JPH07121344B2 - Asymmetric hollow fiber carbon membrane and method for producing the same - Google Patents

Asymmetric hollow fiber carbon membrane and method for producing the same

Info

Publication number
JPH07121344B2
JPH07121344B2 JP11015790A JP11015790A JPH07121344B2 JP H07121344 B2 JPH07121344 B2 JP H07121344B2 JP 11015790 A JP11015790 A JP 11015790A JP 11015790 A JP11015790 A JP 11015790A JP H07121344 B2 JPH07121344 B2 JP H07121344B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
asymmetric
gas
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11015790A
Other languages
Japanese (ja)
Other versions
JPH0411933A (en
Inventor
利宗 吉永
寛史 島崎
喜博 楠木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP11015790A priority Critical patent/JPH07121344B2/en
Priority to EP91303687A priority patent/EP0459623B1/en
Priority to DE69102350T priority patent/DE69102350T2/en
Publication of JPH0411933A publication Critical patent/JPH0411933A/en
Publication of JPH07121344B2 publication Critical patent/JPH07121344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、芳香族ポリイミド製の非対称性中空糸膜を
部分的に炭素化して得られた、炭素原子の含有率が70〜
93重量%とかなり高い特殊な材料で形成されている非対
称性中空糸炭素膜、並びに、芳香族ポリイミド製の非対
称性中空糸膜を、250〜495℃の温度であって該中空糸膜
の非対称製構造が維持される温度で予備熱処理して熱安
定化し、次いで、500〜900℃の高温で部分的に炭化し
て、部分炭化された前記の組成の材料で形成されている
非対称性中空糸炭素膜を製造する方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has a carbon atom content of 70 to 70 obtained by partially carbonizing an asymmetric hollow fiber membrane made of an aromatic polyimide.
Asymmetric hollow fiber carbon membranes made of a special material with a considerably high content of 93% by weight, as well as asymmetric hollow fiber membranes made of aromatic polyimide, were used at a temperature of 250 to 495 ° C. An asymmetric hollow fiber formed of a material of the above composition that is partially carbonized at a temperature of 500 to 900 ° C. by pre-heat-treating it at a temperature where the structure is maintained and then heat-stabilized. The present invention relates to a method for manufacturing a carbon film.

この発明の非対称性中空糸炭素膜は、極めて優れた耐熱
性、耐溶剤性を有していると共に、水素とメタンとの混
合ガスから水素を分離する場合などのガス分離性能が高
いレベルのものである。
The asymmetric hollow fiber carbon membrane of the present invention has excellent heat resistance and solvent resistance, and has a high level of gas separation performance such as when separating hydrogen from a mixed gas of hydrogen and methane. Is.

〔従来技術の説明〕[Description of Prior Art]

従来、透過選択性の高い非対称性のガス分離膜は、種々
のポリマーを素材とするものが知られている。それらの
中で、ビフェニルテトラカルボン酸二無水物と芳香族ジ
アミンとを重合及びイミド化して得られた可溶性の芳香
族ポリイミドの溶液を使用して、湿式製膜法で製造され
た非対称性のガス分離膜(中空糸膜)は、特に、耐熱
性、耐薬品性が良好であるガス分離膜であることが、特
開昭61−133106号公報などにおいて、知られている。
Conventionally, asymmetric gas separation membranes having high permeation selectivity are known to be made of various polymers. Among them, using a solution of a soluble aromatic polyimide obtained by polymerizing and imidizing biphenyltetracarboxylic dianhydride and aromatic diamine, an asymmetric gas produced by a wet film-forming method. The separation membrane (hollow fiber membrane) is known to be a gas separation membrane having particularly good heat resistance and chemical resistance, as disclosed in JP-A-61-133106.

ところが、公知のガス分離膜は、分離すべき原料混合ガ
ス中に、ヘキサン、トルエンなどの有機溶剤などの不純
物を多く含む場合には、膜性能に悪影響を与えることが
あり、前述の不純物を除去するという前処理を充分にし
た後でないと、原料混合ガスの分離操作を行うことがで
きなかったのである。
However, known gas separation membranes may adversely affect the membrane performance when the raw material mixed gas to be separated contains a large amount of impurities such as organic solvents such as hexane and toluene. The separation operation of the raw material mixed gas could not be performed unless the pretreatment of performing the above was sufficiently performed.

最近、例えば、特開昭60−179102号公報、特開平1−22
1518号公報などにおいて、有機ポリマー製の膜を極めて
高温で熱処理して多孔質有機膜を炭化して、耐薬品性の
優れたガス分離膜用の炭素膜を製造する方法、および、
それらの方法で得られた炭素膜(中空糸炭素膜)につい
て、提案された。
Recently, for example, JP-A-60-179102, JP-A 1-22
In JP 1518 etc., a method for producing a carbon membrane for a gas separation membrane having excellent chemical resistance by carbonizing a porous organic membrane by heat treating an organic polymer membrane at an extremely high temperature, and
A carbon membrane (hollow fiber carbon membrane) obtained by those methods was proposed.

しかし、特開昭60−179102号公報には、具体的には、ポ
リアクリルニトリル製の膜を、1200℃付近の温度で熱処
理して充分な炭素化を行って、膜全体に微細孔を形成さ
せた分離性炭素膜を製造する方法が記載されており、前
述の製法によって得られたガス分離炭素膜は、実質的に
多孔質ガス分離膜に関するものであるので、その分離用
炭素膜は、透過速度が比較的大きいのであるが、選択透
過性が非常に小さいものであり、実用的なガス分離膜と
はならないものであった。
However, in JP-A-60-179102, specifically, a film made of polyacrylonitrile is heat-treated at a temperature of around 1200 ° C to perform sufficient carbonization to form fine pores throughout the film. A method for producing a separable carbon membrane is described, and the gas separation carbon membrane obtained by the above-mentioned production method substantially relates to a porous gas separation membrane, and therefore the separation carbon membrane is Although the permeation rate was relatively high, the selective permeation rate was very low, and it was not a practical gas separation membrane.

また、特開平1−221518号公報には、概略、ポリアクリ
ルニトリル、セルロース、ポリビニルアルコールなどの
有機ポリマーからなる多孔質中空糸膜を、架橋、酸化を
施した後、不活性雰囲気、600〜1000℃の温度で炭素化
し、さらに、水蒸気、炭酸ガス等の酸化性ガスを含む雰
囲気で賦活性化処理をして、細孔径10〜50Åの多孔質構
造を有する中空糸炭素膜を製造し、最後に、前記中空糸
炭素膜を、必要であれば熱分解性炭化水素に浸漬した
後、不活性ガス中で900℃以上の温度で1分間以上熱処
理して細孔を熱収縮させて、特殊な中空糸炭素膜を製造
する方法、並びに、前述のようにして製造された特殊な
中空糸炭素膜が記載されている。
Further, JP-A 1-222118, roughly, polyacrylonitrile, cellulose, a porous hollow fiber membrane made of an organic polymer such as polyvinyl alcohol, after cross-linking, oxidation, inert atmosphere, 600 ~ 1000 Carbonization at a temperature of ℃, further activated treatment in an atmosphere containing oxidizing gas such as steam, carbon dioxide, etc. to produce a hollow fiber carbon membrane having a porous structure with a pore size of 10 to 50Å, and finally If necessary, the hollow fiber carbon membrane is immersed in a thermally decomposable hydrocarbon, and then heat-treated in an inert gas at a temperature of 900 ° C. or more for 1 minute or more to heat-shrink the pores, and a special A method for producing a hollow fiber carbon membrane and a special hollow fiber carbon membrane produced as described above are described.

前記の公知の製法は、前述のようにして有機ポリマー製
の中空糸膜から製造される細孔径10〜50Åの多孔質構造
を有する中空糸炭素膜を準備して使用することが必要で
あり、その製造が極めて複雑であり、その後の細孔の収
縮のための熱処理も簡単ではないと共に、最初の有機ポ
リマー製の中空糸膜に対する中空糸炭素膜の収率が30%
以下であり、極めて生産性の悪いものであった。
In the above-mentioned known production method, it is necessary to prepare and use a hollow fiber carbon membrane having a porous structure with a pore diameter of 10 to 50Å produced from an organic polymer hollow fiber membrane as described above. Its production is extremely complicated, the subsequent heat treatment for shrinking the pores is not easy, and the yield of hollow fiber carbon membrane is 30% with respect to the initial hollow fiber membrane made of organic polymer.
It was below, and the productivity was extremely poor.

〔解決しようとする問題点〕[Problems to be solved]

この発明は、公知の芳香族ポリイミドからなるガス分離
膜と、実質的に同程度のガス透過速度と高い選択透過性
(高い分離度)とを有していると共に、極めて優れた耐
溶剤性と耐熱性とを有している非対称性中空糸炭素膜
を、工業的に容易に製造することができる方法を提供す
ること、並びに、炭素原子の含有率が70〜93重量%とか
なり高い特殊な材質からなる前述の優れたガス分離性能
を有する非対称性中空糸炭素膜を提供することを目的と
するものである。
The present invention has a gas separation membrane made of a known aromatic polyimide, and has substantially the same gas permeation rate and high selective permeability (high degree of separation), and has extremely excellent solvent resistance and To provide a method capable of industrially and easily producing an asymmetric hollow fiber carbon membrane having heat resistance, and to provide a special carbon atom content of 70 to 93% by weight which is considerably high. It is an object of the present invention to provide an asymmetric hollow fiber carbon membrane made of a material and having the above-mentioned excellent gas separation performance.

この出願の第1の発明は、中空糸膜を形成している材料
が、炭素原子の含有率;70〜93重量%、窒素原子の含有
率;3.5〜7重量%、および、水素原子の含有率;1.0〜4.
0重量%である、芳香族ポリイミドの部分炭素化物であ
り、そして、該中空糸膜の外表面に緻密層を有すると共
に、中空糸膜の内部が前記緻密層と連続して多孔質支持
層を有する非対称性中空糸炭素膜であることを特徴とす
る非対称性中空糸炭素膜に関する。
1st invention of this application WHEREIN: The material which forms the hollow fiber membrane has carbon atom content rate; 70-93 weight%, nitrogen atom content rate; 3.5-7 weight%, and hydrogen atom content. Rate; 1.0-4.
0% by weight, which is a partial carbonization product of aromatic polyimide, and has a dense layer on the outer surface of the hollow fiber membrane, and the inside of the hollow fiber membrane is continuous with the dense layer to form a porous support layer. The present invention relates to an asymmetric hollow fiber carbon membrane having the asymmetric hollow fiber carbon membrane.

また、この出願の第2の発明は、芳香族ポリイミドから
なる非対称性中空糸膜を、250〜495℃の範囲内の温度で
あってしかも該中空糸膜の非対称性構造が維持される温
度、および、酸素含有ガスの雰囲気で、予備熱処理して
熱安定化し、次いで、その予備熱処理された中空糸膜
を、500〜900℃でおよび不活性ガスの雰囲気下で部分的
に炭素化処理することを特徴とする非対称性中空糸炭素
膜の製法に関する。
The second invention of this application is to provide an asymmetric hollow fiber membrane made of an aromatic polyimide at a temperature in the range of 250 to 495 ° C. and at which the asymmetric structure of the hollow fiber membrane is maintained, And heat-stabilizing by pre-heat treatment in an atmosphere of oxygen-containing gas, and then partially carbonizing the pre-heat-treated hollow fiber membrane at 500 to 900 ° C. and in an atmosphere of an inert gas. And a method for producing an asymmetric hollow fiber carbon membrane.

以下、この発明の各要件についてさらに詳しく説明す
る。
Hereinafter, each requirement of the present invention will be described in more detail.

この発明の非対称性中空糸炭素膜は、該中空糸膜を形成
している材料が、 (a) 炭素原子の含有率が70〜92重量%(特に70〜90
重量%)、 (b) 窒素原子の含有率が3.5〜7重量%(特に4.0〜
6.5重量%)、および、 (c) 水素原子の含有率が1.0〜4.0重量%(特に1.5
〜3.5重量%)であって、 (d) 芳香族ポリイミドを高温で熱処理して部分的に
炭素化された部分炭素化物であり、 そして、 (イ)該中空糸膜の外表面に、厚さ0.0005〜5μm(特
に0.001〜2μm)の緻密層を有すると共に、 (ロ)中空糸膜の内部が、前記緻密層と連続して多孔質
支持層(平均孔径50〜20000Å、特に100〜10000Å程度
の微細孔を多数有する厚さ10〜2000μm、特に20〜1000
μmの多孔質支持層) を有する非対称性中空糸炭素膜であることが好ましい。
In the asymmetric hollow fiber carbon membrane of the present invention, the material forming the hollow fiber membrane has (a) a carbon atom content of 70 to 92% by weight (particularly 70 to 90% by weight).
%), (B) The content of nitrogen atoms is 3.5 to 7% by weight (especially 4.0 to
6.5% by weight), and (c) the content of hydrogen atoms is 1.0 to 4.0% by weight (particularly 1.5%).
To 3.5% by weight), and (d) a partially carbonized product obtained by heat treating aromatic polyimide at a high temperature, and (b) having a thickness on the outer surface of the hollow fiber membrane. In addition to having a dense layer of 0.0005 to 5 μm (particularly 0.001 to 2 μm), (b) the inside of the hollow fiber membrane is continuous with the dense layer to form a porous support layer (average pore size 50 to 20000Å, particularly 100 to 10000Å). 10 ~ 2000μm thickness with many fine holes, especially 20 ~ 1000
It is preferably an asymmetric hollow fiber carbon membrane having a (μm) porous support layer.

この発明の非対称性中空糸炭素膜は、水素ガスの透過速
度(PH、50℃)が、3×10-5〜80×10-5cm3/cm2・se
c・cmHg、特に、5×10-5〜60×10-5cm3/cm2・sec・cmH
g程度であって、水素ガスの透過速度(PH、50℃)と
メタンガスの透過速度(PCH、50℃)との比(PH2/P
CH)で示される選択透過性(分離度)が80〜1000、特
に100〜800程度であることが好ましい。
The asymmetric hollow fiber carbon membrane of the present invention has a hydrogen gas permeation rate (PH 2 , 50 ° C.) of 3 × 10 −5 to 80 × 10 −5 cm 3 / cm 2 · se.
c · cmHg, especially 5 × 10 −5 to 60 × 10 −5 cm 3 / cm 2 · sec · cmH
It is about g, and the ratio of the permeation rate of hydrogen gas (PH 2 , 50 ° C) to the permeation rate of methane gas (PCH 4 , 50 ° C) (PH 2 / P
It is preferable that the selective permeability (degree of separation) represented by CH 4 ) is about 80 to 1000, particularly about 100 to 800.

この発明の非対称性中空糸炭素膜は、その中空糸膜を形
成している材料が炭素原子の含有率の余り低いものであ
って、炭素化の程度が低くなり過ぎると、n−ヘキサ
ン、ベンゼン、トルエン、キシレン、シクロヘキサンな
どの有機溶剤に対する耐溶剤性が著しく低下することが
あるので適当ではなく、また、前記の炭素原子の含有率
の余りに多いものであって炭素化の程度が高くなり過ぎ
ると、水素ガスなどの透過速度が低下したり、選択透過
性が悪化したりするので適当ではない。
In the asymmetric hollow fiber carbon membrane of the present invention, the material forming the hollow fiber membrane has a too low carbon atom content, and when the degree of carbonization is too low, n-hexane and benzene are introduced. , Toluene, xylene, cyclohexane is not suitable because the solvent resistance to organic solvents may be significantly reduced, and the carbon content is too high, the degree of carbonization becomes too high. If so, the permeation rate of hydrogen gas or the like is reduced, or the selective permeability is deteriorated, which is not suitable.

この発明の非対称性中空糸炭素膜は、その外径が100〜2
000μm、特に150〜1000μm程度であることが好まし
く、また、その膜厚が10〜200μm、特に20〜150μm程
度であることが好ましい。
The asymmetric hollow fiber carbon membrane of the present invention has an outer diameter of 100 to 2
The thickness is preferably about 000 μm, particularly about 150 to 1000 μm, and the film thickness is preferably about 10 to 200 μm, especially about 20 to 150 μm.

この発明の非対称性中空糸炭素膜は、部分的に適度に炭
素化されている材料で形成されており、極めて薄い緻密
層(ガス分離活性層)と比較的厚い多孔質層(支持層)
とを一体に有する非対称性構造を有しているものである
ので、高いガス透過性と高い選択性(分離性)とを同時
に保持していると共に、有機溶剤が含有されている混合
ガスを前記非対称性中空糸炭素膜へ供給して、長時間、
ガス分離操作を行っても、前記中空糸炭素膜のガス分離
性能が高い割合(トルエン溶剤で保持率が70%以上であ
る)で維持され、耐久性が優れているガス分離膜であ
る。
The asymmetric hollow fiber carbon membrane of the present invention is formed of a material that is partially appropriately carbonized, and has an extremely thin dense layer (gas separation active layer) and a relatively thick porous layer (support layer).
Since it has an asymmetrical structure having both and, it has both high gas permeability and high selectivity (separation) at the same time, and the mixed gas containing the organic solvent is Supply to asymmetric hollow fiber carbon membrane for a long time,
Even if the gas separation operation is performed, the gas separation performance of the hollow fiber carbon membrane is maintained at a high rate (the retention rate of the toluene solvent is 70% or more), and the gas separation membrane has excellent durability.

この発明の非対称性中空糸炭素膜の製法では、例えば、
まず、芳香族テトラカルボン酸成分と芳香族ジアミン成
分とを重合およびイミド化して得られる芳香族ポリイミ
ドの溶液から湿式製膜法などで製造された非対称性中空
糸膜を、250〜495℃(好ましくは260〜450℃)の範囲内
の温度であってしかも該中空糸膜の非対称性構造が維持
される温度、および、酸素含有ガスの雰囲気で、0.1〜1
00時間、特に0.3〜50時間、予備熱処理して熱安定化
し、次いで、 その予備熱処理された芳香族ポリイミド製の非対称性中
空糸膜を、500〜900℃(好ましくは550〜800℃)の温度
および不活性ガスの雰囲気下で、0.5秒間〜100分間、特
に1秒間〜50分間、部分的に炭素化処理して、 部分的に炭素化されていて、緻密層と多孔質層とを一体
に有する非対称性中空糸炭素膜を製造するのである。
In the method for producing an asymmetric hollow fiber carbon membrane of the present invention, for example,
First, an asymmetric hollow fiber membrane produced by a wet membrane-forming method or the like from a solution of an aromatic polyimide obtained by polymerizing and imidizing an aromatic tetracarboxylic acid component and an aromatic diamine component, 250 to 495 ° C (preferably At a temperature within the range of 260 to 450 ° C.), at which the asymmetric structure of the hollow fiber membrane is maintained, and in an atmosphere of oxygen-containing gas, 0.1 to 1
The pre-heat-treated aromatic polyimide asymmetric hollow fiber membrane is heat-stabilized by a pre-heat treatment for 00 hours, particularly 0.3 to 50 hours, and then heated to a temperature of 500 to 900 ° C (preferably 550 to 800 ° C). And partially carbonized for 0.5 second to 100 minutes, particularly 1 second to 50 minutes in an atmosphere of an inert gas, and the partially carbonized, dense layer and porous layer are integrated. The asymmetric hollow fiber carbon membrane having is produced.

前記の芳香族ポリイミドからなる非対称性中空糸膜は、
特開昭61−133106号公報などに記載の製法などで製造す
ることができる。
The asymmetric hollow fiber membrane composed of the aromatic polyimide,
It can be produced by the production method described in JP-A No. 61-133106.

すなわち、前記の非対称性中空糸膜は、ビフェニルテト
ラカルボン酸二無水物などの芳香族テトラカルボン酸成
分と、ジアミノジメチルジフェニレンスルホン、ジアミ
ノジフェニルメタン、4,4′−ジアミノジフェニルエー
テルなどの芳香族ジアミン成分とを、略等モル、パラク
ロルフェノールなどのフェノール系溶媒中で、重合およ
びイミド化して、可溶性の芳香族ポリイミドの溶液を調
製し、その溶液を製膜用ドープ液として使用して、チュ
ーブ・イン・オリフィスタイプの紡糸用ノズルから、窒
素雰囲気中に中空糸状に押し出し、次いで、エタノール
水溶液からなる凝固液中で凝固させて、非対称性構造の
中空糸膜となし、最後に、その中空糸膜をエタノール洗
浄してフェノール系溶媒を抽出して除去し、イソオクタ
ン溶剤によって前記エタノールの置換を行った後、乾燥
し、さらに熱処理して、好適なガス透過速度および選択
透過性を有する非対称性中空糸膜を製造することができ
る。
That is, the asymmetric hollow fiber membrane is an aromatic tetracarboxylic acid component such as biphenyltetracarboxylic dianhydride and an aromatic diamine component such as diaminodimethyldiphenylene sulfone, diaminodiphenylmethane, 4,4'-diaminodiphenyl ether. And are polymerized and imidized in a phenolic solvent such as parachlorophenol in an approximately equimolar amount to prepare a solution of a soluble aromatic polyimide, and the solution is used as a dope solution for film formation. A hollow fiber membrane is extruded from an in-orifice type spinning nozzle into a nitrogen atmosphere into a hollow fiber, and then coagulated in a coagulating liquid consisting of an ethanol aqueous solution to form a hollow fiber membrane having an asymmetric structure, and finally, the hollow fiber membrane. Is washed with ethanol to remove the phenolic solvent by extraction, and the After substitution of ethanol, dried and can be further heat treated to produce an asymmetric hollow fiber membrane having a suitable gas permeation rates and permselectivity.

この発明の製法に使用される芳香族ポリイミド性の非対
称性中空糸膜は、水素ガスの透過速度(PH、50℃)
が1×10-5〜100×10-5cm3/cm2・sec・cmHg、特に、2
×10-5〜70×10-5cm3/cm2・sec・cmHg程度であって、水
素ガスの透過速度(PH)とメタンガスの透過速度
(PCH、50℃)との比(PH2/PCH)で示される選択
透過性(分離度)が30〜250、特に50〜200程度であり、
さらに、 厚さ0.001〜5μm程度の緻密層(表面層)と厚さ10〜2
000μm程度の多孔質層(内部層)とが連続して一体と
なっている非対称性構造が形成されている中空糸膜であ
ることが、この発明の製法において最終的に得られる非
対称性中空糸炭素膜が充分な非対称性構造を有するよう
にするため、また、そのガス分離性能を高いレベルとす
る上で、特に好ましい。
The aromatic polyimide asymmetric hollow fiber membrane used in the production method of the present invention has a hydrogen gas permeation rate (PH 2 , 50 ° C.)
Is 1 × 10 -5 to 100 × 10 -5 cm 3 / cm 2 · sec · cmHg, especially 2
× 10 -5 to 70 × 10 -5 cm 3 / cm 2 · sec · cmHg, and the ratio of the hydrogen gas permeation rate (PH 2 ) to the methane gas permeation rate (PCH 4 , 50 ° C) (PH 2 / PCH 4 ) has a selective permeability (separation degree) of 30 to 250, especially about 50 to 200,
Furthermore, a dense layer (surface layer) with a thickness of 0.001 to 5 μm and a thickness of 10 to 2
The asymmetric hollow fiber finally obtained in the production method of the present invention is a hollow fiber membrane in which an asymmetric structure in which a porous layer (inner layer) of about 000 μm is continuously and integrally formed is formed. It is particularly preferable in order to make the carbon membrane have a sufficient asymmetric structure and in order to make its gas separation performance high.

この発明の製法では、前述の酸素含有気体中での予備熱
処理(熱安定化処理)は、次の炭素化処理工程において
前記の中空糸膜の非対称性構造が維持できるように、前
記中空糸膜を形成している芳香族ポリイミドを一部架橋
および/または一部環化させ、あるいは、不融化または
不溶化して、熱的に安定である芳香族ポリイミドとする
ために、250〜495℃の範囲内の温度であって、前記中空
糸膜の非対称性構造が維持される温度で行われる。
In the production method of the present invention, the preliminary heat treatment (thermal stabilization treatment) in the oxygen-containing gas described above is performed so that the asymmetric structure of the hollow fiber membrane can be maintained in the next carbonization treatment step. In the range of 250 to 495 ° C. in order to partially crosslink and / or partially cyclize the aromatic polyimide forming the, or infusibilize or insolubilize the aromatic polyimide to be a thermally stable aromatic polyimide. At a temperature within which the asymmetric structure of the hollow fiber membrane is maintained.

前記の中空糸膜の非対称性構造が維持される温度とは、
例えば、該ポリイミドが後述する測定法で測定された軟
化温度を有する場合には、該ポリイミドの軟化温度より
も、5℃以上低い温度、特に10℃以上低い温度であり、
また、該ポリイミドが実質的に軟化温度又は二次転移温
度を有していない場合には、その該ポリイミド製中空糸
膜の非対称性構造が電子顕微鏡などで観察して大幅に変
形したりしない温度、多孔質層の平均孔径が大幅に(50
%以下に)縮小したりしない温度であればよい。
The temperature at which the asymmetric structure of the hollow fiber membrane is maintained,
For example, when the polyimide has a softening temperature measured by the measuring method described below, a temperature 5 ° C or more lower than the softening temperature of the polyimide, particularly 10 ° C or more lower temperature,
When the polyimide has substantially no softening temperature or second-order transition temperature, the temperature at which the asymmetric structure of the polyimide hollow fiber membrane is not significantly deformed when observed with an electron microscope or the like. , The average pore size of the porous layer is significantly increased (50
The temperature may be any temperature at which it does not shrink.

前記の予備熱処理は、前述の温度範囲内であれば、例え
ば、280℃の付近の温度から450℃の付近の高温まで徐々
に昇温させながら行うことによる予備熱処理、あるい
は、250〜350℃の温度で5〜100時間(好ましくは10〜5
0時間)の熱処理し、次いで、350〜490℃の温度で10〜3
00分間(好ましくは20〜200分間)の熱処理するという
ように、複数段階で行う予備熱処理であってもよい。
The pre-heat treatment, if within the above-mentioned temperature range, for example, pre-heat treatment by gradually increasing the temperature from around 280 ℃ to a high temperature around 450 ℃, or 250 ~ 350 ℃ 5-100 hours at temperature (preferably 10-5
Heat treatment for 0 hours), then 10 ~ 3 at a temperature of 350 ~ 490 ℃
It may be a preliminary heat treatment performed in multiple stages, such as a heat treatment for 00 minutes (preferably 20 to 200 minutes).

前記の非対称性中空糸膜の予備熱処理は、前記中空糸膜
(長尺の中空糸)を高温の加熱炉に連続的に供給して連
続的に行うことができ、また、複数本の非対称性中空糸
膜の糸束を形成して、その糸束を適当な温度の加熱炉内
に配置してある時間加熱炉内に放置してバッチ的に熱処
理を行うこともできる。
The preliminary heat treatment of the asymmetric hollow fiber membrane can be performed continuously by continuously supplying the hollow fiber membrane (long hollow fiber) to a high-temperature heating furnace, and a plurality of asymmetric hollow fiber membranes can be used. It is also possible to form a bundle of hollow fiber membranes and leave the bundle in the heating furnace at an appropriate temperature for a certain period of time to heat-treat it in batches.

前記の予備熱化処理で使用する酸素含有気体としては、
例えば、空気、酸素と窒素との混合ガスなどを好適に挙
げることができる。
The oxygen-containing gas used in the preheating treatment,
Suitable examples include air and a mixed gas of oxygen and nitrogen.

この発明の製法では、前述の酸素含有気体中での予備熱
処理を行わないと、その後の工程の炭素化工程で、中空
糸膜の非対称性構造が損なわれるので適当ではなく、ま
た、予備熱処理を余りに高い温度で行うと、芳香族ポリ
イミド製の非対称性中空糸膜がその非対称性構造を最適
に維持できなくなり、非対称性構造が損なわれたり、著
しくガス分離性能の劣った構造になったりすることがあ
り、最終的な非対称性中空糸炭素膜が低い性能のガス分
離膜となるので適当ではない。
In the production method of the present invention, if the preheat treatment in the oxygen-containing gas is not performed, the asymmetric structure of the hollow fiber membrane is impaired in the subsequent carbonization step, which is not appropriate. If the temperature is too high, the asymmetric hollow fiber membrane made of aromatic polyimide will not be able to maintain its asymmetric structure optimally, and the asymmetric structure will be impaired or the structure will have a significantly poor gas separation performance. However, the final asymmetric hollow fiber carbon membrane is a gas separation membrane with low performance, and is not suitable.

この発明の製法では、前述のようにして、予備熱処理さ
れた非対称性中空糸膜は、例えば、窒素ガス、ヘリウム
ガス、アルゴンガスなどの不活性気体の雰囲気中で、50
0〜900℃(好ましくは550〜800℃の範囲中の温度で、0.
5秒間〜100分間(特に1秒間〜50分間)、部分的に炭素
化処理をすることが好ましい。
In the production method of the present invention, the asymmetric hollow fiber membrane preliminarily heat-treated as described above, for example, in an atmosphere of an inert gas such as nitrogen gas, helium gas, or argon gas, 50
0 to 900 ° C (preferably at a temperature in the range of 550 to 800 ° C, 0.
Partial carbonization is preferably performed for 5 seconds to 100 minutes (especially 1 second to 50 minutes).

前述の部分的な炭素化処理は、前述の温度範囲内であれ
ば、例えば、500℃〜600℃の付近の温度から700℃〜800
℃の付近の高温まで昇温させながら約10秒間〜60分間で
行うことによる高熱処理、あるいは、500〜550℃の温度
付近で0.5〜60分間(好ましくは1〜30分間)の高熱処
理し、次いで、600〜800℃の温度付近で0.5秒間〜20分
間(好ましくは1秒間〜10分間)の高熱処理をするとい
うように複数段階で行う高熱処理であってもよい。
The partial carbonization treatment described above is, for example, from a temperature in the vicinity of 500 ° C. to 600 ° C. to 700 ° C. to 800 ° C. within the above temperature range.
High heat treatment by heating for about 10 seconds to 60 minutes while heating to a high temperature near ℃, or high heat treatment for 0.5 to 60 minutes (preferably 1 to 30 minutes) near the temperature of 500 to 550 ℃, Then, high heat treatment may be performed in multiple stages, such as high heat treatment for 0.5 seconds to 20 minutes (preferably 1 second to 10 minutes) at a temperature of 600 to 800 ° C.

前記の予備加熱された非対称性中空糸膜の炭素化処理
は、前述の予備加熱と同様に、前記中空糸膜(長尺の中
空糸)を高温の加熱炉に連続的に供給して連続的に行う
ことができ、また、複数本の非対称性中空糸膜の糸束を
形成して、その糸束を適当な温度の加熱炉内に配置して
ある時間加熱炉内に放置してバッチ的に高熱処理(炭素
化)を行うこともできる。
The carbonization treatment of the preheated asymmetric hollow fiber membrane is performed by continuously supplying the hollow fiber membrane (long hollow fiber) to a high-temperature heating furnace in the same manner as in the preheating described above. In addition, a yarn bundle of a plurality of asymmetric hollow fiber membranes is formed, and the yarn bundle is placed in a heating furnace at an appropriate temperature and left in the heating furnace for a certain period of time in a batch-like manner. High heat treatment (carbonization) can also be performed.

〔実施例〕〔Example〕

以下、この発明を参考例および実施例によってさらに詳
しく説明する。しかし、この発明はそれらの実施例によ
って限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Examples. However, the invention is not limited to these examples.

非対称性中空糸膜又は非対称性中空糸炭素膜について、
各ガスの透過性能、耐溶剤性、収率などは、次に示すそ
れぞれの方法で測定した。
Regarding the asymmetric hollow fiber membrane or the asymmetric hollow fiber carbon membrane,
The permeation performance, solvent resistance, yield, etc. of each gas were measured by the following methods.

〔透過性能〕(Permeation performance)

まず、前述のようにして製造した非対称性中空糸炭素膜
と、ステンレスパイプと、エポキシ樹脂系接着剤とを使
用して、透過性能評価用の中空糸エレメントを作成し
た。
First, a hollow fiber element for permeation performance evaluation was prepared using the asymmetric hollow fiber carbon membrane manufactured as described above, a stainless pipe, and an epoxy resin adhesive.

(a)透過性能の測定A そして、透過性能Aは、ステンレス容器に透過性能評価
用の中空糸エレメントを装着し、水素ガスとメタンガス
との混合ガスを用いて、50℃の温度、10kg/cm2の圧でガ
ス透過試験を行い、ガス透過速度と、各ガスの透過速度
比(選択透過性、ガス分離度を示す)とを、ガスクロマ
トグラフィー分析の測定値から算出した。
(A) Measurement of permeation performance A And, the permeation performance A was measured by mounting a hollow fiber element for permeation performance evaluation in a stainless steel container and using a mixed gas of hydrogen gas and methane gas at a temperature of 50 ° C. and 10 kg / cm 2. A gas permeation test was performed at a pressure of 2 , and the gas permeation rate and the permeation rate ratio of each gas (selective permeability and gas separation degree) were calculated from the measured values of the gas chromatography analysis.

(b)透過性能の測定B 前述のようにして製造した非対称性中空糸炭素膜は、前
述のガス透過性能に用いる原料ガスを、40℃に加熱した
トルエン中にバブリングさせ、トルエン蒸気濃度が7400
ppmの混合ガスとして、このトルエン含有の混合ガスを
用いて、しかも、混合ガスの供給開始後18時間後に測定
することにしたほかは上述の透過性能の測定Aと同様に
して、非対称性中空糸炭素膜の透過性能を測定した。
(B) Measurement of permeation performance B The asymmetric hollow fiber carbon membrane produced as described above was bubbling the raw material gas used for the above-mentioned gas permeation performance into toluene heated to 40 ° C., and the toluene vapor concentration was 7400.
This toluene-containing mixed gas was used as the ppm mixed gas, and the asymmetric hollow fiber was measured in the same manner as the above-mentioned measurement A of the permeation performance except that the measurement was performed 18 hours after the start of the supply of the mixed gas. The permeability of the carbon membrane was measured.

(c)耐溶剤性 したがって、非対称性中空糸炭素膜は、耐溶剤性を示す
指標として、前記の透過性能Aと透過性能Bとにおける
保持率(B/A)×100(%)を算出した。
(C) Solvent resistance Therefore, in the asymmetric hollow fiber carbon membrane, the retention rate (B / A) × 100 (%) in the permeation performance A and the permeation performance B was calculated as an index showing the solvent resistance. .

〔中空糸炭素膜の収率〕[Yield of hollow fiber carbon membrane]

また、芳香族ポリイミド性の非対称性中空糸膜を、前述
のように予備加熱し、炭素化して、非対称性中空糸炭素
膜を製造する際の炭素膜の収率は、未処理の中空糸膜の
重量と、炭素化処理後の中空糸炭素膜の重量とを測定
し、両者から収率を算出した。
In addition, the yield of the carbon membrane when the aromatic polyimide asymmetric hollow fiber membrane is preheated and carbonized as described above to produce the asymmetric hollow fiber carbon membrane is the untreated hollow fiber membrane. Was measured and the weight of the hollow fiber carbon membrane after carbonization treatment was measured, and the yield was calculated from both.

〔中空糸炭素膜などの元素分析〕[Elemental analysis of hollow fiber carbon membranes, etc.]

元素分析は、元素分析装置(パーキンエルマー社製、24
0C型)を用いて測定した。
Elemental analysis is performed using an elemental analyzer (Perkin Elmer Co., 24
0C type).

〔中空糸膜の非対称性構造の確認〕[Confirmation of asymmetric structure of hollow fiber membrane]

電子顕微鏡を使用して、中空糸炭素膜などの断面の1000
0倍の写真を写し、その写真における中空糸炭素膜の断
面を観察することにより、中空糸炭素膜の緻密層と多孔
質層とからなる非対称性構造の状態、有無などを確認し
た。
Using an electron microscope, the cross section of a hollow fiber carbon membrane, etc.
By observing a cross section of the hollow fiber carbon membrane in a photograph of 0 times, the state of the asymmetric structure composed of the dense layer and the porous layer of the hollow fiber carbon membrane, the presence or absence, etc. were confirmed.

参考例1 3,3′,4,4′−ビフェニルテトラカルボン酸二無水物99
ミリモルと、4,4′−ジアミノジフェニルエーテル60ミ
リモルと、3,5−ジアミノ安息香酸30ミリモルと、4,4′
−ジアミノジフェニルメタン10ミリモルとを、パラクロ
ルフェノール253gと共に、撹拌機と窒素ガス導入管とが
付設されたセパラブルフラスコに入れて、窒素ガスを流
して、撹拌しながら、180℃で13時間重合させて、芳香
族ポリイミド濃度が15重量%である芳香族ポリイミド溶
液を調製した。
Reference Example 1 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 99
Mmol, 4,4'-diaminodiphenyl ether 60 mmol, 3,5-diaminobenzoic acid 30 mmol, 4,4 '
10 mmol of diaminodiphenylmethane and 253 g of parachlorophenol were placed in a separable flask equipped with a stirrer and a nitrogen gas introduction tube, and nitrogen gas was flowed, and the mixture was polymerized at 180 ° C. for 13 hours while stirring. Thus, an aromatic polyimide solution having an aromatic polyimide concentration of 15% by weight was prepared.

この芳香族ポリイミド溶液は、100℃の回転粘度が1116
ポイズであり、70℃での回転粘度が3920ポイズであっ
た。この芳香族ポリイミド溶液を、400メッシュのステ
ンレス金網で濾過して、紡糸用のドープ液を準備した。
This aromatic polyimide solution has a rotational viscosity at 100 ° C. of 1116.
Poise, the rotational viscosity at 70 ° C. was 3920 poise. This aromatic polyimide solution was filtered through a 400-mesh stainless wire net to prepare a dope solution for spinning.

その紡糸用ドープ液を、中空糸紡糸用ノズル(円形開口
部の外径;1000μm、円形開口部のスリット幅;200μ
m、芯部開口部の外径;400μm)を備えた紡糸装置にそ
れぞれ仕込み、そして、前記紡糸用ノズルから中空糸状
に吐出させて、その中空糸状体を窒素雰囲気中を通した
後、65重量%のエタノール水溶液からなる一次凝固液
(0℃)にそれぞれ浸漬し、さらに、一対の案内ロール
を備えた二次凝固装置内の二次凝固液(0℃)中で案内
ロール間を往復させて、中空糸状体の凝固を完了させ
て、芳香族ポリイミド製のガス分離中空糸膜を引き取り
ロールで引き取りながら(引き取り速度15m/分)、紡糸
を行った。
The dope for spinning was used as a hollow fiber spinning nozzle (outer diameter of circular opening: 1000 μm, slit width of circular opening: 200 μ
m, the outer diameter of the core opening; 400 μm), and the mixture was discharged into a hollow fiber form from the spinning nozzle, and the hollow fiber form was passed through a nitrogen atmosphere. % Ethanol solution, respectively, and then reciprocate between the guide rolls in the secondary coagulation liquid (0 ° C.) in the secondary coagulation device equipped with a pair of guide rolls. The solidification of the hollow fibers was completed, and the gas separation hollow fiber membrane made of aromatic polyimide was taken up by a take-up roll (take-off speed 15 m / min) to carry out spinning.

最後に、この中空糸膜をボビンに巻き取り、エタノール
で充分に凝固溶媒等を洗浄した後、イソオクタン(置換
溶媒)でエタノール置換し、さらに、中空糸膜を100℃
に加熱して、イソオクタンの蒸発・乾燥を行い、さら
に、260℃の温度で30分間、中空糸膜の熱処理を行っ
て、乾燥及び熱処理された芳香族ポリイミド製の非対称
性中空糸膜を製造した。
Finally, the hollow fiber membrane was wound on a bobbin, thoroughly washed with ethanol to remove coagulation solvent, and then replaced with isooctane (displacement solvent) to replace the hollow fiber membrane with 100 ° C.
By heating to evaporate and dry isooctane, and further heat-treat the hollow fiber membrane at a temperature of 260 ° C. for 30 minutes to produce a dried and heat-treated aromatic polyimide asymmetric hollow fiber membrane. .

この芳香族ポリイミド製の非対称性中空糸膜の軟化温度
は、デュポン990型熱分析装置を用いて引張りモードに
よる熱機械分析により、窒素ガス雰囲気下、昇温速度10
℃/分で測定した。前記の熱機械分析において、該中空
糸膜が急激に伸び始める温度を観測した結果、前記芳香
族ポリイミドの軟化温度は290℃であった。
The softening temperature of this asymmetric hollow fiber membrane made of aromatic polyimide was measured by a thermomechanical analysis in a tensile mode using a DuPont 990 type thermal analyzer, under a nitrogen gas atmosphere, at a heating rate of 10
It was measured at ° C / min. In the thermomechanical analysis, as a result of observing the temperature at which the hollow fiber membrane starts to expand rapidly, the softening temperature of the aromatic polyimide was 290 ° C.

参考例2 芳香族ジアミン成分として、3,7−ジアミノ−2,8−ジメ
チル−ジフェニレンスルホン90ミリモル、4,4′−ジア
ミノジフェニルエーテル10ミリモルを使用し、パラクロ
ルフェノール293gを使用したほかは、参考例1と同様に
して重合して、芳香族ポリイミド濃度が15重量%である
芳香族ポリイミド溶液を調製した。
Reference Example 2 As an aromatic diamine component, 90 mmol of 3,7-diamino-2,8-dimethyl-diphenylene sulfone, 10 mmol of 4,4'-diaminodiphenyl ether were used, and 293 g of parachlorophenol was used. Polymerization was carried out in the same manner as in Reference Example 1 to prepare an aromatic polyimide solution having an aromatic polyimide concentration of 15% by weight.

この芳香族ポリイミド溶液を使用し、熱処理温度を300
℃としたほかは、参考例1と同様にして紡糸及び後処理
を行い、非対称性中空糸膜を製造した。
Using this aromatic polyimide solution, heat treatment temperature up to 300
Spinning and post-treatment were performed in the same manner as in Reference Example 1 except that the temperature was changed to 0 ° C. to produce an asymmetric hollow fiber membrane.

前記芳香族ポリイミド性の非対称性中空糸膜の軟化温度
は、参考例1と同様の熱機械分析で測定したが、450℃
までの温度において、明確な軟化現象が現れなかった。
The softening temperature of the aromatic polyimide asymmetric hollow fiber membrane was measured by the same thermomechanical analysis as in Reference Example 1, and was 450 ° C.
No clear softening phenomenon appeared at temperatures up to.

実施例1 参考例1で得られた非対称性中空糸膜を、空気雰囲気の
オーブン中、無緊張下、270℃で38時間熱処理した後さ
らに400℃で30分間、予備熱処理して熱安定化した。
Example 1 The asymmetric hollow fiber membrane obtained in Reference Example 1 was heat-stabilized by heat-treating at 270 ° C. for 38 hours in an oven in an air atmosphere at 270 ° C. without tension, and then pre-heating at 400 ° C. for 30 minutes. .

次に、予備熱処理された非対称性中空糸膜は、石英ガラ
ス管中を700℃に調節し窒素雰囲気に保たれた電気管状
炉内を、送りだしロールと引き取りロールとの間で20cm
/分の等速度で通過して、滞留時間4分間の炭素化処理
が行なわれ、中空糸炭素膜が製造された。
Next, the preheated asymmetric hollow fiber membrane was adjusted to 700 ° C in the quartz glass tube and maintained in a nitrogen atmosphere in an electric tubular furnace, where 20 cm between the feed roll and the take-up roll.
A hollow fiber carbon membrane was produced by passing through at a constant rate of / min and performing carbonization treatment for a residence time of 4 minutes.

この中空炭素膜は、参考例1で用いた芳香族ポリイミド
を溶解する溶媒であるパラクロルフェノールに浸漬し、
200℃で1時間加熱したが、実質的に溶解せず、また、
前記中空糸炭素膜を電子顕微鏡写真によって観察すれ
ば、その中空糸膜が非対称性構造(緻密層および多孔質
層)が確認され、芳香族ポリイミド製の非対称性中空膜
と同様な有効な非対称性構造の形状で維持されていた。
This hollow carbon membrane was immersed in parachlorophenol, which is a solvent that dissolves the aromatic polyimide used in Reference Example 1,
It was heated at 200 ℃ for 1 hour, but it did not dissolve.
When the hollow fiber carbon membrane was observed by an electron micrograph, the hollow fiber membrane was confirmed to have an asymmetric structure (a dense layer and a porous layer), and the same effective asymmetry as that of the aromatic polyimide asymmetric hollow membrane was confirmed. It was maintained in the shape of the structure.

前述の透過性能の測定Aの結果、前記非対称性中空糸炭
素膜は、水素ガスの透過速度(PH)が、18×10-5cm3
/cm2・sec・cmHgであり、また、水素ガスの透過速度
(PH)とメタンガスの透過速度(PCH)との比
(PH2/PCH)が140であった。
As a result of the above-mentioned measurement A of the permeation performance, the asymmetric hollow fiber carbon membrane had a hydrogen gas permeation rate (PH 2 ) of 18 × 10 −5 cm 3.
/ cm is 2 · sec · cmHg, The ratio of the permeation rate of the permeation rate (PH 2) and methane hydrogen gas (PCH 4) (PH 2 / PCH 4) was 140.

前述の透過性能の測定Bの結果、前記の非対称性中空糸
炭素膜は、水素ガスの透過速度が、17×10-5cm3/cm2・s
ec・cmHgであり、また、水素ガスの透過速度とメタンガ
スの透過速度との比(PH2/PCH)が148であった。
As a result of the measurement B of the permeation performance, the asymmetric hollow fiber carbon membrane had a hydrogen gas permeation rate of 17 × 10 −5 cm 3 / cm 2 · s.
It was ec · cmHg and the ratio (PH 2 / PCH 4 ) of the permeation rate of hydrogen gas to that of methane gas was 148.

前記の透過性能の測定A及びBの結果から算出した耐溶
剤性(分離度の保持率)は106%であり、そして、前記
の非対称性中空糸炭素膜の収率は71.5%であって、さら
に、その炭素含有率は87.2%であった。
The solvent resistance (retention of the degree of separation) calculated from the results of the permeation performance measurements A and B was 106%, and the yield of the asymmetric hollow fiber carbon membrane was 71.5%. Furthermore, its carbon content was 87.2%.

実施例2〜5 前述の参考例2で製造した芳香族ポリイミド製の非対称
性中空糸膜を使用して、第1表に示した条件で、熱安定
化処理、および、炭素化処理を行ったほかは、実施例1
と同様の方法で、非対称性中空糸炭素膜を製造した。
Examples 2 to 5 Using the asymmetric hollow fiber membrane made of aromatic polyimide produced in Reference Example 2 above, heat stabilization treatment and carbonization treatment were performed under the conditions shown in Table 1. Otherwise, Example 1
An asymmetric hollow fiber carbon membrane was produced in the same manner as in.

各非対称性中空糸炭素膜について、透過性能、耐溶剤
性、収率、元素分析値を、第1表に示す。
Table 1 shows the permeation performance, solvent resistance, yield, and elemental analysis values for each asymmetric hollow fiber carbon membrane.

比較例1 参考例2で製造した芳香族ポリイミド製の非対称性中空
糸膜について、透過性能の測定Aを行った結果、水素ガ
スの透過速度が16×10-5cm3/cm2・sec・cmHgであり、ま
た、水素ガスの透過速度とメタンガスの透過速度との比
(PH2/PCH)が167であったが、透過性能の測定Bを
行った結果、水素ガスの透過速度が6.2×10-5cm3/cm2
sec・cmHgであり、また、水素ガスの透過速度とメタン
ガスの透過速度との比(PH2/PCH)が25であって、前
記の透過性能の測定A及びBの結果から算出した耐溶剤
性(分離度の保持率)は15%であった。
Comparative Example 1 Permeability performance A of the asymmetric hollow fiber membrane made of aromatic polyimide produced in Reference Example 2 was measured, and as a result, hydrogen gas permeation rate was 16 × 10 −5 cm 3 / cm 2 · sec · cmHg, and the ratio of the permeation rate of hydrogen gas to the permeation rate of methane gas (PH 2 / PCH 4 ) was 167. × 10 -5 cm 3 / cm 2
sec · cmHg, the ratio of the permeation rate of hydrogen gas to the permeation rate of methane gas (PH 2 / PCH 4 ) is 25, and the solvent resistance calculated from the results of measurement A and B of the permeation performance described above. The sex (retention rate of separation) was 15%.

比較例2 参考例2で製造した芳香族ポリイミド製の非対称性中空
糸膜を、空気雰囲気のオーブン中、無緊張下、400℃で3
0分間熱処理し熱安定化した。
Comparative Example 2 The aromatic polyimide asymmetric hollow fiber membrane produced in Reference Example 2 was heated at 400 ° C. in an oven in an air atmosphere at 400 ° C. for 3 hours.
Heat treatment was performed for 0 minutes to stabilize the heat.

前述のようにして、得られた熱安定化のみが行われた中
空糸膜について、透過性能の測定A及びBを行った結果
を第1表に示す。
Table 1 shows the results of the permeation performance measurements A and B performed on the obtained hollow fiber membranes only subjected to thermal stabilization as described above.

前記の熱安定化のみがなされた中空糸膜は、炭素元素含
有率が、66.4%と低く、そのための耐溶剤性(分離度の
保持率)が、35%と極めて低かった。
The hollow fiber membrane that was only heat-stabilized had a low carbon element content of 66.4%, and therefore had a very low solvent resistance (retention of separation) of 35%.

比較例3 炭素化の温度を1000℃としたほかは、実施例4と同様に
して、中空糸炭素膜を製造した。
Comparative Example 3 A hollow fiber carbon membrane was produced in the same manner as in Example 4 except that the carbonization temperature was 1000 ° C.

その中空糸炭素膜について、透過性能の測定A及びBな
どを行った結果を第1表に示す。
Table 1 shows the results of permeation performance measurements A and B performed on the hollow fiber carbon membrane.

前記の中空糸炭素膜は、水素原子含有率が0.6%と低
く、そして、水素ガスの透過速度が、1.1×10-5cm3/cm2
・sec・cmHgと小さく、実用的な中空糸炭素膜ではなか
った。
The hollow fiber carbon membrane has a low hydrogen atom content rate of 0.6% and a hydrogen gas permeation rate of 1.1 × 10 −5 cm 3 / cm 2
・ Small as sec ・ cmHg, it was not a practical hollow fiber carbon membrane.

〔本発明の作用効果〕 この発明の非対称性中空糸炭素膜は、炭素含有率が70〜
93重量%であって、しかも、緻密層と多孔質層とを一体
に有する非対称性構造を保持しているので、例えば、水
素を含む混合ガスから水素を高い分離性能で分離するこ
とができ、しかも、有機溶剤などの不純物成分が混入し
た混合ガスの分離においても、その分離性能(分離度
等)がほとんど低下しないものであり、さらに、高温で
長期間使用できる高い耐熱性を有しているものである。
[Operation and Effect of the Present Invention] The asymmetric hollow fiber carbon membrane of the present invention has a carbon content of 70-
Since it is 93% by weight and has an asymmetric structure having a dense layer and a porous layer integrally, it is possible to separate hydrogen from a mixed gas containing hydrogen with high separation performance, Moreover, the separation performance (separation degree, etc.) of the mixed gas containing impurities such as organic solvents is hardly deteriorated, and it has high heat resistance that can be used for a long time at high temperature. It is a thing.

また、この発明の製法は、前述の優れた性能の非対称性
中空糸炭素膜を、再現性よく高い生産性で容易に製造す
ることができる優れた製法である。
Further, the production method of the present invention is an excellent production method capable of easily producing the above-described asymmetric hollow fiber carbon membrane having excellent performance with good reproducibility and high productivity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】中空糸膜を形成している材料が、炭素原子
の含有率;70〜93重量%、窒素原子の含有率;3.5〜7重
量%、および、水素原子の含有率;1.0〜4.0重量%であ
る、芳香族ポリイミドの部分炭素化物であり、そして、
該中空糸膜の外表面に緻密層を有すると共に、中空糸膜
の内部が前記緻密層と連続して多孔質支持層を有する非
対称性中空糸炭素膜であることを特徴とする非対称性中
空糸炭素膜。
1. The material forming the hollow fiber membrane comprises a carbon atom content rate of 70 to 93% by weight, a nitrogen atom content rate of 3.5 to 7% by weight, and a hydrogen atom content rate of 1.0 to 4.0% by weight of aromatic polyimide partially carbonized, and
An asymmetric hollow fiber having a dense layer on the outer surface of the hollow fiber membrane, and the inside of the hollow fiber membrane is an asymmetric hollow fiber carbon membrane having a porous support layer continuous with the dense layer. Carbon film.
【請求項2】芳香族ポリイミドからなる非対称性中空糸
膜を、250〜495℃の範囲内の温度であってしかも該中空
糸膜の非対称性構造が維持される温度、および、酸素含
有ガスの雰囲気で、予備熱処理して熱安定化し、次い
で、その予備熱処理された中空糸膜を、500〜900℃でお
よび不活性ガスの雰囲気下で部分的に炭素化処理するこ
とを特徴とする非対称性中空糸炭素膜の製法。
2. An asymmetric hollow fiber membrane made of an aromatic polyimide is provided at a temperature within a range of 250 to 495 ° C., at which the asymmetric structure of the hollow fiber membrane is maintained, and an oxygen-containing gas Asymmetry characterized by pre-heat treatment to heat-stabilize in an atmosphere and then partially pre-heat treatment of the hollow fiber membrane at 500-900 ° C and in an atmosphere of inert gas Hollow fiber carbon membrane manufacturing method.
JP11015790A 1990-04-27 1990-04-27 Asymmetric hollow fiber carbon membrane and method for producing the same Expired - Lifetime JPH07121344B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11015790A JPH07121344B2 (en) 1990-04-27 1990-04-27 Asymmetric hollow fiber carbon membrane and method for producing the same
EP91303687A EP0459623B1 (en) 1990-04-27 1991-04-24 Asymmetric hollow filamentary carbon membrane and process for producing same
DE69102350T DE69102350T2 (en) 1990-04-27 1991-04-24 Asymmetric hollow fiber membrane made of carbon and process for its production.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015790A JPH07121344B2 (en) 1990-04-27 1990-04-27 Asymmetric hollow fiber carbon membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0411933A JPH0411933A (en) 1992-01-16
JPH07121344B2 true JPH07121344B2 (en) 1995-12-25

Family

ID=14528499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015790A Expired - Lifetime JPH07121344B2 (en) 1990-04-27 1990-04-27 Asymmetric hollow fiber carbon membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07121344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9092414B2 (en) 2002-11-27 2015-07-28 Adobe Systems Incorporated Using document templates to assemble a collection of documents

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185212A (en) * 1998-12-22 2000-07-04 Ube Ind Ltd Method for separating and recovering perfluoro compound gas and device therefor
JP4081956B2 (en) * 1999-03-05 2008-04-30 宇部興産株式会社 Partially carbonized asymmetric hollow fiber separation membrane, its production method and gas separation method
US6395066B1 (en) 1999-03-05 2002-05-28 Ube Industries, Ltd. Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method
JP4675883B2 (en) * 2004-03-12 2011-04-27 日本碍子株式会社 Carbon film laminate and manufacturing method thereof
JP2007054693A (en) * 2005-08-22 2007-03-08 National Institute Of Advanced Industrial & Technology Particulate-dispersed tubular membrane and its manufacturing method
JP5708684B2 (en) 2013-02-27 2015-04-30 Nok株式会社 Method for producing hollow fiber carbon membrane
US20160346740A1 (en) * 2015-06-01 2016-12-01 Georgia Tech Research Corporation Ultra-selective carbon molecular sieve membranes and methods of making
CA3018497A1 (en) * 2016-03-21 2017-09-28 Dow Global Technologies Llc Improved method of making carbon molecular sieve membranes
CA3059207A1 (en) * 2017-04-06 2018-10-11 Dow Global Technologies Llc Asymmetric polyvinylidine chloride membranes and carbon molecular sieve membranes made therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9092414B2 (en) 2002-11-27 2015-07-28 Adobe Systems Incorporated Using document templates to assemble a collection of documents

Also Published As

Publication number Publication date
JPH0411933A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
EP0459623B1 (en) Asymmetric hollow filamentary carbon membrane and process for producing same
JP2673846B2 (en) Asymmetric hollow fiber carbon membrane and method for producing the same
JP2588806B2 (en) Gas separation hollow fiber membrane and method for producing the same
US5141642A (en) Aromatic polyimide double layered hollow filamentary membrane and process for producing same
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JP2626837B2 (en) Manufacturing method of asymmetric hollow fiber carbon membrane
CN107596925B (en) Poly 4-methyl-1-pentene radial heterogeneous hollow fiber membrane and preparation method thereof
JPS6242045B2 (en)
EP1034836B1 (en) Use of a partially carbonized asymmetric hollow fiber separation membrane
JP4239618B2 (en) Asymmetric gas separation membrane
JPH07121344B2 (en) Asymmetric hollow fiber carbon membrane and method for producing the same
JP2874741B2 (en) Asymmetric hollow fiber polyimide gas separation membrane
JP3395907B2 (en) Improved polymeric membrane
JP4081956B2 (en) Partially carbonized asymmetric hollow fiber separation membrane, its production method and gas separation method
JP2671072B2 (en) Gas separation membrane manufacturing method
JP3698078B2 (en) Method for producing asymmetric hollow fiber gas separation membrane
JPH0247930B2 (en)
CN107106991B (en) Production of carbon molecular sieve membranes using a pyrolysis atmosphere comprising a sulfur-containing compound
JP5359957B2 (en) Polyimide gas separation membrane and gas separation method
JP5983405B2 (en) Asymmetric gas separation hollow fiber membrane
JP2000185212A (en) Method for separating and recovering perfluoro compound gas and device therefor
JP5051101B2 (en) A method for separating and recovering organic vapor from mixed organic vapor using an asymmetric gas separation membrane.
JPH0693988B2 (en) Polyimide two-layer hollow fiber membrane and method for producing the same
JPS6238207A (en) Manufacture of polyimide hollow yarn
JPH0693985B2 (en) Manufacturing method of polyimide two-layer hollow fiber membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20081225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20091225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20101225