ガラス繊維。
9. The non-circular cross-section glass fiber according to claim 4, wherein the ratio of the longest diameter to the shortest diameter of the previous cross-section is 2.3 or more.
【請求項10】 前期横断面の最長径の最短径に対する
比が5から12であることを特徴とする請求項7の非円
形断面ガラス繊維。
10. The non-circular cross-section glass fiber according to claim 7, wherein the ratio of the longest diameter to the shortest diameter of the previous cross-section is 5 to 12.
【請求項11】 前記ガラス繊維の横断面が、四角形で
ある事を特徴とする請求項4の非円形断面ガラス繊維。
11. The non-circular cross-section glass fiber according to claim 4, wherein the cross section of the glass fiber is a quadrangle.
【請求項12】 前記四角形の角が、ほぼ円弧の形であ
る事を特徴とする請求項11の非円形断面ガラス繊維。
12. The glass fiber having a non-circular cross section according to claim 11, wherein the corners of the quadrangle are substantially arc-shaped.
【請求項13】 前記ガラス繊維の横断面が、三角形で
ある事を特徴とする請求項4の非円形断面ガラス繊維。
13. The non-circular cross-section glass fiber according to claim 4, wherein the cross-section of the glass fiber is triangular.
【請求項14】 前記三角形の角が、ほぼ円弧の形であ
る事を特徴とする請求項13の非円形断面ガラス繊維。
14. The non-circular cross-section glass fiber of claim 13, wherein the corners of the triangle are substantially arc-shaped.
JP6234488A 1993-09-10 1994-09-05 Orifice plate and glass fiber of noncircular cross section Pending JPH07126033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234488A JPH07126033A (en) 1993-09-10 1994-09-05 Orifice plate and glass fiber of noncircular cross section

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-248601 1993-09-10
JP24860193 1993-09-10
JP6234488A JPH07126033A (en) 1993-09-10 1994-09-05 Orifice plate and glass fiber of noncircular cross section

Publications (1)

Publication Number Publication Date
JPH07126033A true JPH07126033A (en) 1995-05-16

Family

ID=26531595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234488A Pending JPH07126033A (en) 1993-09-10 1994-09-05 Orifice plate and glass fiber of noncircular cross section

Country Status (1)

Country Link
JP (1) JPH07126033A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543258B1 (en) 1997-12-02 2003-04-08 Nitto Boseki Co., Ltd. Glass fiber nonwoven fabric and printed wiring board
KR100447639B1 (en) * 2002-07-30 2004-09-13 세원기업주식회사 Production Method And Of A Quadrangle Of Monofilament
JP2007302866A (en) * 2006-01-13 2007-11-22 Mitsubishi Engineering Plastics Corp Polyamide resin composition for portable electronic device and molding for portable electronic device
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2012076084A (en) * 2012-01-27 2012-04-19 Shinetsu Quartz Prod Co Ltd Manufacturing method for fibrous photocatalyst object
WO2020040033A1 (en) * 2018-08-20 2020-02-27 セントラル硝子株式会社 Bushing for manufacturing glass fiber, and method for manufacturing glass fiber
WO2021256144A1 (en) * 2020-06-16 2021-12-23 日本電気硝子株式会社 Nozzle for deformed cross-section glass fiber, and manufacturing method of deformed cross-section glass fiber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6543258B1 (en) 1997-12-02 2003-04-08 Nitto Boseki Co., Ltd. Glass fiber nonwoven fabric and printed wiring board
US6615616B2 (en) 1997-12-02 2003-09-09 Nitto Boseki Co. Ltd. Glass fiber nonwoven fabric and printed wiring board
KR100447639B1 (en) * 2002-07-30 2004-09-13 세원기업주식회사 Production Method And Of A Quadrangle Of Monofilament
JP2007302866A (en) * 2006-01-13 2007-11-22 Mitsubishi Engineering Plastics Corp Polyamide resin composition for portable electronic device and molding for portable electronic device
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2012076084A (en) * 2012-01-27 2012-04-19 Shinetsu Quartz Prod Co Ltd Manufacturing method for fibrous photocatalyst object
WO2020040033A1 (en) * 2018-08-20 2020-02-27 セントラル硝子株式会社 Bushing for manufacturing glass fiber, and method for manufacturing glass fiber
JPWO2020040033A1 (en) * 2018-08-20 2021-08-10 セントラル硝子株式会社 Bushing for glass fiber manufacturing and glass fiber manufacturing method
WO2021256144A1 (en) * 2020-06-16 2021-12-23 日本電気硝子株式会社 Nozzle for deformed cross-section glass fiber, and manufacturing method of deformed cross-section glass fiber

Similar Documents

Publication Publication Date Title
US4759784A (en) Method of manufacturing glass fiber strand
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
US20200271879A1 (en) An Optical Fiber Ribbon and a Method of Producing the Same
EP1039004B1 (en) A nozzle chip for spinning a highly flat glass fiber and an apparatus accommodating the same
JP6768226B2 (en) Deformed cross-section glass fiber manufacturing equipment and its manufacturing method
CN1092016A (en) Make the method and apparatus of complex line
US20210403367A1 (en) Bushing for Manufacturing Glass Fiber, and Method for Manufacturing Glass Fiber
US11518705B2 (en) Nozzle tip for producing glass fibers and method for producing glass fibers
JPH07126033A (en) Orifice plate and glass fiber of noncircular cross section
JP3369674B2 (en) Nozzle tip for spinning glass fiber with irregular cross section and method for producing glass fiber with irregular cross section
JPH07133132A (en) Glass fiber having noncircular section and its production
EP0601803B1 (en) Nozzle tip for spinning glass fiber having deformed cross-section, glass fiber having deformed cross-section, and method of manufacturing same
JPH06234540A (en) Orifice plate and noncircular-sectioned glass fiber
JP7075059B2 (en) Nozzle for manufacturing irregular cross-section glass fiber, irregular cross-section glass fiber manufacturing equipment, its manufacturing method, irregular cross-section glass fiber
JP5505597B2 (en) Modified cross section glass fiber
JPH0157053B2 (en)
JP2001219473A (en) Method for manufacturing fiber-reinforced resin molding
JPH07291649A (en) Nozzle tip for spinning glass fiber, modified cross-section glass fiber and its production
JP2021001111A (en) Glass fiber aggregate
JPS61219732A (en) Production of glass fiber
JP2000254978A (en) Production of frp fine stripe conductor
JPH0465020B2 (en)
JP3368642B2 (en) Single groove spiral slot and method for manufacturing the same
WO2022264606A1 (en) Bushing, glass fiber manufacturing device, and glass fiber manufacturing method
WO2022264607A1 (en) Bushing, glass fiber production device, and glass fiber production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees