JPH07105237B2 - Hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy electrode

Info

Publication number
JPH07105237B2
JPH07105237B2 JP63080830A JP8083088A JPH07105237B2 JP H07105237 B2 JPH07105237 B2 JP H07105237B2 JP 63080830 A JP63080830 A JP 63080830A JP 8083088 A JP8083088 A JP 8083088A JP H07105237 B2 JPH07105237 B2 JP H07105237B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
styrene
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63080830A
Other languages
Japanese (ja)
Other versions
JPH01253159A (en
Inventor
良夫 森脇
勉 岩城
孝治 蒲生
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63080830A priority Critical patent/JPH07105237B2/en
Publication of JPH01253159A publication Critical patent/JPH01253159A/en
Publication of JPH07105237B2 publication Critical patent/JPH07105237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する水素吸蔵合金
を用いた水素吸蔵合金電極に関するものであり、ニッケ
ル−水素アルカリ二次電池や酸素−水素燃料電池などに
用いられる。
TECHNICAL FIELD The present invention relates to a hydrogen storage alloy electrode using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen, and relates to a nickel-hydrogen alkaline secondary battery or an oxygen-hydrogen secondary battery. Used in hydrogen fuel cells.

従来の技術 水素吸蔵合金を用いた水素吸蔵電極は、電池の高性能化
や長寿命化が期待できることから、最近ニッケル−水素
アルカリ二次電池や酸素−水素燃料電池などの電極とし
て注目され、実用化の試みが活発である。この水素吸蔵
合金電極をアルカリ二次電池を例に述べる。
2. Description of the Related Art Hydrogen storage electrodes using hydrogen storage alloys have recently attracted attention as electrodes for nickel-hydrogen alkaline secondary batteries, oxygen-hydrogen fuel cells, etc., as they can be expected to have higher performance and longer service life. There are many active attempts to achieve this. This hydrogen storage alloy electrode will be described by taking an alkaline secondary battery as an example.

これまでアルカリ二次電池で最も広く使われているのが
ニッケル−カドミウム二次電池である。この電池は、高
率充放電、寿命、温度特性、保存特性などの特性もかな
り優れており、使い易さと高い信頼性が実用をひろげ
た。しかし、依然として高エネルギー密度や無公害への
期待が高く、例えば負極に亜鉛や水素吸蔵合金を用い
た、ニッケル−亜鉛二次電池、ニッケル−水素二次電池
などの新しいアルカリ二次電池が検討されている。
To date, the most widely used alkaline secondary battery is the nickel-cadmium secondary battery. This battery also has excellent characteristics such as high-rate charging / discharging, life, temperature characteristics, and storage characteristics, and its ease of use and high reliability contributed to its practical use. However, there are still high expectations for high energy density and pollution-free, and new alkaline secondary batteries such as nickel-zinc secondary batteries and nickel-hydrogen secondary batteries using zinc or a hydrogen storage alloy for the negative electrode are being studied. ing.

特にこの中で最近注目されてきたのは水素を可逆的に吸
蔵、放出する水素吸蔵合金を負極に用いるニッケル−水
素二次電池である。この場合は、カドミウムや亜鉛など
と同じ取扱いで電池を構成でき、実際の放電可能な容量
密度をカドミウムより大きくできることや亜鉛のような
デンドライトの形成などがないことなどから、高エネル
ギー密度で長寿命、無公害のアルカリ二次電池として有
望である。
Of these, the nickel-hydrogen secondary battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen in the negative electrode has recently attracted attention. In this case, a battery can be constructed in the same manner as cadmium and zinc, and the actual dischargeable capacity density can be made larger than that of cadmium, and there is no formation of dendrite such as zinc. Promising as a pollution-free alkaline secondary battery.

このニッケル−水素二次電池を構成するニッケル極とし
てはニッケル−カドミウム二次電池に使用するニッケル
極でよい。一方の水素吸蔵合金負極としては、水素吸蔵
合金を焼結して得る焼結式と、導電性芯剤にパンチング
メタルやエキスパンドメタル、発泡メタル、金属繊維な
どを用いたペースト式などの非焼結式とは大別できる。
この中で特に焼結式は、製法が複雑で高価になること、
焼結過程で水素吸蔵合金が変質し易く十分な性能が得ら
れにくいことなどの理由から、非焼結式が主流になりつ
つある。
The nickel electrode used in the nickel-cadmium secondary battery may be used as the nickel electrode forming the nickel-hydrogen secondary battery. On the other hand, the negative electrode for hydrogen storage alloys is non-sintered, such as a sintered type obtained by sintering a hydrogen storage alloy, and a paste type that uses punching metal, expanded metal, foam metal, metal fiber, etc. as the conductive core material. It can be roughly divided from the ceremony.
Of these, the sintering type is particularly complicated and expensive.
The non-sintering type is becoming the mainstream because the hydrogen storage alloy is likely to deteriorate in the sintering process and it is difficult to obtain sufficient performance.

ペースト式等の非焼結式製法で作成する場合は、活物質
保持材料である水素吸蔵合金を結着剤によって結着し電
極にするのが通常の方法である。この結着剤は、少量の
添加で強い結着強度を有すること、化学的に安定である
こと、電池反応を阻害しないことなどが要求され、これ
まで水素吸蔵合金電極には、ポリビニルアルコールや、
カルボキシメチルセルローズなどのイオン透過性樹脂
や、ポリエチレン、フッソ樹脂などが提案されていた。
When it is prepared by a non-sintering method such as a paste method, it is a usual method to bind a hydrogen storage alloy, which is an active material holding material, with a binder to form an electrode. This binder is required to have a strong binding strength with a small amount of addition, be chemically stable, do not inhibit the battery reaction, and so on.
Ion-permeable resins such as carboxymethyl cellulose, polyethylene, and fluorine resin have been proposed.

発明が解決しようとする課題 しかし、これらの結着剤を用いた水素吸蔵電極は、結着
剤が少量では水素吸蔵合金特有の充放電の繰返しによっ
て合金が微細化し、電極の性能低下が認められ、多量に
用いると長期間使用の安定性は向上するが、本来の電池
反応を阻害することによる性能低下が認められる。した
がって、使用する結着剤の改善によって長期間にわたっ
て安定に、優れた電池性能を得ることが重要な課題であ
った。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the hydrogen storage electrodes using these binders, when the amount of the binder is small, the alloy becomes finer due to repeated charging / discharging peculiar to the hydrogen storage alloy, and deterioration of the electrode performance is recognized. However, when used in a large amount, the stability of long-term use is improved, but performance deterioration is observed by inhibiting the original battery reaction. Therefore, it has been an important issue to obtain excellent battery performance stably over a long period of time by improving the binder used.

この水素吸蔵合金電極は、充電により合金中に水素を吸
蔵し、放電により合金中の水素を放出する。この水素吸
蔵・放出によって通常合金の膨張と収縮が認められる。
この体積変化としてはほぼ10〜20%程度と非常に大き
い。この結果として合金は微粉化する。これまでの結着
剤ではこのような条件下で優れた性能を有するものがな
い。
This hydrogen storage alloy electrode stores hydrogen in the alloy by charging and releases hydrogen in the alloy by discharging. The expansion and contraction of the alloy is usually recognized by this hydrogen storage / release.
This volume change is very large, about 10 to 20%. As a result of this, the alloy becomes finely divided. No conventional binder has excellent performance under such conditions.

本発明は上記問題点に鑑み、高性能で長寿命の水素吸蔵
合金電極を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a hydrogen storage alloy electrode with high performance and long life.

課題を解決するための手段 本発明は、熱可塑性エラストマーを結着剤として用いる
ことを特徴とする水素吸蔵合金電極である。熱可塑性エ
ラストマーとしては、スチレン−ブタジエン共重合体お
よびスチレン−イソプレン共重合体よりなる群から選ば
れるスチレン系共重合体を用いる。特に、スチレン−エ
チレン−ブタジエン−スチレン共重合体(SEBS)である
ことが好ましい。またこの電極は特に非焼結式であり、
その添加量としては、水素吸蔵合金に対し0.1〜20重量
%であることが好ましい。なお、熱可塑性エラストマー
とフッソ樹脂などの他の樹脂を併用した結着剤も有効で
ある。
Means for Solving the Problems The present invention is a hydrogen storage alloy electrode, characterized by using a thermoplastic elastomer as a binder. As the thermoplastic elastomer, a styrene-based copolymer selected from the group consisting of a styrene-butadiene copolymer and a styrene-isoprene copolymer is used. Particularly, a styrene-ethylene-butadiene-styrene copolymer (SEBS) is preferable. Also, this electrode is especially non-sintered,
The addition amount thereof is preferably 0.1 to 20% by weight with respect to the hydrogen storage alloy. A binder using a thermoplastic elastomer in combination with another resin such as a fluorine resin is also effective.

作用 水素吸蔵合金電極は、充放電により合金が膨張・収縮す
る。この体積変化をうまく緩和して電極としての機能を
向上させるために弾性の著しい熱可塑性エラストマーを
結着剤として用いることが効果的であることが明らかに
なった。すなわち熱可塑性エラストマーを結着剤として
用いるとこのような条件下でも少量の添加で長期間安定
に性能が保たれることが明らかになった。これまでのポ
リビニルアルコール、カルボキシメチルセルローズ、ポ
リエチレン、フッソ樹脂などの結着剤ではこのような条
件下で優れた性能を有するものがなかった。また熱可塑
性エラストマーとしては種々の材料が知られているが、
この水素吸蔵合金電極用としてはスチレン−ブタジエン
共重合体(SBS)、スチレン−イソプレン共重合体(SI
S)などのスチレン系共重合体、特にスチレン−エチレ
ン−ブタジエン−スチレン共重合体(SEBS)であること
により優れた特性を長期にわたって発揮できることがわ
かった。
Action In the hydrogen storage alloy electrode, the alloy expands and contracts by charging and discharging. It was clarified that it is effective to use a thermoplastic elastomer having a remarkable elasticity as a binder in order to properly alleviate this volume change and improve the function as an electrode. That is, it was revealed that when a thermoplastic elastomer is used as a binder, the performance can be stably maintained for a long period of time even under such a condition with a small addition amount. No conventional binder such as polyvinyl alcohol, carboxymethyl cellulose, polyethylene, or fluorine resin has excellent performance under such conditions. Various materials are known as thermoplastic elastomers,
For this hydrogen storage alloy electrode, styrene-butadiene copolymer (SBS), styrene-isoprene copolymer (SI
It was found that excellent properties can be exhibited for a long time by using a styrene-based copolymer such as S), particularly a styrene-ethylene-butadiene-styrene copolymer (SEBS).

実施例 以下、本発明の実施例である水素吸蔵合金電極について
説明する。
Example Hereinafter, a hydrogen storage alloy electrode which is an example of the present invention will be described.

水素吸蔵合金として市販のMm(ミッシュメタル),Ni,C
o,Mn,Alの各原材料を一定の組成比に秤量してアルゴン
アーク溶解炉によってMmNi3.8CO0.5Mn0.4Al0.3合金を製
造した。ついでこの合金を公知の方法に従って真空熱処
理炉で熱処理しその後、この合金試料を400メッシュ以
下の粒径になるように粉砕した。
Commercially available Mm (Misch metal), Ni, C as hydrogen storage alloy
Raw materials of o, Mn, and Al were weighed to a constant composition ratio, and an MmNi 3.8 CO 0.5 Mn 0.4 Al 0.3 alloy was manufactured by an argon arc melting furnace. Then, this alloy was heat-treated in a vacuum heat treatment furnace according to a known method, and then this alloy sample was pulverized to have a particle size of 400 mesh or less.

このようにして得られた水素吸蔵合金粉末を溶剤に溶か
した熱可塑性エラストマーであるスチレン−ブタジエン
共重合体(SBS)、スチレン−イソプレン共重合体(SI
S)スチレン−エチレン−ブタジエン−スチレン共重合
体(SEBS)スチレン−エチレン−ブタジエン−スチレン
共重合体(SEBS)とそれぞれ混合しペースト化し、平均
ポアサイズ150ミクロン、多孔度95%、厚さ1.2mmのシー
ト状発泡ニッケルに充填した。この時の熱可塑性エラス
トマーの添加量は水素吸蔵合金に対しそれぞれ1,2,3,5
重量%になるように調整した。これを130℃で乾燥して
水素吸蔵合金電極を得た。この電極をこれまでの結着剤
を用いた電極と性能の比較を行なった。すなわち、ポリ
ビニルアルコール、カルボキシメチルセルローズ、ポリ
エチレン、フッソ樹脂、についても同様にそれぞれ1,2,
3,5重量%になるように調整し水素吸蔵電極とした。そ
してこれらを電解液が豊富な条件下で対極に過剰のニッ
ケル極を配し、水素吸蔵合金負極で容量規制を行なった
開放系での一定条件下での充放電試験に供した。
Styrene-butadiene copolymer (SBS) and styrene-isoprene copolymer (SI which are thermoplastic elastomers obtained by dissolving the hydrogen storage alloy powder thus obtained in a solvent.
S) Styrene-ethylene-butadiene-styrene copolymer (SEBS) Styrene-ethylene-butadiene-styrene copolymer (SEBS) is mixed and made into a paste, with an average pore size of 150 microns, porosity of 95% and thickness of 1.2 mm. Sheet nickel foam was filled. At this time, the amount of thermoplastic elastomer added was 1, 2, 3, 5 for the hydrogen storage alloy, respectively.
It was adjusted so that it would be weight%. This was dried at 130 ° C. to obtain a hydrogen storage alloy electrode. The performance of this electrode was compared with that of a conventional electrode using a binder. That is, polyvinyl alcohol, carboxymethyl cellulose, polyethylene, and fluorine resin are similarly 1, 2 and
A hydrogen storage electrode was prepared by adjusting the content to be 3,5% by weight. Then, these were subjected to a charge-discharge test under a constant condition in an open system in which an excess nickel electrode was placed on the counter electrode under a condition rich in the electrolytic solution and the capacity was regulated by the hydrogen storage alloy negative electrode.

この結果から、これまでの結着剤による電極の多くは、
添加量が少ないと水素吸蔵合金の電極からの脱落が見ら
れ、逆に結着剤量が多いと合金の単位重量当りの放電容
量が少ないことが確認できた。これに対して熱可塑性エ
ラストマーであるスチレン−ブタジエン共重合体(SB
S)、スチレン−イソプレン共重合体(SIS)スチレン−
エチレン−ブタジエン−スチレン共重合体(SEBS)を用
いた電極はこれらの中で最も優れた性能を500サイクル
程度の試験範囲内では長期間安定して維持しており、そ
の中でもスチレン−エチレン−ブタジエン−スチレン共
重合体(SEBS)を用いた電極は特に優れていた。
From this result, most of the electrodes using binders up to now are
It was confirmed that when the added amount was small, the hydrogen storage alloy was detached from the electrode, and conversely, when the binder amount was large, the discharge capacity per unit weight of the alloy was small. On the other hand, styrene-butadiene copolymer (SB
S), styrene-isoprene copolymer (SIS) styrene-
Electrodes using ethylene-butadiene-styrene copolymer (SEBS) maintain the most excellent performance among them for a long period of time within the test range of about 500 cycles. Among them, styrene-ethylene-butadiene -The electrode using styrene copolymer (SEBS) was particularly excellent.

次にこの電極を用いて密閉形ニッケル−水素二次電池を
構成した結果について説明する。先ほどの方法でスチレ
ン−エチレン−ブタジエン−スチレン共重合体が水素吸
蔵合金に対して0.6重量%になるように調整し、同様に
シート状発泡ニッケルに充填した。これを130℃で乾燥
し、プレスにより平均厚さ0.55mmの水素吸蔵合金電極を
得た。なお、この電極は幅3.9cm長さ26cmに裁断し、リ
ード板を所定の2カ所にスポット溶接により取り付け
た。そして、正極、セパレータと組み合わせてCサイズ
の電槽に収納した。このときの正極は、公知の発泡式ニ
ッケル極を選び、幅3.9cm長さ22cmとして用いた。この
場合もリード板を2カ所取り付けた。またセパレータ
は、ポリアミド不織布を用いた。電解液としては、比重
1.20の苛性カリ水溶液に水酸化リチウムを30g/l溶解し
て用いた。これを封口して密閉形電池とした。この電池
は、正極容量規制で公称容量は3.0Ahである。この電池
をAとする。
Next, the results of constructing a sealed nickel-hydrogen secondary battery using this electrode will be described. The styrene-ethylene-butadiene-styrene copolymer was adjusted to be 0.6% by weight based on the hydrogen storage alloy by the method described above, and the sheet-like foamed nickel was similarly filled. This was dried at 130 ° C. and pressed to obtain a hydrogen storage alloy electrode having an average thickness of 0.55 mm. This electrode was cut into a width of 3.9 cm and a length of 26 cm, and lead plates were attached to two predetermined places by spot welding. Then, it was stored in a C size battery case in combination with the positive electrode and the separator. As the positive electrode at this time, a known foaming nickel electrode was selected and used with a width of 3.9 cm and a length of 22 cm. Also in this case, the lead plates were attached at two places. A polyamide non-woven fabric was used for the separator. Specific gravity of the electrolyte
Lithium hydroxide was used by dissolving 30 g / l in a caustic potash solution of 1.20. This was sealed to form a sealed battery. This battery has a nominal capacity of 3.0 Ah according to the positive electrode capacity regulation. This battery is designated as A.

また、結着剤としてスチレン−ブタジエン共重合体を用
いて同様に構成した実施例の電池をB、さらに比較のた
めポリビニルアルコールを結着剤として構成した従来の
密閉電池をCとして加えた。
In addition, the battery of the example similarly constructed by using a styrene-butadiene copolymer as a binder was added as B, and the conventional sealed battery having polyvinyl alcohol as a binder was added as C for comparison.

これらの電池をそれぞれ10コ作成し、通常の充放電サイ
クル試験によって評価した結果を説明する。
The results of making 10 of each of these batteries and evaluating them by a normal charge / discharge cycle test will be described.

充電は、0.2C(5時間率)で130%まで、放電は0.5C
(2時間率)で終止電圧1.0Vとし充放電サイクルを繰り
返した。その結果A,B,Cいずれの電池も20サイクル程度
の初期は、ほぼ3.0Ahの放電容量が得られた。しかし、
充放電サイクルを進めるに従って徐々にこれらの電池に
差異が見られた。まず電池Cは300サイクル経過でいず
れも放電容量が極端に低下した。電池Bは、500サイク
ル経過までに10コ中7コが放電容量が2.0Ahを下回り、
残り3コについても2.5Ah前後であり、容量低下が見ら
れた。これに対して電池Aは、500サイクル経過後も安
定して3.0〜3.1Ahの放電容量を維持しており、特に電池
Aが寿命特性に優れていることが明らかになった。
Charge up to 130% at 0.2C (5-hour rate), discharge at 0.5C
The charging / discharging cycle was repeated at a final voltage of 1.0 V (at a rate of 2 hours). As a result, in each of the batteries A, B, and C, a discharge capacity of approximately 3.0 Ah was obtained at the beginning of about 20 cycles. But,
Differences were gradually observed in these batteries as the charge / discharge cycle proceeded. First, the discharge capacity of Battery C dropped extremely after 300 cycles. Battery B has a discharge capacity of less than 2.0 Ah for 7 out of 10 batteries by 500 cycles.
The remaining 3 batteries also had a capacity of around 2.5 Ah, showing a decrease in capacity. On the other hand, Battery A stably maintained a discharge capacity of 3.0 to 3.1 Ah even after 500 cycles, and it was revealed that Battery A was particularly excellent in life characteristics.

なお、本実施例では、電極支持体として発泡メタルを用
いた例を示したが、最も低廉な電極が得られるパンチン
グメタルやエキスパンドメタルを用いた場合、さらに金
属繊維などを用いた場合にも有効である。また、結着剤
の添加量については、例えば実施例のような電極支持体
として発泡メタルを用いた場合には5重量%以下の比較
的少量でよく、パンチングメタル板などではそれよりや
や多い20重量%程度までの添加が好ましい。また、本実
施例では熱可塑性エラストマーとして溶液を用いた例を
示したが、この樹脂のエマルジョンやディスパージョン
水溶液を用いて、従来からよく使われている結着剤であ
るポリビニルアルコール、カルボキシメチルセルロー
ズ、ポリエチレン、フッソ樹脂などと併用することも有
効である。以上のことから熱可塑性エラストマーの添加
量は0.1〜20重量%の範囲が良い。
In addition, in the present embodiment, an example in which a foam metal is used as the electrode support is shown, but it is also effective when using punching metal or expanded metal that can obtain the cheapest electrode, and when using metal fiber or the like. Is. The amount of the binder added may be a relatively small amount of 5% by weight or less in the case of using a foam metal as the electrode support as in the example, and may be slightly larger than that in the punching metal plate. Addition up to about wt% is preferred. In addition, although an example of using a solution as the thermoplastic elastomer is shown in this example, an emulsion or dispersion aqueous solution of this resin is used, and polyvinyl alcohol, carboxymethyl cellulose, which is a binder that has been often used from the past, is used. It is also effective to use together with polyethylene, fluorine resin, and the like. From the above, the addition amount of the thermoplastic elastomer is preferably in the range of 0.1 to 20% by weight.

発明の効果 以上のように本発明の水素吸蔵合金電極は、優れた性能
を長期間安定に発揮することができる。
Effects of the Invention As described above, the hydrogen storage alloy electrode of the present invention can exhibit excellent performance stably for a long period of time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非焼結式の水素吸蔵合金電極であって、ス
チレン−ブタジエン共重合体およびスチレン−イソプレ
ン共重合体よりなる群から選ばれるスチレン系共重合体
の熱可塑性エラストマーを結着剤として用いたことを特
徴とする水素吸蔵合金電極。
1. A non-sintered hydrogen storage alloy electrode, comprising a binder of a thermoplastic elastomer of a styrene copolymer selected from the group consisting of a styrene-butadiene copolymer and a styrene-isoprene copolymer. A hydrogen storage alloy electrode characterized by being used as.
【請求項2】熱可塑性エラストマーがスチレン−エチレ
ン−ブタジエン−スチレン共重合体である請求項1記載
の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the thermoplastic elastomer is a styrene-ethylene-butadiene-styrene copolymer.
【請求項3】電極中の熱可塑性エラストマーの含有量が
水素吸蔵合金に対して0.1〜20重量%である請求項1記
載の水素吸蔵合金電極。
3. The hydrogen storage alloy electrode according to claim 1, wherein the content of the thermoplastic elastomer in the electrode is 0.1 to 20% by weight based on the hydrogen storage alloy.
JP63080830A 1988-03-31 1988-03-31 Hydrogen storage alloy electrode Expired - Lifetime JPH07105237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63080830A JPH07105237B2 (en) 1988-03-31 1988-03-31 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63080830A JPH07105237B2 (en) 1988-03-31 1988-03-31 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH01253159A JPH01253159A (en) 1989-10-09
JPH07105237B2 true JPH07105237B2 (en) 1995-11-13

Family

ID=13729328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63080830A Expired - Lifetime JPH07105237B2 (en) 1988-03-31 1988-03-31 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH07105237B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793139B2 (en) * 1990-05-17 1995-10-09 工業技術院長 Hydrogen storage alloy electrode material
JP2548460B2 (en) * 1991-01-30 1996-10-30 松下電器産業株式会社 Negative electrode for non-aqueous electrolyte secondary battery
JP5487384B2 (en) * 2009-01-06 2014-05-07 独立行政法人産業技術総合研究所 Alloy negative electrode for fiber battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166366A (en) * 1984-09-06 1986-04-05 Sanyo Electric Co Ltd Hydrogen-occlusion electrode
JPS6243062A (en) * 1985-07-26 1987-02-25 サフト Making of cadmium electrode for alkaline battery reinforced by polymer and electrode obtained thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166366A (en) * 1984-09-06 1986-04-05 Sanyo Electric Co Ltd Hydrogen-occlusion electrode
JPS6243062A (en) * 1985-07-26 1987-02-25 サフト Making of cadmium electrode for alkaline battery reinforced by polymer and electrode obtained thereby

Also Published As

Publication number Publication date
JPH01253159A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
JP3805876B2 (en) Nickel metal hydride battery
JPH07105237B2 (en) Hydrogen storage alloy electrode
JPH1186898A (en) Alkaline storage battery
JPH0758614B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPS6119063A (en) Hydrogen occlusion electrode
WO2016204742A1 (en) Metal hydride battery electrodes
JP2563638B2 (en) Hydrogen storage alloy electrode
JPS63266768A (en) Manufacture of hydrogen storage electrode
JP3198896B2 (en) Nickel-metal hydride battery
JP6951047B2 (en) Alkaline secondary battery
JPH08148179A (en) Nickel-hydrogen storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH04301045A (en) Hydrogen storage alloy electrode
JP2840336B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH01248472A (en) Nickel electrode for alkaline battery
JPH03226539A (en) Hydrogen storage alloy electrode
JPH0582125A (en) Hydrogen occluding alloy electrode
JPS62184765A (en) Hydrogen absorbing electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
US20150372285A1 (en) Metal Hydride Battery Electrodes
JPS6273564A (en) Metal oxide-hydrogen battery
JPH09289036A (en) Manufacture of alkaline storage battery
JPH10289717A (en) Nickel-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13