JPH07133132A - Glass fiber having noncircular section and its production - Google Patents

Glass fiber having noncircular section and its production

Info

Publication number
JPH07133132A
JPH07133132A JP23862094A JP23862094A JPH07133132A JP H07133132 A JPH07133132 A JP H07133132A JP 23862094 A JP23862094 A JP 23862094A JP 23862094 A JP23862094 A JP 23862094A JP H07133132 A JPH07133132 A JP H07133132A
Authority
JP
Japan
Prior art keywords
curvature
section
radii
glass fiber
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23862094A
Other languages
Japanese (ja)
Inventor
Hideo Taguchi
秀男 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP23862094A priority Critical patent/JPH07133132A/en
Publication of JPH07133132A publication Critical patent/JPH07133132A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/083Nozzles; Bushing nozzle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres

Abstract

PURPOSE:To provide a glass fiber of a noncircular section of which the cross section is enclosed with curves having plural radii of curvature and which has excellent adhesive power to a resin and excellent reinforcing effect by discharging fused glass from an orifice with projecting edges of specific structure. CONSTITUTION:The orifice 15 with the projecting edges provided with the plural projecting edges 1 extending downward from the base of an orifice plate 4 enclosing the outlet of the single orifice 2 having an irregular section is prepd. The fused glass is discharged from the orifice 15 with the projecting edges. As a result, the glass fiber of the noncircular section of which the cross section is enclosed with the curves consisting of the plural radii of curvature having a ratio of >=3 of the radius of curvature of the curve having the max. radius of curvature among the curves having the plural radii of curvature to the radius of curvature of the curve having the min. radius of curvature among the curves having the plural radii of curvature is obtd. The resulted glass fiber has a larger specific surface area than the specific surface area of the glass fiber having a circular section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非円形断面ガラス繊維お
よび非円形断面を有するガラス繊維の製造方法に関す
る。
FIELD OF THE INVENTION The present invention relates to glass fibers having a non-circular cross section and a method for producing glass fibers having a non-circular cross section.

【0002】[0002]

【従来の技術】ブッシングに供給された溶融ガラスはオ
リフィスプレートの複数の各対のオリフィスから紡出さ
れ、次いで互いに接合し且つ冷風吹出装置からの冷風又
は冷却フインで急冷、固化され、断面がまゆの形状をし
たフィラメントとなる。多数のフィラメントは集束剤を
塗布された後、集束ローラーでストランドに集束され、
巻取装置の巻取管上に巻取られる。この途中において、
ストランドが集束剤塗布ローラーやガイド上を走行する
際、各フィラメントが扁平に倒れて重なり合い、従来よ
りも扁平なストランドとなる。以上の方法で、断面がま
ゆの形状をしたガラス繊維を集合した扁平なストランド
が製造されることが特開昭61−219734に開示さ
れている。
2. Description of the Prior Art Molten glass supplied to a bushing is spun out from a plurality of pairs of orifices in an orifice plate, then spliced to each other and rapidly cooled and solidified by cold air or cooling fins from a cold air blowing device to have a brow section. It becomes a filament in the shape of. A large number of filaments are coated with a sizing agent and then bundled into strands by a sizing roller,
It is wound on the winding tube of the winding device. In the middle of this,
When the strands run on the sizing agent application roller or guide, the filaments are flattened and overlapped with each other, resulting in a flatter strand than in the past. It is disclosed in Japanese Patent Application Laid-Open No. 61-219734 that a flat strand in which glass fibers having a cocoon-shaped cross section are assembled is produced by the above method.

【0003】特開平3−220260において非円形断
面ガラス繊維が長円形、まゆ形、楕円形、矩形、スリッ
ト状等の孔形状を有するオリフィスを用いて紡糸される
ことが開示されている。
Japanese Patent Laid-Open No. 3-220260 discloses that glass fibers having a non-circular cross section are spun using an orifice having a hole shape such as an oval shape, an eyebrow shape, an elliptical shape, a rectangular shape, and a slit shape.

【0004】[0004]

【発明が解決しようとする課題】しかし特開昭61−2
19734の方法には問題がある。例えばオリフィスか
ら紡出される溶融ガラスは一般に粘度が低く、表面張力
が大きいため、直ちに断面が円形になる傾向が強い。こ
の為一対のノズル孔から紡出した溶融ガラスを接合し、
断面をまゆの形状としても、その溶融ガラスが固化する
までに、表面張力により断面が長円形、楕円形に変形
し、ついには円形になることがある。この傾向は一対の
ノズル孔の間隔が短い程強く、従って一対のノズル孔の
間隔が接近し過ぎると、フィラメントの断面形状は円形
となってしまう。逆に離し過ぎると、各ノズル孔からの
溶融ガラスが接合せず、2本の円形断面のフィラメント
となってしまう。従って、複数の各対のオリフィスの間
隔、オリフィスの凹部の角度等寸法が厳しく限定される
ために、得られる繊維断面の変形比(最長径/最短径)
は比較的小さく、得られる繊維断面形にも限界がある。
又品質の安定に問題がある。
However, Japanese Unexamined Patent Application Publication No. 61-2
The 19734 method is problematic. For example, molten glass spun from an orifice generally has a low viscosity and a large surface tension, and therefore tends to immediately have a circular cross section. Therefore, join the molten glass spun from a pair of nozzle holes,
Even if the cross section has a cocoon shape, the cross section may be deformed into an oval or an ellipse due to surface tension before the molten glass is solidified, and finally becomes a circle. This tendency is stronger as the distance between the pair of nozzle holes is shorter. Therefore, if the distance between the pair of nozzle holes is too close, the cross-sectional shape of the filament becomes circular. On the other hand, if they are separated too much, the molten glass from each nozzle hole will not be joined and two filaments with a circular cross section will result. Therefore, the deformation ratio (longest diameter / shortest diameter) of the fiber cross-section obtained is strictly limited because the distance between the orifices of each pair and the angle and other dimensions of the recesses of the orifices are strictly limited.
Is relatively small, and the fiber cross-section obtained is limited.
Moreover, there is a problem in quality stability.

【0005】又特開平3−220260の方法は非円形
断面を得ようとすると、オリフィスから流出した溶融ガ
ラスのオリフィスプレート表面への濡れ広がりが起こ
り、その結果、フィラメントの切断等の問題がある。
Further, in the method of Japanese Patent Laid-Open No. 3-220260, when an attempt is made to obtain a non-circular cross section, the molten glass flowing out from the orifice wets and spreads on the surface of the orifice plate, resulting in a problem such as filament breakage.

【0006】ガラスフレーク、ガラス繊維、ガラスフレ
ーク及びガラス繊維との混合物等が、補強材として用い
られた成型品の曲げ強度、曲げ弾性率、アイゾッド衝撃
強度等の機械的物性の向上、樹脂の流れ方向の成型収縮
率と樹脂の流れに直角な方向の成型収縮率をほぼ等しく
し(収縮率の異方性が少ない)、且つ収縮率を低下させ
る等の寸法安定性の向上、熱変形温度の向上、成型品の
表面の凹凸、ざらつき、補強材の浮き等の無い外観の良
さ等を目的として、熱可塑性樹脂等の補強材として広く
用いられている。
Glass flakes, glass fibers, a mixture of glass flakes and glass fibers, etc., used as a reinforcing material, have improved mechanical properties such as bending strength, bending elastic modulus, and Izod impact strength, and resin flow. Dimensional stability such as making the mold shrinkage in the direction and the mold shrinkage in the direction perpendicular to the resin flow almost equal (small shrinkage anisotropy), and reducing the heat shrinkage temperature. It is widely used as a reinforcing material such as a thermoplastic resin for the purpose of improvement, appearance of the molded product without surface irregularities, roughness, and floating of the reinforcing material.

【0007】しかしながら、ガラスフレークを補強材と
して用いた場合、成型品は、収縮率の異方性が少なく、
線膨脹係数の異方性も少ないためにそりがなく、成型品
の表面の凹凸、ざらつき、補強材の浮きが少ないために
外観が良い等の効果があるが、曲げ強度、曲げ弾性率、
アイゾッド衝撃強度等の機械的物性が十分でなく、収縮
率及び線膨脹係数の絶対値についても十分でない等の問
題がある。
However, when glass flakes are used as the reinforcing material, the molded product has a small anisotropy of shrinkage,
Since there is little anisotropy in the linear expansion coefficient, there is no warpage, and there are effects such as unevenness on the surface of the molded product, roughness, and good appearance because there is little lifting of the reinforcing material, but bending strength, bending elastic modulus,
There are problems that mechanical properties such as Izod impact strength are not sufficient, and the absolute values of shrinkage and linear expansion coefficient are not sufficient.

【0008】ガラス繊維を補強材として用いた場合、ガ
ラス繊維の充填量が増すにつれて、曲げ強度、曲げ弾性
率、アイゾッド衝撃強度等の機械的物性、収縮率が向上
する反面、材料の異方性が大きくなる。例えば、寸法安
定性について言えば、線膨脹係数・成型収縮率ともに成
型時の樹脂の流動方向については、小さくできるが、流
動方向に対し直角の方向については、ガラス繊維の充填
量を増しても小さくならないため、実際の製品の寸法安
定性としては不充分であり、ゲート位置等の金型設計及
び製品設計上、大きな制約を受ける。
When glass fiber is used as a reinforcing material, mechanical properties such as bending strength, bending elastic modulus, and Izod impact strength, and shrinkage ratio are improved as the filling amount of glass fiber is increased, but the anisotropy of the material is increased. Grows larger. For example, in terms of dimensional stability, both the linear expansion coefficient and the molding shrinkage can be reduced in the resin flow direction during molding, but in the direction perpendicular to the flow direction even if the glass fiber filling amount is increased. Since it does not become small, it is not sufficient as the dimensional stability of the actual product, and it is greatly restricted by the mold design such as the gate position and the product design.

【0009】材料の異方性が極めて少なく、機械的物性
に極めて優れた補強材、即ち、事務機器、特に複写機、
ファクシミリ用として機械的物性(ボルト等の締め付
け。機械の重量を支える。振動しにくい。)が高く、外
観が良好で、特に線膨脹係数(環境温度による寸法変化
の少ないこと)・成型収縮率(設計寸法と成型品の寸法
との誤差を小さくし、成型品の寸法のバラツキを小さく
する)などの寸法安定性が流動方向・直角方向ともに極
めて優れた樹脂材料が得られる補強材はない。
Reinforcing materials having extremely small anisotropy of materials and excellent mechanical properties, that is, office equipment, especially copying machines,
It has high mechanical properties (tightening bolts, etc., supports the weight of the machine, does not vibrate easily) and has a good appearance, especially for linear expansion coefficient (small dimensional change due to ambient temperature) and molding shrinkage rate (for facsimile). There is no reinforcing material that can obtain a resin material with extremely excellent dimensional stability in both the flow direction and right-angle direction, such as reducing the error between the design dimension and the dimension of the molded product and reducing the variation in the dimension of the molded product.

【0010】[0010]

【課題を解決するための手段】上記問題を解決するため
に、本発明は、溶融ガラスを、単数のオリフィス出口を
囲みオリフィスプレート底面より下方に延びる凸状縁を
設けた凸状縁付オリフィスから吐出させる事を特徴と
し、この方法により得られる非円形断面ガラス繊維は、
ガラス繊維の横断面が、複数の曲率半径を有する曲線で
あって、且つ、複数の曲率半径を有する曲線のうちの最
小の曲率半径を有する曲線の曲率半径に対し、複数の曲
率半径を有する曲線のうちの最大の曲率半径を有する曲
線の曲率半径の比が3以上の複数の曲率半径からなる曲
線により囲まれている事を特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a molten glass from a convex edged orifice provided with a convex edge that surrounds a single orifice outlet and extends below the bottom surface of the orifice plate. Characterized by discharging, non-circular cross-section glass fiber obtained by this method,
A curve having a plurality of radii of curvature in the cross section of the glass fiber, and having a plurality of radii of curvature with respect to a curve having a minimum radius of curvature of the curves having a plurality of radii of curvature. Among them, the curve having the maximum radius of curvature is characterized by being surrounded by a curve having a plurality of radiuses of curvature of 3 or more.

【0011】[0011]

【作用】液状流体、特に溶融ガラスのようにある程度の
粘性を有する流体は、表面平滑なオリフィスプレートの
オリフィスの場合、溶融ガラスはオリフィスからしみ出
して時間と共にオリフィスプレート下面に広がるが、チ
ップオリフィスのように流れを導く壁(チップ)があれ
ば溶融ガラスはチップを伝わって下方に流れるという性
質がある。即ち図3に示されるように単数の長方形のオ
リフィス2出口の周囲に凸状縁1を設けることで単数の
長方形のオリフィスから流れ出た溶融ガラスは凸状縁の
壁に沿って流れ、凸状縁の根元と先端の間で長方形断面
の原形ができる。つまり凸状縁を設けない場合に比べる
と、凸状縁の内壁からの流れがあるため、単数の異形断
面のオリフィスから異形断面の繊維が容易に得られる。
When a liquid fluid, particularly a fluid having a certain viscosity such as molten glass, has an orifice plate having a smooth surface, the molten glass exudes from the orifice and spreads on the lower surface of the orifice plate with time. If there is a wall (chip) that guides the flow, the molten glass has a property of flowing down the chip along the chip. That is, as shown in FIG. 3, by providing the convex edge 1 around the outlet of the single rectangular orifice 2, the molten glass flowing out from the single rectangular orifice flows along the wall of the convex edge, A rectangular cross-section is formed between the root and the tip of the. That is, as compared with the case where the convex edge is not provided, since there is a flow from the inner wall of the convex edge, the fiber having the irregular cross section can be easily obtained from the single orifice having the irregular cross section.

【0012】本発明の方法によれば、横断面が種々の形
状の非円形断面ガラス繊維が得られる。これらの非円形
断面ガラス繊維の内、特に、横断面が非常に細長い本発
明の非円形断面ガラス繊維は、従来の円形断面にくら
べ、比表面積が大きいので、ガラス繊維と樹脂との間の
全接着力が大きく補強効果が向上する。さらに、ガラス
繊維が、マトリックス中で、例えば、ブロックを並べて
積むような相互配置を取り、補強材の充填量の増大が可
能となり、上述の全接着力の増大による補強効果の向上
と相俟って曲げ強度、曲げ弾性率、アイゾッド衝撃強度
等の機械的物性を著しく向上させる。又、扁平な断面形
状を有しているので、異方性に関しては、ガラスフレー
クのような効果を示し、成型品の収縮率の異方性が少な
く、線膨脹係数の異方性も少ないためにそりがなく、成
型品の表面の凹凸、ざらつき、補強材の浮きが少ないた
めに外観が良い。
According to the method of the present invention, non-circular cross-section glass fibers having various cross-sections can be obtained. Among these non-circular cross-section glass fibers, in particular, the non-circular cross-section glass fiber of the present invention having a very long transverse cross section has a large specific surface area as compared with the conventional circular cross-section, so that the total amount of glass fibers and resin The adhesive strength is large and the reinforcing effect is improved. Further, the glass fibers can be arranged in a matrix such that the blocks are arranged side by side, and the filling amount of the reinforcing material can be increased, which is combined with the improvement of the reinforcing effect due to the increase in the total adhesive force. Mechanical properties such as flexural strength, flexural modulus, and Izod impact strength. In addition, since it has a flat cross-sectional shape, it exhibits an effect similar to that of glass flakes in terms of anisotropy, and the anisotropy of the shrinkage of the molded product is small and the anisotropy of the linear expansion coefficient is also small. There is no warp and the appearance of the molded product is good because the surface of the molded product has no unevenness, roughness, and the reinforcement does not float.

【0013】[0013]

【実施例】図1及び図5に於いて、ブッシング3に供給
された溶融ガラス9はオリフィスプレート4の単数の異
形断面のオリフィス2から紡出され、次いで凸状縁1の
根元と先端の間で非円形断面の原形ができ、且つ冷風吹
出装置8からの冷風で急冷、固化され、断面が非円形の
形状をしたフィラメント10となる。多数のフィラメン
トは集束剤塗布ローラー5で集束剤を塗布された後、集
束ローラー6でストランド11に集束され、巻取装置7
の巻取管12上に巻取られる。以上の方法で、断面が非
円形の形状、特に断面がリボン状の形状をし、ガラス繊
維の横断面が、複数の曲率半径を有する曲線であって、
且つ、複数の曲率半径を有する曲線のうちの最小の曲率
半径を有する曲線の曲率半径R1に対し、複数の曲率半
径を有する曲線のうちの最大の曲率半径R2を有する曲
線の曲率半径の比R2/R1が3以上の曲線により囲ま
れているガラス繊維を集合したストランドが製造され
る。又凸状縁1のために非円形断面の原形ができるため
オリフィス2から出る溶融ガラス9からは安定した品質
のストランドが得られる。
1 and 5, a molten glass 9 supplied to a bushing 3 is spun from an orifice 2 having a single cross section of an orifice plate 4 and then between a root and a tip of a convex edge 1. Then, a non-circular cross-section is formed into an original shape, and the filament 10 is rapidly cooled and solidified by the cold air from the cold air blowing device 8 to have a non-circular cross-section. A large number of filaments are coated with a sizing agent by a sizing agent application roller 5, and then are bundled on a strand 11 by a sizing agent roller 6, and a winding device 7
It is wound on the take-up tube 12 of. In the above method, the cross section has a non-circular shape, particularly the cross section has a ribbon shape, and the cross section of the glass fiber is a curve having a plurality of radii of curvature,
Further, the ratio R2 of the radii of curvature of the curve having the maximum radius R2 of the curves having the plurality of radii of curvature to the radius of curvature R1 of the curve having the smallest radius of curvature of the plurality of the radii of curvature. A strand is produced which is an assembly of glass fibers in which / R1 is surrounded by a curve of 3 or more. Further, since the convex edge 1 allows the original shape of the non-circular cross section to be obtained, the molten glass 9 exiting from the orifice 2 can obtain a strand of stable quality.

【0014】図1のA、B、C、及びDは、本発明の非
円形断面を有するガラス繊維の製造に用いる、単数の異
形断面のオリフィス2出口の1部を囲みオリフィスプレ
ート4底面より下方に延びる複数の凸状縁1を設けたオ
リフィスプレート4底面の一部を示す。
1A, 1B, 1C, 1D, 1D, 1C, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1C, 1D, 1D, 1C, 1D, 1D, 1C, 1D, 1C, 1D, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1C, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D, 1D1 2 shows a part of the bottom surface of the orifice plate 4 provided with a plurality of convex edges 1 extending in the direction.

【0015】図1のAは、本発明の非円形断面を有する
ガラス繊維の製造に用いる、長方形のオリフィス2出口
の1部を囲みオリフィスプレート4底面(図5のA)よ
り下方に延び長方形の短辺のオリフィス2出口を挟む一
対の四角形の板の凸状縁1を設けたオリフィスプレート
4底面の一部を示し、この一対の四角形の板の凸状縁1
で挟まれた長方形のオリフィス2より図4−Cに示され
るように一本の非円形の形状をした図5のAのフィラメ
ント10が得られる。従ってオリフィスプレート4底面
にはこの凸状縁1付オリフィス15が多数配置されてい
る。図1のAの凸状縁1は、図3に示されるごとく正方
形であるが、凸状縁1の根元と先端の間で非円形断面の
原形ができ、安定した品質のフィラメント10が得られ
るものであれば、いかなる形をも取りうることができ
る。凸状縁1の位置は長方形の短辺のオリフィス2出口
を挟むように、長方形の短辺と平行に一対に設けられて
いる。この位置においても、凸状縁1の根元と先端の間
で非円形断面の原形ができ、安定した品質のフィラメン
ト10が得られるものであれば、いかなる位置をも取り
うることができる。さらに、オリフィス2出口の全部を
囲む凸状縁1を設けることもできる。
FIG. 1A illustrates a rectangular orifice 2 used in the manufacture of glass fibers having a non-circular cross section according to the present invention, surrounding a portion of the outlet of a rectangular orifice 2 and extending below the bottom surface of the orifice plate 4 (A of FIG. 5). A part of the bottom surface of the orifice plate 4 provided with the convex edges 1 of a pair of square plates sandwiching the orifice 2 on the short side is shown, and the convex edges 1 of the pair of square plates are shown.
From the rectangular orifice 2 sandwiched between the two, the filament 10 of FIG. 5A having a single non-circular shape is obtained as shown in FIG. 4-C. Therefore, a large number of the orifices 15 with the convex edge 1 are arranged on the bottom surface of the orifice plate 4. The convex edge 1 of FIG. 1A is square as shown in FIG. 3, but a non-circular cross-section can be formed between the root and the tip of the convex edge 1 to obtain a filament 10 of stable quality. Any shape can be used. The convex edge 1 is provided in a pair in parallel with the short side of the rectangle so as to sandwich the orifice 2 outlet of the short side of the rectangle. Also in this position, any position can be taken as long as a non-circular cross-section original shape can be formed between the root and the tip of the convex edge 1 and a filament 10 of stable quality can be obtained. Furthermore, it is also possible to provide a convex edge 1 which surrounds the entire orifice 2 outlet.

【0016】凸状縁1の先端は、図3に示されるように
平坦であることが好ましく、凸状縁1の溶融ガラスに接
触する面は矩形であることが特に好ましい。凸状縁1の
溶融ガラスに接触する面の高さは、0.01−50.0
0mmが好ましく、特に好ましくは、,0.1ー10.
0mmで,更に好ましくは0.5ー5.0mmである。
高さが0.01mm以下の場合、凸状縁1の効果が小さ
く、50.00mm以上の場合は,糸切れが発生する事
がある。凸状縁1の溶融ガラスに接触する面の先端の幅
は、0.005−40.000mmが好ましく、特に好
ましくは、0.1ー10.0mmで,更に好ましくは
0.5ー3.0mmである。先端の幅が、0.005m
m以下の場合、凸状縁1の効果が小さく、40.00m
m以上の場合は糸切れが発生する事がある。
The tip of the convex edge 1 is preferably flat as shown in FIG. 3, and the surface of the convex edge 1 that contacts the molten glass is particularly preferably rectangular. The height of the surface of the convex edge 1 in contact with the molten glass is 0.01-50.0.
0 mm is preferable, and 0.1-10.
It is 0 mm, and more preferably 0.5-5.0 mm.
When the height is 0.01 mm or less, the effect of the convex edge 1 is small, and when it is 50.00 mm or more, yarn breakage may occur. The width of the tip of the surface of the convex edge 1 that contacts the molten glass is preferably 0.005-40.000 mm, particularly preferably 0.1-10.0 mm, and further preferably 0.5-3.0 mm. Is. The width of the tip is 0.005m
When it is less than m, the effect of the convex edge 1 is small and 40.00 m.
If it is more than m, yarn breakage may occur.

【0017】図1のBは、本発明の非円形断面を有する
ガラス繊維の製造に用いる、ほぼ正四角形のオリフィス
2出口の1部を囲みオリフィスプレート4底面(図5の
A)より下方に延びほぼ正四角形のオリフィス2出口の
四つの角にそれぞれ凸状縁1を凸設したオリフィスプレ
ート4底面の一部を示し、この凸状縁1付ほぼ正四角形
のオリフィス15より、図4−Eに示されるようにほぼ
正方形の一本の非円形の形状をした図5のAのフィラメ
ント10が得られる。
FIG. 1B surrounds a portion of the outlet of a generally square orifice 2 used in the manufacture of glass fibers having a non-circular cross section of the present invention and extends below the bottom surface of the orifice plate 4 (A in FIG. 5). FIG. 4E shows a part of the bottom surface of the orifice plate 4 in which convex edges 1 are provided at the four corners of the exit of the orifice 2 of approximately square shape. The filament 10 of FIG. 5A is obtained which has a single non-circular shape of approximately square shape as shown.

【0018】図1には、本発明の非円形断面を有するガ
ラス繊維の製造に用いる、長方形、ほぼ正四角形、ほぼ
正三角形、ほぼY字形のオリフィスの異形断面が示され
ているが、その他に、例えば、扁平度の大きい楕円形、
五角形、X字形、C字形、E字形、L字形、M字形、S
字形、T字形、V字形、Z字形等を例示でき、任意の異
形断面のオリフィスに適用可能である。
FIG. 1 shows a modified cross-section of a rectangular, approximately square, approximately equilateral triangle, or approximately Y-shaped orifice used in the manufacture of the glass fiber having a non-circular cross section of the present invention. , For example, an oval with a large flatness,
Pentagon, X-shape, C-shape, E-shape, L-shape, M-shape, S
A letter shape, a T-shape, a V-shape, a Z-shape, etc. can be exemplified, and it can be applied to an orifice having an arbitrary modified cross section.

【0019】本発明によると、種々の断面形の非円形断
面ガラス繊維の製造が可能である。これらの非円形断面
ガラス繊維の内、特に、横断面が非常に細長い本発明の
非円形断面ガラス繊維の補強効果について、成型品の曲
げ強度、曲げ弾性率、アイゾッド衝撃強度等の機械的物
性を著しく向上させると同時に、成型品の収縮率、線膨
脹係数等の異方性が少ないためにそりがなく、表面の凹
凸、ざらつき、補強材の浮きが少ないために外観が良い
ためには、ガラス繊維の横断面が、複数の曲率半径を有
する曲線であって、且つ、複数の曲率半径を有する曲線
のうちの最小の曲率半径を有する曲線の曲率半径R1に
対し、複数の曲率半径を有する曲線のうちの最大の曲率
半径R2を有する曲線の曲率半径の比R2/R1が3以
上の曲線により囲まれている必要がある。成型品中のガ
ラス繊維が、相互にその横断の曲率半径が最大の曲線で
接触し、例えば、ブロックを並べて積むような相互配置
を取り、補強材の充填量の増大が可能となるからであ
る。好ましくは、ガラス繊維の横断面が、複数の曲率半
径を有する曲線であって、且つ、曲率半径の比が5以上
の曲線により囲まれていること又は複数の曲率半径を有
する曲線であって、且つ、複数の曲率半径を有する曲線
のうちの最大の曲率半径を有する曲線の長さの合計が、
他の曲率半径を有する曲線の長さの合計の3倍以上の曲
線により囲まれていることである。さらに好ましくは、
ガラス繊維の横断面が、複数の曲率半径を有する曲線で
あって、且つ、曲率半径の比が10以上の曲線により囲
まれていることである。
According to the invention, it is possible to produce non-circular cross-section glass fibers of various cross-sections. Among these non-circular cross-section glass fibers, in particular, regarding the reinforcing effect of the non-circular cross-section glass fiber of the present invention having a very long cross section, the bending strength of the molded product, the bending elastic modulus, the mechanical properties such as Izod impact strength At the same time, there is little warpage due to the small anisotropy of the molded product, such as shrinkage and linear expansion coefficient. A cross-section of a fiber is a curve having a plurality of radii of curvature, and a curve having a plurality of radii of curvature with respect to a radius of curvature R1 of the curve having the smallest radius of curvature of the curves having a plurality of radii of curvature. The radius of curvature R2 / R1 of the curve having the largest radius of curvature R2 must be surrounded by three or more curves. This is because the glass fibers in the molded product come into contact with each other in a curve having a maximum radius of curvature in the transverse direction and, for example, the blocks are arranged side by side so that the blocks can be arranged side by side and the filling amount of the reinforcing material can be increased. . Preferably, the cross section of the glass fiber is a curve having a plurality of radii of curvature, and is surrounded by a curve having a radius of curvature ratio of 5 or more, or a curve having a plurality of radii of curvature, And the sum of the lengths of the curves with the largest radii of curvature of the plurality of radii of curvature is
That is, it is surrounded by a curve that is three times or more of the total length of curves having other radii of curvature. More preferably,
That is, the cross section of the glass fiber is a curve having a plurality of radii of curvature and is surrounded by a curve having a radius of curvature ratio of 10 or more.

【0020】本発明の種々の断面形の非円形断面ガラス
繊維の内、図4のCに示されるようなリボン状の断面形
の非円形断面ガラス繊維の補強効果について、成型品の
機械的物性を著しく向上させると同時に、そりがなく、
外観が良いためには、好ましくは、ガラス繊維の横断面
における最長径の最短径に対する比が2.3以上である
ことである。さらに好ましくは、ガラス繊維の横断面に
おける最長径の最短径に対する比が5−12であること
である。
Among the non-circular cross-section glass fibers of various cross-sections of the present invention, the mechanical properties of the molded product with respect to the reinforcing effect of the non-circular cross-section glass fiber of ribbon-like cross-section as shown in FIG. 4C. And at the same time there is no warpage,
For good appearance, the ratio of the longest diameter to the shortest diameter in the cross section of the glass fiber is preferably 2.3 or more. More preferably, the ratio of the longest diameter to the shortest diameter in the cross section of the glass fiber is 5-12.

【0021】本発明の非円形断面ガラス繊維の太さにつ
いては任意であるが、横断面における最短径が0.5−
25ミクロン、横断面における最長径が0.6−300
ミクロンであることが好ましい。細すぎる場合、ガラス
繊維の紡糸が困難な場合があり、太すぎる場合、樹脂と
の接触面積の減少等により補強材の補強効果が減少する
場合がある。
The thickness of the non-circular cross-section glass fiber of the present invention is arbitrary, but the shortest diameter in the cross section is 0.5-.
25 microns, longest diameter in cross section 0.6-300
It is preferably micron. If it is too thin, it may be difficult to spin the glass fiber, and if it is too thick, the reinforcing effect of the reinforcing material may be reduced due to a decrease in the contact area with the resin.

【0022】ガラス繊維の組成は、溶融ガラスよりガラ
ス繊維化が可能な組成であればよく、好ましい組成とし
て、Eガラス組成、Cガラス組成、Sガラス組成、耐ア
ルカリガラス組成等をあげることができる。
The composition of the glass fiber may be any composition as long as it can be made into glass fiber from molten glass, and preferable compositions include E glass composition, C glass composition, S glass composition and alkali resistant glass composition. .

【0023】本発明の非円形断面ガラス繊維は、例え
ば、γーメタクリルオキシプロピルトリメトキシシラ
ン、γーグリシドキシプロピルトリメトキシシラン、γ
ーアミノプロピルトリエトキシシラン等のシランカップ
リング剤等で表面処理されていることが望ましく、ガラ
ス繊維重量の0.01重量%以上とすることが好まし
い。さらに必要に応じて、脂肪酸アミド化合物、シリコ
ーンオイル等の潤滑剤、第4級アンモニウンム塩等の帯
電防止剤、エポキシ樹脂、ウレタン樹脂等の被膜形成能
を有する樹脂、被膜形成能を有する樹脂と熱安定剤、難
燃剤等を併用したもの等によって表面処理されたものを
用いることもできる。
The non-circular cross-section glass fiber of the present invention is, for example, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ
It is desirable that the surface treatment is performed with a silane coupling agent such as aminopropyltriethoxysilane, and it is preferably 0.01% by weight or more of the weight of the glass fiber. Further, if necessary, a fatty acid amide compound, a lubricant such as silicone oil, an antistatic agent such as a quaternary ammonium salt, a resin having a film forming ability such as an epoxy resin or a urethane resin, a resin having a film forming ability and a heat treatment. It is also possible to use a material surface-treated with a material such as a stabilizer and a flame retardant.

【0024】本発明の非円形断面ガラス繊維は、熱可塑
性樹脂の補強材として好適である。特に、ナイロン、飽
和ポリエステル、ポリカーボネート等の補強材として好
適である。本発明のガラス繊維の上述の樹脂への好まし
い充填量は、5−70重量%である。
The non-circular cross-section glass fiber of the present invention is suitable as a reinforcing material for thermoplastic resins. In particular, it is suitable as a reinforcing material for nylon, saturated polyester, polycarbonate and the like. The preferable loading amount of the glass fiber of the present invention in the above-mentioned resin is 5-70% by weight.

【0025】[実験例1][Experimental Example 1]

【0015】で説明した図1のAのタイプで、オリフィ
ス2の横断面の長辺が3.0mm、短辺が1.2mm、
短辺と平行に高さ3.0mm、幅1.2mm、厚さ0.
6mmの凸状縁1がオリフィス2出口を挟むように、一
対に凸設された凸状縁1付オリフィス15を有し、この
凸状縁1付オリフィス15が600個配置されたオリフ
ィスプレート4を有するガラス繊維紡糸用ブッシング3
を用いて、Eガラス組成で、1260℃、紡糸速度30
00m/minで紡糸し、γーアミノプロピルトリエト
キシシランを主成分とする集束剤を0.35重量%付着
させて表面処理し、図4のAに概略示されるガラス繊維
の横断面で、曲率半径の比R2/R1が約15の非円形
断面を有するガラス繊維を得た。この条件で、約3時間
の連続紡糸を行なったが、切断は一度も見られなかっ
た。
In the type A shown in FIG. 1 described in section 1, the long side of the cross section of the orifice 2 is 3.0 mm, the short side is 1.2 mm,
The height is 3.0 mm, the width is 1.2 mm, and the thickness is 0.
A 6 mm convex edge 1 has a pair of convex edge 1-orifice 15 provided so as to sandwich the orifice 2 outlet, and an orifice plate 4 in which 600 convex edge 1-orifices 15 are arranged is provided. Glass fiber spinning bushing 3
With E glass composition, 1260 ° C., spinning speed 30
The fiber was spun at 00 m / min, 0.35% by weight of a sizing agent containing γ-aminopropyltriethoxysilane as a main component was adhered and surface-treated, and the cross-section of the glass fiber schematically shown in FIG. A glass fiber having a non-circular cross section with a radius ratio R2 / R1 of about 15 was obtained. Under these conditions, continuous spinning was carried out for about 3 hours, but no cutting was observed.

【0026】[実験例2][Experimental Example 2]

【0017】で説明した図1のBのタイプで、オリフィ
ス2の横断面の各辺が2.4mmの正四角形のオリフィ
ス2出口の1部を囲みオリフィスプレート4底面(図5
のA)より下方に延び正四角形のオリフィス2出口の四
つの角に高さ2.0mm、幅1.2mm、厚さ0.6m
mの凸状縁1がオリフィス2出口を挟むように、それぞ
れ凸状縁1を凸設した凸状縁1付オリフィス15を有
し、この凸状縁1付オリフィス15が600個配置され
たオリフィスプレート4を有するガラス繊維紡糸用ブッ
シング3を用いて、Eガラス組成で、紡糸温度1200
℃、紡糸速度1000m/minで紡糸し、γーメタク
リルオキシプロピルトリメトキシシランを主成分とする
集束剤を0.41重量%付着させて表面処理し、図4の
Eに概略示されるガラス繊維の横断面で、曲率半径の比
R2/R1が約8の非円形断面を有するガラス繊維を得
た。この条件で、約3時間の連続紡糸を行なったが、切
断は一度も見られなかった。
In the type B shown in FIG. 1 described in 1., a part of the outlet of the orifice 2 of the square shape of each side of the orifice 2 is 2.4 mm, and each side of the orifice 2 surrounds a part of the outlet of the orifice plate 4 (see FIG. 5).
2.0 mm in height, width 1.2 mm, thickness 0.6 m at the four corners of the regular orifice 2 outlet extending downward from A)
An orifice 15 having convex edges 1 provided with convex edges 1 so that the convex edges 1 of m sandwich the outlet of the orifice 2, and 600 orifices 15 having the convex edges 1 are arranged. Using a glass fiber spinning bushing 3 having a plate 4, an E glass composition and a spinning temperature of 1200.
At a spinning speed of 1000 m / min, a sizing agent containing γ-methacryloxypropyltrimethoxysilane as a main component was attached at 0.41% by weight for surface treatment, and a glass fiber A glass fiber having a non-circular cross section with a radius of curvature ratio R2 / R1 of about 8 was obtained. Under these conditions, continuous spinning was carried out for about 3 hours, but no cutting was observed.

【0027】[実験例3]図1のCのタイプで、オリフ
ィス2の横断面の各辺が3.0mmの正三角形のオリフ
ィス2出口の1部を囲みオリフィスプレート4底面(図
5のA)より下方に延び正三角形のオリフィス2出口の
各頂点に高さ2.0mm、幅1.5mm、厚さ0.5m
mの凸状縁1がオリフィス2出口を挟むように、それぞ
れ凸状縁1を凸設した凸状縁1付オリフィス15を有
し、この凸状縁1付オリフィス15が600個配置され
たオリフィスプレート4を有するガラス繊維紡糸用ブッ
シング3を用いて、Eガラス組成で、紡糸温度1230
℃、紡糸速度1000m/minで紡糸し、γーグリシ
ドキシプロピルトリメトキシシラン4重量部及びシリコ
ーンオイル1重量部の混合物を主成分とする集束剤を
0.28重量%付着させて表面処理し、図4のDに概略
示されるガラス繊維の横断面で、曲率半径の比R2/R
1が約4の非円形断面を有するガラス繊維を得た。この
条件で、約3時間の連続紡糸を行なったが、切断は一度
も見られなかった。
[Experimental Example 3] In the type C shown in FIG. 1, a part of the outlet of an orifice 2 of a regular triangle having a cross section of the orifice 2 of 3.0 mm on each side is surrounded by a part of the orifice plate 4 bottom surface (A in FIG. 5). 2.0 mm in height, 1.5 mm in width, and 0.5 m in thickness at each vertex of the exit of the equilateral triangular orifice 2
An orifice 15 having convex edges 1 provided with convex edges 1 so that the convex edges 1 of m sandwich the outlet of the orifice 2, and 600 orifices 15 having the convex edges 1 are arranged. Using a glass fiber spinning bushing 3 having a plate 4, an E glass composition and a spinning temperature of 1230.
Spinning was carried out at a spinning speed of 1000 m / min at 0 ° C., and 0.28% by weight of a sizing agent containing a mixture of 4 parts by weight of γ-glycidoxypropyltrimethoxysilane and 1 part by weight of silicone oil as a main component was applied for surface treatment. , The ratio of the radii of curvature R2 / R in the cross section of the glass fiber schematically shown in FIG.
A glass fiber was obtained with a non-circular cross section of 1 of about 4. Under these conditions, continuous spinning was carried out for about 3 hours, but no cutting was observed.

【0028】[実験例4][Experimental Example 4]

【0015】で説明した図1のAのタイプで、オリフィ
ス2の横断面の長辺が3.0mm、短辺が1.2mm、
短辺と平行に高さ3.0mm、幅1.2mm、厚さ0.
6mmの凸状縁1がオリフィス2出口を挟むように、一
対に凸設された凸状縁1付オリフィス15を有し、この
凸状縁1付オリフィス15が600個配置されたオリフ
ィスプレート4を有するガラス繊維紡糸用ブッシング3
を用いて、Eガラス組成で、紡糸温度1220℃、紡糸
速度1000m/minで紡糸し、γーアミノプロピル
トリエトキシシランを主成分とする集束剤を0.35重
量%付着させて表面処理し、図4のCに概略示されるガ
ラス繊維の横断面で、曲率半径の比R2/R1が約19
の非円形断面を有するガラス繊維を得た。この条件で、
約3時間の連続紡糸を行なったが、切断は一度も見られ
なかった。
In the type A shown in FIG. 1 described in section 1, the long side of the cross section of the orifice 2 is 3.0 mm, the short side is 1.2 mm,
The height is 3.0 mm, the width is 1.2 mm, and the thickness is 0.
A 6 mm convex edge 1 has a pair of convex edge 1-orifice 15 provided so as to sandwich the orifice 2 outlet, and an orifice plate 4 in which 600 convex edge 1-orifices 15 are arranged is provided. Glass fiber spinning bushing 3
Using E, a spinning temperature of 1220 ° C. and a spinning speed of 1000 m / min were used for spinning, and 0.35% by weight of a sizing agent having γ-aminopropyltriethoxysilane as a main component was adhered to the surface treatment. In the cross section of the glass fiber schematically shown in FIG. 4C, the radius of curvature ratio R2 / R1 is about 19
A glass fiber having a non-circular cross section of was obtained. Under this condition,
After continuous spinning for about 3 hours, no cutting was observed.

【0029】[比較例1] [実験例1]に用いたオリフィスプレート4の凸状縁1
を取除いたことを除いては[実験例1]と同様のオリフ
ィスプレート4を有するガラス繊維紡糸用ブッシング3
を用いて、[実験例1]と同様の条件で紡糸した結果、
2つの長辺と2つの短辺からなるオリフィス孔の断面の
1つの短辺側に溶融ガラスの流れが偏り、切断が頻繁に
起こり、紡糸は困難を極めた。得られたガラス繊維の横
断面は円形で、[実験例1]の非円形断面を有するガラ
ス繊維は得られなかった。
Comparative Example 1 Convex edge 1 of orifice plate 4 used in [Experimental Example 1]
Glass fiber spinning bushing 3 having an orifice plate 4 similar to that in [Experimental Example 1] except that
As a result of spinning under the same conditions as in [Experimental Example 1],
The flow of the molten glass was biased to one short side of the cross section of the orifice hole having two long sides and two short sides, cutting frequently occurred, and spinning was extremely difficult. The cross section of the obtained glass fiber was circular, and the glass fiber having the non-circular cross section of [Experimental Example 1] could not be obtained.

【0030】[0030]

【発明の効果】実験例1及び比較例1にて得られたガラ
ス繊維をそれぞれ70重量%を飽和ポリエステル(ポリ
プラスチックス(株)製、品名ジュラネックス200
0)に添加し、エクストルーダーを用いてシリンダー温
度270℃で溶融混合した。得られた飽和ポリエステル
組成物をチップ化し、射出成形機を用いて成形温度27
0℃、成形サイクルを一次圧(油圧:800kg/cm
2 )、及び冷却時間20秒とし、型温度100℃で厚さ
1/4インチ、幅1/2インチ、長さ5インチの板状体
(A1)及び厚さ1/24インチ、3インチ角の板状体
(A2)とを成形した。得られた成形品A1は、AST
M−D−256に準拠してアイゾッド衝撃強度(ノッチ
付き)を測定し、ASTM−D−790に準拠して曲げ
強度及び曲げ弾性率を測定した。A2を用い、A2表面
に樹脂の流動方向(縦方向)及び直角方向(横方向)に
付けられたマーク間の距離を三次元寸法測定装置を用い
て測定し、金型の実際の寸法との比率から収縮率を算出
した。結果を表1に示す。本発明の単数のオリフィス2
出口を囲み該オリフィスプレート4底面より下方に延び
る凸状縁1を設けたオリフィスプレート4を有するガラ
ス繊維紡糸用ブッシング3を用い、紡糸温度、紡糸速度
等を調節して溶融ガラスを引出し、固化することによ
り、ガラス繊維の横断面が、複数の曲率半径を有する曲
線であって、且つ、複数の曲率半径を有する曲線のうち
の最小の曲率半径を有する曲線の曲率半径R1に対し、
複数の曲率半径を有する曲線のうちの最大の曲率半径R
2を有する曲線の曲率半径の比R2/R1が3以上の曲
線により囲まれているいる非円形断面有するガラス繊維
を効率よく製造することが出来る。本発明の非円形断面
ガラス繊維は、従来の円形断面にくらべ、比表面積が大
きいので、ガラス繊維と樹脂との間の全接着力が大きく
補強効果が向上する。さらに、ガラス繊維が、マトリッ
クス中で、例えば、ブロックを並べて積むような相互配
置を取り、補強材の充填量の増大が可能となり、上述の
全接着力の増大による補強効果の向上と相俟って曲げ強
度、曲げ弾性率、アイゾッド衝撃強度等の機械的物性を
著しく向上させる。又、特に、扁平な断面形状を有して
いるものについて、異方性に関しては、ガラスフレーク
のような効果を示し、成型品の収縮率の異方性が少な
く、線膨脹係数の異方性も少ないためにそりがなく、成
型品の表面の凹凸、ざらつき、補強材の浮きが少ないた
めに外観が良い。これらの効果は表1に示される実験例
1及び比較例1にて得られたガラス繊維の補強効果より
明白である。
[Effect of the Invention] 70% by weight of each of the glass fibers obtained in Experimental Example 1 and Comparative Example 1 is saturated polyester (manufactured by Polyplastics Co., Ltd., product name: DURANEX 200).
0) and melt-mixed using an extruder at a cylinder temperature of 270 ° C. The obtained saturated polyester composition is made into chips and molded at an injection temperature of 27 using an injection molding machine.
Primary pressure at 0 ° C, molding cycle (hydraulic pressure: 800 kg / cm
2) and a cooling time of 20 seconds, a plate-like body (A1) having a thickness of 1/4 inch, a width of 1/2 inch, and a length of 5 inch at a mold temperature of 100 ° C. and a thickness of 1/24 inch, 3 inch square And the plate-shaped body (A2) of. The obtained molded product A1 is AST
The Izod impact strength (with a notch) was measured according to MD-256, and the bending strength and the flexural modulus were measured according to ASTM-D-790. A2 is used to measure the distance between marks on the A2 surface in the resin flow direction (longitudinal direction) and the right angle direction (horizontal direction) using a three-dimensional dimension measuring device, and the actual dimension of the mold is measured. The shrinkage rate was calculated from the ratio. The results are shown in Table 1. Single Orifice 2 of the Invention
Using a glass fiber spinning bushing 3 having an orifice plate 4 surrounding the outlet and having a convex edge 1 extending downward from the bottom surface of the orifice plate 4, the spinning temperature, spinning speed, etc. are adjusted to draw out and solidify the molten glass. Thereby, the cross-section of the glass fiber is a curve having a plurality of radii of curvature, and the curvature radius R1 of the curve having the smallest radius of curvature of the curves having a plurality of radii of curvature,
Maximum radius of curvature R of curves with multiple radii of curvature
It is possible to efficiently manufacture a glass fiber having a non-circular cross section in which the ratio R2 / R1 of the curvature radii of a curve having 2 is surrounded by a curve having 3 or more. Since the non-circular cross-section glass fiber of the present invention has a larger specific surface area than the conventional circular cross-section, the total adhesive force between the glass fiber and the resin is large and the reinforcing effect is improved. Further, the glass fibers can be arranged in a matrix such that the blocks are arranged side by side, and the filling amount of the reinforcing material can be increased, which is combined with the improvement of the reinforcing effect due to the increase in the total adhesive force. Mechanical properties such as flexural strength, flexural modulus, and Izod impact strength. In addition, especially for those having a flat cross-sectional shape, regarding the anisotropy, it exhibits an effect similar to that of glass flakes, the anisotropy of the shrinkage ratio of the molded product is small, and the anisotropy of the linear expansion coefficient is small. There is no warp because there is little, and the appearance is good because there is little unevenness on the surface of the molded product, roughness, and floating of the reinforcing material. These effects are obvious from the reinforcing effect of the glass fibers obtained in Experimental Example 1 and Comparative Example 1 shown in Table 1.

【図面の簡単な説明】[Brief description of drawings]

【図1】A、B、C及びDは本発明の実施例の非円形断
面を有するガラス繊維の製造に用いる、オリフィスプレ
ートの底面の一部を示す図である。
1A, 1B, 1C and 1D are views showing a part of a bottom surface of an orifice plate used for manufacturing glass fibers having a non-circular cross section according to an embodiment of the present invention.

【図2】図1のA、B、C及びDのX−Yの断面図であ
る。
FIG. 2 is a cross-sectional view taken along the line XY in FIGS. 1A, 1B, C and D.

【図3】図1のAの斜視図である。FIG. 3 is a perspective view of A in FIG.

【図4】A、B、C、D及びEは本発明の非円形断面を
有するガラス繊維の概略図である。
4A, B, C, D and E are schematic views of glass fibers having a non-circular cross section according to the invention.

【図5】Aは本発明の非円形断面を有するガラス繊維の
製造に用いる、装置の概略側面図の一例で、Bはその要
部の正面図である。
FIG. 5A is an example of a schematic side view of an apparatus used for producing glass fibers having a non-circular cross section according to the present invention, and B is a front view of a main part thereof.

【符号の説明】[Explanation of symbols]

1 凸状縁 2 オリフィス 3 ブッシング 4 オリフィスプレート 5 集束剤塗布ローラー 6 集束ローラー 7 巻取装置 8 冷風吹出装置 9 溶融ガラス 10 フィラメント 11 ストランド 12 巻取管 13 冷風吹出パイプ 15 凸状縁付オリフィス 16 最大の曲率半径を有する曲線 17 最小の曲率半径を有する曲線 1 Convex Edge 2 Orifice 3 Bushing 4 Orifice Plate 5 Converging Agent Applying Roller 6 Focusing Roller 7 Winding Device 8 Cold Air Blowing Device 9 Molten Glass 10 Filament 11 Strand 12 Winding Pipe 13 Cold Air Blowing Pipe 15 Convex Edge Orifice 16 Maximum Curve with radius of curvature 17 Curve with minimum radius of curvature

【表1】 [Table 1]

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維の横断面が、複数の曲率半径
を有する曲線であって、且つ、該複数の曲率半径を有す
る曲線のうちの最小の曲率半径を有する曲線の曲率半径
に対し、該複数の曲率半径を有する曲線のうちの最大の
曲率半径を有する曲線の曲率半径の比が3以上の該複数
の曲率半径からなる曲線により囲まれている事を特徴と
する非円形断面ガラス繊維。
1. The cross section of the glass fiber is a curve having a plurality of radii of curvature, and the curvature radius of the curve having the smallest radius of curvature of the plurality of radii of curvature is A glass fiber having a non-circular cross section, characterized in that a curve having a maximum radius of curvature among curves having a plurality of radii of curvature is surrounded by a curve having a plurality of radii of curvature of 3 or more.
【請求項2】 ガラス繊維の横断面が、前記複数の曲率
半径を有する曲線であって、且つ、前記曲率半径の比が
5以上の前記複数の曲率半径からなる曲線により囲まれ
ている請求項1の非円形断面ガラス繊維。
2. The cross section of the glass fiber is surrounded by a curve having the plurality of radii of curvature, and the curve having the plurality of radii of curvature in which the ratio of the radii of curvature is 5 or more. 1. Non-circular cross-section glass fiber.
【請求項3】 ガラス繊維の横断面が、前記複数の曲率
半径を有する曲線であって、且つ、前記曲率半径の比が
10以上の前記複数の曲率半径からなる曲線により囲ま
れている請求項2の非円形断面ガラス繊維。
3. The cross section of the glass fiber is surrounded by a curve having the plurality of radii of curvature, and the curve having the plurality of radii of curvature with the ratio of the radii of curvature being 10 or more. 2 non-circular cross-section glass fiber.
【請求項4】 ガラス繊維の横断面が、前記複数の曲率
半径を有する曲線であって、且つ、前記複数の曲率半径
を有する曲線のうちの最大の曲率半径を有する曲線の長
さの合計が、他の曲率半径を有する曲線の長さの合計の
3倍以上の前記複数の曲率半径からなる曲線により囲ま
れている請求項1の非円形断面ガラス繊維。
4. The cross section of the glass fiber is a curve having the plurality of radii of curvature, and the total length of the curves having the largest radius of curvature among the curves having the plurality of radii of curvature is The non-circular cross-section glass fiber according to claim 1, which is surrounded by a curve having a plurality of radii of curvature that is three times or more the total length of curves having other radii of curvature.
【請求項5】 溶融ガラスを、単数のオリフィス出口を
囲みオリフィスプレート底面より下方に延びる凸状縁を
設けた凸状縁付オリフィスから吐出させる事を特徴とす
る断面が非円形のガラス繊維の製造方法。
5. A glass fiber having a non-circular cross section, characterized in that molten glass is discharged from an orifice with a convex edge provided with a convex edge that surrounds a single orifice outlet and extends downward from the bottom surface of the orifice plate. Method.
【請求項6】 前記凸状縁は、前記凸状縁の溶融ガラス
に接する面の高さが0.01ー50.00mmである請求
項5の断面が非円形のガラス繊維の製造方法。
6. The method for producing a glass fiber having a non-circular cross section according to claim 5, wherein the convex edge has a height of a surface of the convex edge in contact with the molten glass of 0.01 to 50.00 mm.
【請求項7】 前記凸状縁は、前記凸状縁の溶融ガラス
に接する面の先端の幅が0.005ー40.000mmで
ある請求項5の断面が非円形のガラス繊維の製造方法。
7. The method for producing a glass fiber having a non-circular cross section according to claim 5, wherein a width of a tip of a surface of the convex edge which is in contact with the molten glass is 0.005 to 40.000 mm.
【請求項8】 溶融ガラスを、単数のオリフィス出口を
囲みオリフィスプレート底面より下方に延びる前記凸状
縁を設けた前記凸状縁付オリフィスから吐出させる事に
より、前記ガラス繊維の横断面が前記複数の曲率半径を
有する曲線であって、且つ、前記複数の曲率半径を有す
る曲線のうちの最小の曲率半径を有する曲線の曲率半径
に対し、前記複数の曲率半径を有する曲線のうちの最大
の曲率半径を有する曲線の曲率半径の比が3以上の前記
複数の曲率半径からなる曲線により囲まれているガラス
繊維を得る事を特徴とする断面が非円形のガラス繊維の
製造方法。
8. The molten glass is discharged from the convex edged orifice surrounding the single orifice outlet and extending downward from the bottom surface of the orifice plate, whereby the glass fiber has a plurality of cross-sections. A curve having a plurality of radii of curvature and a maximum radius of a curve having a plurality of radii of curvature with respect to a radius of curvature of a curve having a minimum radius of curvature of the plurality of radii of curvature. A method for producing a glass fiber having a non-circular cross section, which comprises obtaining a glass fiber surrounded by a curve having a plurality of radii of curvature in which a ratio of radii of curvature of a curve having a radius is 3 or more.
JP23862094A 1993-09-16 1994-09-07 Glass fiber having noncircular section and its production Pending JPH07133132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23862094A JPH07133132A (en) 1993-09-16 1994-09-07 Glass fiber having noncircular section and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-253726 1993-09-16
JP25372693 1993-09-16
JP23862094A JPH07133132A (en) 1993-09-16 1994-09-07 Glass fiber having noncircular section and its production

Publications (1)

Publication Number Publication Date
JPH07133132A true JPH07133132A (en) 1995-05-23

Family

ID=26533798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23862094A Pending JPH07133132A (en) 1993-09-16 1994-09-07 Glass fiber having noncircular section and its production

Country Status (1)

Country Link
JP (1) JPH07133132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028543A1 (en) * 1997-12-02 1999-06-10 Nitto Boseki Co., Ltd. Nonwoven fabric made of glass fiber and printed wiring boards
JP2008163317A (en) * 2006-12-04 2008-07-17 Mitsubishi Engineering Plastics Corp Flame-retardant polyamide resin composition and molded article
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2018168330A (en) * 2017-03-30 2018-11-01 コニカミノルタ株式会社 Resin composition and method for producing molded body using resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028543A1 (en) * 1997-12-02 1999-06-10 Nitto Boseki Co., Ltd. Nonwoven fabric made of glass fiber and printed wiring boards
US6543258B1 (en) 1997-12-02 2003-04-08 Nitto Boseki Co., Ltd. Glass fiber nonwoven fabric and printed wiring board
US6615616B2 (en) 1997-12-02 2003-09-09 Nitto Boseki Co. Ltd. Glass fiber nonwoven fabric and printed wiring board
JP2008163317A (en) * 2006-12-04 2008-07-17 Mitsubishi Engineering Plastics Corp Flame-retardant polyamide resin composition and molded article
US8053500B2 (en) 2006-12-04 2011-11-08 Mitsubishi Engineering-Plastics Corporation Flame-retardant polyamide resin composition and molded article
JP2012132027A (en) * 2006-12-04 2012-07-12 Mitsubishi Engineering Plastics Corp Flame-retardant polyamide resin composition and molding
JP2008260830A (en) * 2007-04-11 2008-10-30 Idemitsu Kosan Co Ltd Heat-conductive resin composition
JP2018168330A (en) * 2017-03-30 2018-11-01 コニカミノルタ株式会社 Resin composition and method for producing molded body using resin composition

Similar Documents

Publication Publication Date Title
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
EP0196194B1 (en) Glass fiber strand and method of producing the same
US4759784A (en) Method of manufacturing glass fiber strand
EP1039004B1 (en) A nozzle chip for spinning a highly flat glass fiber and an apparatus accommodating the same
US20090297848A1 (en) Pellet containing flat glass fibers, molded thermoplastic resin containing flat glass fibers, and processes for producing these
US11518705B2 (en) Nozzle tip for producing glass fibers and method for producing glass fibers
US20210403367A1 (en) Bushing for Manufacturing Glass Fiber, and Method for Manufacturing Glass Fiber
JP3369674B2 (en) Nozzle tip for spinning glass fiber with irregular cross section and method for producing glass fiber with irregular cross section
JPH07126033A (en) Orifice plate and glass fiber of noncircular cross section
JPH07133132A (en) Glass fiber having noncircular section and its production
EP0601803B1 (en) Nozzle tip for spinning glass fiber having deformed cross-section, glass fiber having deformed cross-section, and method of manufacturing same
JPH0144144B2 (en)
JPH06234540A (en) Orifice plate and noncircular-sectioned glass fiber
EP3560690B1 (en) Method for producing foamed particle molded article provided with skin
JP5505597B2 (en) Modified cross section glass fiber
JP2001219473A (en) Method for manufacturing fiber-reinforced resin molding
JPH07291649A (en) Nozzle tip for spinning glass fiber, modified cross-section glass fiber and its production
JPH0157053B2 (en)
JP7075059B2 (en) Nozzle for manufacturing irregular cross-section glass fiber, irregular cross-section glass fiber manufacturing equipment, its manufacturing method, irregular cross-section glass fiber
JP2021001111A (en) Glass fiber aggregate
JP3368642B2 (en) Single groove spiral slot and method for manufacturing the same
JPS61219732A (en) Production of glass fiber
JPH0465020B2 (en)
WO2022264606A1 (en) Bushing, glass fiber manufacturing device, and glass fiber manufacturing method
JP3136704B2 (en) Strand widening die and prepreg manufacturing method using the same