JPH0696126B2 - Collision type airflow crusher and crushing method - Google Patents

Collision type airflow crusher and crushing method

Info

Publication number
JPH0696126B2
JPH0696126B2 JP645990A JP645990A JPH0696126B2 JP H0696126 B2 JPH0696126 B2 JP H0696126B2 JP 645990 A JP645990 A JP 645990A JP 645990 A JP645990 A JP 645990A JP H0696126 B2 JPH0696126 B2 JP H0696126B2
Authority
JP
Japan
Prior art keywords
raw material
material supply
powder
supply pipe
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP645990A
Other languages
Japanese (ja)
Other versions
JPH03213162A (en
Inventor
康秀 後関
聡 三ッ村
仁志 神田
祐介 山田
政吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP645990A priority Critical patent/JPH0696126B2/en
Priority to CN 90107336 priority patent/CN1027350C/en
Priority to EP90116657A priority patent/EP0417561B1/en
Priority to DE69027492T priority patent/DE69027492T2/en
Priority to KR1019900013516A priority patent/KR920009291B1/en
Publication of JPH03213162A publication Critical patent/JPH03213162A/en
Priority to US07/983,287 priority patent/US5316222A/en
Priority to US08/178,849 priority patent/US5435496A/en
Publication of JPH0696126B2 publication Critical patent/JPH0696126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式気
流粉砕機及び粉砕方法に関する。
Description: TECHNICAL FIELD The present invention relates to a collision type air flow pulverizer and a pulverization method using a jet air flow (high pressure gas).

また、本発明は、電子写真法、静電印刷法、磁気記録法
などの画像形成方法に用いられるトナーまたはトナー用
着色樹脂粉体を効率良く生成するための衝突式気流粉砕
機及び粉砕方法に関する。
Further, the present invention relates to a collision type air flow pulverizer and a pulverizing method for efficiently producing a toner or a colored resin powder for a toner used in an image forming method such as an electrophotographic method, an electrostatic printing method and a magnetic recording method. .

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流で粉体原料を搬送し、粉体原料を衝突部材に衝突さ
せ、その衝撃力により粉砕するものである。
[Prior Art] A collision-type air flow crusher using a jet airflow conveys a powder raw material by a jet airflow, collides the powder raw material with a collision member, and pulverizes the powder raw material by the impact force.

以下に、その詳細を第5図に基づいて説明する。The details will be described below with reference to FIG.

圧縮気体供給ノズル2を設けたエゼクター方式の原料供
給管3の出口13に対向して衝突部材4を設け、前記原料
供給管3ノズル2より供給される高圧気体により原料供
給口1より被粉砕物原料7を引き込み、これを高圧気体
とともに噴射して衝突部材4の表面14に衝突させ、その
衝撃によって粉砕するようにしたものである。そして、
粉体原料を所望の粒度に粉砕するために使用する場合に
は、粉体原料供給口1と排出口5の間に分級機を配して
閉回路とし、分級機に粉体原料を供給し、その粗粉を粉
体原料供給口1から供給し、粉砕を行い、その粉砕物を
排出口5から分級機に戻すようにして再度分級するよう
にしてあり、その微粉が、所望の粒度の微粉砕物とな
る。
A collision member 4 is provided so as to face an outlet 13 of an ejector-type raw material supply pipe 3 provided with a compressed gas supply nozzle 2, and a material to be crushed from the raw material supply port 1 by high-pressure gas supplied from the raw material supply pipe 3 nozzle 2. The raw material 7 is drawn in, jetted together with the high-pressure gas to collide with the surface 14 of the collision member 4, and is crushed by the impact. And
When the powder raw material is used for pulverizing to a desired particle size, a classifier is placed between the powder raw material supply port 1 and the discharge port 5 to form a closed circuit, and the powder raw material is supplied to the classifier. The coarse powder is supplied from the powder raw material supply port 1, crushed, and the crushed product is returned to the classifier from the discharge port 5 to be classified again, and the fine powder has a desired particle size. It becomes a finely pulverized product.

しかしながら、上記従来例では、原料供給管内に吸引導
入された粉体原料を高圧気流下で充分に分散させること
は困難であることから、原料供給管出口から噴出する粉
流は粉塵濃度の濃い流れとうすい流れに分離してしま
う。
However, in the above-mentioned conventional example, since it is difficult to sufficiently disperse the powder raw material suctioned into the raw material supply pipe under a high-pressure air flow, the powder flow ejected from the raw material supply pipe outlet is a dense dust flow. It separates into a light flow.

そのため、対向する衝突板にあたる粉流は、部分的(局
所的)なものとなり、効率が低下し、処理能力の低下を
引き起こす。また、このような状態で処理能力を大きく
しようとすれば、更に粉塵濃度が部分的に高くなるた
め、効率がより低下し、特に樹脂含有物では衝突板面上
で融着物が発生し、好ましくない。
Therefore, the powder flow that hits the opposing collision plates becomes a partial (local) flow, the efficiency is reduced, and the processing capacity is reduced. In addition, if the treatment capacity is increased in such a state, the dust concentration is further increased locally, so that the efficiency is further reduced, and particularly in the resin-containing material, a fusion product is generated on the collision plate surface, which is preferable. Absent.

加速管内部での粒子の粉砕の効率を上げるために、加速
管出口の手前側に二次高圧ガスを噴出せしめる高圧ガス
給送管を設けた粉砕管が特公昭46-22778号公報で提案さ
れている。これは加速管内部での衝突を促進させること
を意図しており、加速管内でのみ粉砕を行うような粉砕
機には有用な手段であるが、衝突部材に衝突させて粉砕
を行う衝突式気流粉砕機では、有用な方法ではない。な
ぜならば、加速管内で衝突を促進させるために二次高圧
ガスを導入すれば、圧縮気体供給ノズルから導入される
高圧気体による搬送気流が阻害され、原料供給管出口か
ら噴出する粉流の速度が低下してしまう。そのため衝突
部材に衝突する衝撃力が低下し、粉砕効率が低下してし
まい好ましくない。
In order to improve the efficiency of pulverizing particles inside the accelerating tube, a pulverizing tube provided with a high-pressure gas feed tube for ejecting secondary high-pressure gas in front of the accelerating tube outlet is proposed in Japanese Patent Publication No. 46-22778. ing. This is intended to promote collision inside the acceleration tube and is a useful means for a crusher that crushes only inside the acceleration tube. With a crusher it is not a useful method. Because, if the secondary high pressure gas is introduced to promote the collision in the acceleration tube, the carrier air flow due to the high pressure gas introduced from the compressed gas supply nozzle is obstructed, and the velocity of the powder flow ejected from the raw material supply tube outlet is increased. Will fall. Therefore, the impact force that collides with the collision member decreases, and the pulverization efficiency decreases, which is not preferable.

それ故、粉砕効率の良好な粉砕機及び粉砕方法が待望さ
れている。
Therefore, a crusher and a crushing method with good crushing efficiency are desired.

一方、電子写真方による画像形成方法に用いられるトナ
ーまたはトナー用着色樹脂粉体は、通常結着樹脂及び着
色剤または磁性粉を少なくとも含有している。トナー
は、潜像担持体に形成された静電荷像を現像し、形成さ
れたトナー像は普通紙またはプラスチックフィルムの如
き転写材へ転写され、加熱定着手段,圧力ローラ定着手
段または加熱加圧ローラ定着手段の如き定着装置によっ
て転写材上のトナー像は転写材に定着される。したがっ
て、トナーに使用される結着樹脂は、熱及び/または圧
力が付加されると塑性変形する特性を有する。
On the other hand, the toner or the colored resin powder for toner used in the image forming method by electrophotography usually contains at least a binder resin and a colorant or magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or a plastic film, and then heated fixing means, pressure roller fixing means or heating pressure roller. The toner image on the transfer material is fixed to the transfer material by a fixing device such as fixing means. Therefore, the binder resin used for the toner has a characteristic of being plastically deformed when heat and / or pressure is applied.

現在、トナーまたはトナー用着色樹脂粉体は、結着樹脂
及び着色材または磁性粉(必要により、さらに第二成分
を含有)を少なくとも含有する混合物を溶融混練し、溶
融混練物を冷却し、冷却物を粉砕し、粉砕物を分級して
調製される。冷却物の粉砕は、通常、機械的衝撃式粉砕
機により粗粉砕(または中粉砕)され、次いで粉砕粗粉
をジェット気流を用いた衝突式気流粉砕機で微粉砕して
いるのが一般的である。
At present, the toner or the colored resin powder for the toner is melt-kneaded with a mixture containing at least a binder resin and a coloring material or a magnetic powder (and optionally a second component), and the melt-kneaded product is cooled and cooled. It is prepared by crushing the product and classifying the crushed product. Generally, the crushed product is roughly crushed (or medium crushed) by a mechanical impact crusher, and then the crushed coarse powder is finely crushed by a collision type air flow crusher using a jet stream. is there.

かかる場合、従来の第5図に示すような衝突式気流粉砕
機及び粉砕方法では、処理能力を更に向上させようとす
れば、衝突板面上で融着物が発生し、安定生産が行えな
い。そのため、電子写真法による画像形成方法に用いら
れるトナーまたはトナー用着色樹脂粉体を更に効率良く
生成するため上記問題点を解決した、効率のよい衝突式
気流粉砕機及び粉砕方法が望まれている。
In such a case, in the conventional collision-type airflow crusher and crushing method as shown in FIG. 5, if the processing capacity is further improved, a fusion product is generated on the surface of the collision plate and stable production cannot be performed. Therefore, there is a demand for an efficient collision type airflow pulverizer and a pulverization method that solve the above problems in order to more efficiently generate a toner or a colored resin powder for a toner used in an image forming method by electrophotography. .

[発明が解決しようとする課題] 本発明の目的は、上記問題点が解消された効率のよい衝
突式気流粉砕機及び粉砕方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide an efficient collision type airflow crusher and a crushing method in which the above problems are solved.

さらに本発明の目的は、熱可塑性樹脂を主体とする粉体
を効率良く粉砕する衝突式気流粉砕機及び粉砕方法を提
供することにある。
A further object of the present invention is to provide a collision type air flow crusher and a crushing method for efficiently crushing powder mainly composed of a thermoplastic resin.

さらに本発明の目的は粉砕機内に融着が発生しにくく、
安定な連続生産の可能な衝突式気流粉砕機及び粉砕方法
を提供することにある。
Further object of the present invention is less likely to cause fusion in the crusher,
An object of the present invention is to provide a collision type air flow crusher and a crushing method capable of stable continuous production.

さらに本発明の目的は、加熱加圧ローラ定着手段を有す
る複写機及びプリンタに使用されるトナーまたはトナー
用着色樹脂粒子を効率良く生成し得る衝突式気流粉砕機
を提供することにある。
A further object of the present invention is to provide a collision type airflow crusher capable of efficiently producing toner or colored resin particles for toner used in copying machines and printers having a heating and pressure roller fixing means.

さらに本発明の目的は、平均粒径20〜2000μmを有する
樹脂粒子を平均粒径3〜15μmに効率良く微粉砕し得る
衝突式気流粉砕機を提供することにある。
Another object of the present invention is to provide a collision type airflow crusher capable of efficiently pulverizing resin particles having an average particle size of 20 to 2000 μm to an average particle size of 3 to 15 μm.

[課題を解決するための手段及び作用] 本発明の特徴とするところは、原料供給口より被粉砕物
を引き入れ、高圧ガスにより該被粉砕物を粉砕室内に送
り出すエゼクターと、該エゼクターにより噴出する被粉
砕物を衝撃力により粉砕するための衝突部材とを具備
し、該衝突部材を原料供給管出口に対向して粉砕室内に
設けた衝突式気流粉砕機において、原料供給口と原料供
給管出口の間に2次空気導入口を有することを特徴とす
る衝突式気流粉砕機であり、さらに原料供給口と原料供
給管出口との距離をx、原料供給口と2次空気導入口と
の距離をyとした場合、xとyが を満足することが良く、 さらに原料供給管に設けられた2次空気導入口の導入角
度ψが原料供給管の軸方向に対して10゜≦ψ≦80゜を満
足することが良い。
[Means and Actions for Solving the Problems] A feature of the present invention is that an object to be crushed is drawn in from a raw material supply port and ejected by a high-pressure gas into the crushing chamber, and ejected by the ejector. A collision type air flow crusher having a collision member for crushing an object to be crushed by impact force, the collision member being provided in a crushing chamber so as to face the outlet of the raw material supply pipe, the raw material supply port and the raw material supply pipe outlet Is a collision type airflow crusher characterized by having a secondary air introduction port between the raw material supply port and the raw material supply pipe outlet, and a distance between the raw material supply port and the secondary air introduction port. Is defined as y, then x and y are It is preferable that the introduction angle ψ of the secondary air inlet provided in the raw material supply pipe satisfies 10 ° ≦ ψ ≦ 80 ° with respect to the axial direction of the raw material supply pipe.

またエゼクターにより引き入れた粉体を高圧気体により
原料供給管より粉砕室内に吐出させ、対向する衝突部材
に粉体を衝突させて粉砕する粉砕方法において、該原料
供管内に2次空気を導入させることを特徴とする粉体の
粉砕方法であり、 さらにエゼクターのノズルにより供給される高圧気体の
風量をa Nm3/min、原料供給管に導入される2次空気の
風量をb Nm3/minとして、aとbが を満足する条件下で粉砕することを特徴とする粉体の粉
砕方法である。
Further, in the pulverization method in which the powder drawn in by the ejector is discharged into the pulverization chamber from the raw material supply pipe by high-pressure gas, and the powder collides with the opposing collision member to pulverize, secondary air is introduced into the raw material supply pipe. The method of pulverizing powder is characterized in that the air volume of the high pressure gas supplied by the ejector nozzle is a Nm 3 / min, and the air volume of the secondary air introduced into the raw material supply pipe is b Nm 3 / min. , A and b are The method for pulverizing powder is characterized by pulverizing under the conditions that satisfy the above condition.

本発明の衝突式気流粉砕機は、圧縮気体供給ノズルを設
けたエゼクター方式の原料供給管の原料供給管出口に対
向して衝突部材を設け、前記原料供給管内に圧縮気体供
給ノズルより供給される高圧気体により原料供給口より
被粉砕物原料を引き込み、原料供給管の原料供給口と原
料供給管出口との間に設けられた2次空気導入管から原
料供給管内に2次空気を導入しながら、この被粉砕物原
料を高圧気体とともに噴射して衝突部材の表面に衝突さ
せ、その衝撃によって粉砕するようにしたものである。
The collision type airflow crusher of the present invention is provided with a collision member facing the raw material supply pipe outlet of the ejector type raw material supply pipe provided with the compressed gas supply nozzle, and is supplied from the compressed gas supply nozzle into the raw material supply pipe. While drawing the raw material to be crushed from the raw material supply port with high-pressure gas, while introducing the secondary air into the raw material supply pipe from the secondary air introduction pipe provided between the raw material supply port of the raw material supply pipe and the raw material supply pipe outlet The material to be crushed is jetted together with the high-pressure gas to collide with the surface of the collision member, and the impact crushes the material.

本発明においては、このエゼクター方式の原料供給管を
用いているため、原料供給管の圧縮気体供給ノズルより
も後方、すなわち、原料供給管出口と反対側は、負圧と
なり、被粉砕物原料を原料供給口から積極的に引き込ん
で原料供給管に供給することから、原料供給口が原料供
給管の圧縮気体供給ノズルよりも前方、すなわち、原料
供給管出口側に設けられたようなエゼクター方式を用い
ていない原料供給管を用いた場合に比較して、より円滑
に且つ確実に原料供給管内に被粉砕物原料を供給するこ
とができるため、原料供給管内に供給される際の被粉砕
物原料の粉塵濃度にバラツキが生じにくく、さらに、こ
の原料供給管内に供給された被粉砕物原料は、2次空気
導入口から導入された2次空気により凝集が解きほぐさ
れ、分散されていることから、原料供給管出口から被粉
砕物原料を均一に噴出させ、対向する衝突部材の衝突面
に効率よく衝突させて粉砕することができる。
In the present invention, since this ejector type raw material supply pipe is used, a negative pressure is applied to the rear side of the compressed gas supply nozzle of the raw material supply pipe, that is, on the side opposite to the raw material supply pipe outlet, and the raw material to be ground is crushed. Since the raw material supply port is positively drawn from the raw material supply port and supplied to the raw material supply pipe, an ejector method is used in which the raw material supply port is provided in front of the compressed gas supply nozzle of the raw material supply pipe, that is, on the raw material supply pipe outlet side. Compared to the case of using a raw material supply pipe that is not used, the raw material to be ground can be supplied to the raw material supply pipe more smoothly and reliably, so the raw material to be ground when supplied into the raw material supply pipe The dust concentration of the powder does not fluctuate easily, and the raw material to be ground supplied into the raw material supply pipe is dispersed and dispersed by the secondary air introduced from the secondary air inlet. It from the raw material supply tube outlet is uniformly ejected grinding object material can be ground efficiency and good collide with the collision surface of the opposing impinging member.

本発明を添付図面に基づいて詳細に説明する。第1図
は、本発明の気流式粉砕機の概略的断面図及び該粉砕機
を使用した粉砕工程及び分級機による分級工程を組み合
せた粉砕方法のフローチャートを示した図である。
The present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic cross-sectional view of an airflow type crusher of the present invention and a flowchart of a crushing method in which a crushing process using the crusher and a classifying process by a classifier are combined.

被粉砕物原料7は、原料供給管3に圧縮気体供給ノズル
2から圧縮気体を導入することにより、原料供給口1よ
り引き込まれる作用及び自重により原料供給管3に供給
される。原料供給管3には圧縮空気の如き圧縮気体が前
記ノズル2から導入されており、供給された被粉砕物は
圧縮空気の力により原料供給管3を通り、原料供給管出
口13から粉砕室8に高速度で吐出される。吐出された被
粉砕物は原料供給管出口13に対向して設けられた衝突部
材4の衝突面14に衝突して粉砕される。
The material 7 to be crushed is supplied to the raw material supply pipe 3 by the action of drawing compressed gas from the compressed gas supply nozzle 2 into the raw material supply pipe 3 and by the action of being drawn in from the raw material supply port 1 and by its own weight. A compressed gas such as compressed air is introduced from the nozzle 2 into the raw material supply pipe 3, and the pulverized material supplied passes through the raw material supply pipe 3 by the force of the compressed air and from the raw material supply pipe outlet 13 to the pulverization chamber 8 Is ejected at high speed. The discharged object to be crushed collides with the collision surface 14 of the collision member 4 provided facing the raw material supply pipe outlet 13 and is crushed.

本発明では、第1図において原料供給管の被粉砕物原料
供給口1と原料供給管出口13との間に2次空気導入口10
とを設け、2次空気を原料供給管に導入することによ
り、原料供給管内の粉体を分散し、原料供給管出口から
粉体をより均一に噴出させ、対向する衝突面に効率よく
衝突させることで粉砕効率を従来より向上させることが
できる。導入される2次空気は、原料供給管内を高速移
動する粉体の凝集をときほぐし、粉体を分散させるため
に寄与している。
In the present invention, in FIG. 1, the secondary air inlet 10 is provided between the raw material supply port 1 and the raw material supply pipe outlet 13 of the material to be ground of the raw material supply pipe.
And the secondary air is introduced into the raw material supply pipe to disperse the powder in the raw material supply pipe, eject the powder more uniformly from the raw material supply pipe outlet, and efficiently collide with the opposing collision surface. Therefore, the pulverization efficiency can be improved as compared with the conventional one. The secondary air introduced serves to loosen the agglomeration of the powder moving in the raw material supply pipe at high speed and to disperse the powder.

また本発明では原料供給管にエゼクタータイプを使用し
ているため、原料供給口1よりの被粉砕物7の好い込み
が良好であり、凝集性の強い粉体やより微粒径の粉体を
扱う場合に好適である。
Further, in the present invention, since the ejector type is used for the raw material supply pipe, the material 7 to be crushed from the raw material supply port 1 is favored, and the powder having a strong cohesive property or the powder having a finer particle size is used. It is suitable for handling.

第2図に原料供給管の拡大断面図を示し、より詳細に説
明する。導入される2次空気の導入方法については鋭意
検討を重ねた結果、次のような結論に到達した。
FIG. 2 shows an enlarged sectional view of the raw material supply pipe, which will be described in more detail. As a result of extensive studies on the method of introducing the secondary air to be introduced, the following conclusion was reached.

即ち、2次空気の導入の位置については、第2図におい
て被粉砕物原料供給口1と原料供給管出口13との距離を
x、被粉砕物原料供給口1と2次空気導入口10との距離
をyとした場合、xとyが を満たした時良好な結果が得られた。
That is, regarding the introduction position of the secondary air, in FIG. 2, the distance between the crushed material raw material supply port 1 and the raw material supply pipe outlet 13 is x, the crushed material raw material supply port 1 and the secondary air introduction port 10 are If the distance is y, then x and y are Good results were obtained when

また、2次空気導入口の導入角度については、原料供給
管の軸方向に対する角度をψ(第2図)とした時、ψが
10゜≦ψ≦80゜より好ましくは20゜≦ψ≦80゜の条件を
満たした場合に、良好な粉砕結果が得られた。
Regarding the introduction angle of the secondary air introduction port, when the angle with respect to the axial direction of the raw material supply pipe is ψ (Fig. 2), ψ is
Good grinding results were obtained when the condition of 10 ° ≦ ψ ≦ 80 °, more preferably 20 ° ≦ ψ ≦ 80 ° was satisfied.

導入される2次空気の風量については、圧縮気体供給ノ
ズル2から導入される高圧気体による搬送気流の風量を
a Nm3/min、2次空気導入口から導入される2次空気の
総風量をb Nm3/minとした時、 a,bが より好ましくは を満足する条件下で粉砕を行った場合に良好な結果が得
られた。
Regarding the air volume of the secondary air introduced, the air volume of the carrier air flow by the high pressure gas introduced from the compressed gas supply nozzle 2 is
a Nm 3 / min, assuming that the total amount of secondary air introduced from the secondary air inlet is b Nm 3 / min, a and b are More preferably Good results were obtained when pulverization was carried out under the conditions satisfying

本発明における技術思想は、圧縮気体供給ノズルから導
入される高圧気体による搬送気流に被粉砕物原料を投入
し、原料供給管出口から噴出させ、対向する衝突板に粉
体を衝突させて粉砕を行う衝突式気流粉砕機において、
原料供給管内での粉体の分散状態が粉砕効率に影響を及
ぼすのではないかという考え方に基づいている。すなわ
ち、原料供給管から供給される被粉砕物原料は、凝集し
た状態で原料供給管に流入するため、原料供給管内の分
散が不充分となり、そのため原料供給管出口から噴出す
る時、粉塵濃度にバラツキが生じ、衝突板面を有効に利
用できず、粉砕効率が低下するものと考えた。この現象
は粉砕処理量が大きくなるほど顕著になる。
The technical idea in the present invention is that the material to be ground is charged into a carrier flow of high-pressure gas introduced from a compressed gas supply nozzle, jetted from the material supply pipe outlet, and the powder is collided with an opposing collision plate to pulverize. In the collision type airflow crusher to perform,
It is based on the idea that the dispersion state of the powder in the raw material supply pipe may affect the grinding efficiency. That is, since the material to be pulverized supplied from the raw material supply pipe flows into the raw material supply pipe in an agglomerated state, the dispersion in the raw material supply pipe becomes insufficient, and when it is ejected from the raw material supply pipe outlet, the dust concentration becomes It was considered that the crushing efficiency would be reduced due to the variation, the effective use of the collision plate surface. This phenomenon becomes more remarkable as the crushing amount increases.

そこで、これを解決するために、2次空気の導入を考え
出した。2次空気を高圧気体による搬送気流を阻害しな
いで、原料粉体を分散させるように原料供給管に導入す
るという考えに基づいて、本発明に到った。2次空気は
高圧縮気体、常圧気体のいずれを用いてもよい。2次空
気導入口にバルブの如き開閉装置を取り付け導入風量を
制御することは非常に好ましい。原料供給管の円周方向
のどの位置に何本導入口を取り付けるかは、被粉砕物原
料、目標粒子径等により適宜設定すればよい。第3図に
一例として原料供給管の円周方向に2次空気導入口を8
ケ所取り付けた場合のA−A′視断面図を示す。この場
合、8ケ所からどのような配分で2次空気を導入するか
は適宜設定すればよい。また原料供給管の断面は円形に
限定されるものではない。
Therefore, in order to solve this, we have considered the introduction of secondary air. The present invention has been completed based on the idea that the secondary air is introduced into the raw material supply pipe so as to disperse the raw material powder without disturbing the carrier air flow of the high-pressure gas. As the secondary air, either a highly compressed gas or a normal pressure gas may be used. It is very preferable to install an opening / closing device such as a valve on the secondary air inlet to control the amount of introduced air. The number of inlets to be attached at which position in the circumferential direction of the raw material supply pipe may be appropriately set depending on the raw material to be crushed, the target particle size, and the like. As an example, FIG. 3 shows a secondary air inlet port 8 in the circumferential direction of the raw material supply pipe.
A sectional view taken along line A-A 'when attached at a place is shown. In this case, the distribution of the secondary air from the eight locations may be appropriately set. The cross section of the raw material supply pipe is not limited to the circular shape.

原料供給管出口13の内径は、通常10〜100mmを有し、衝
突部材4の直径よりも小さい内径を有することが好まし
い。
The raw material supply pipe outlet 13 usually has an inner diameter of 10 to 100 mm, preferably smaller than the diameter of the collision member 4.

管出口13と衝突部材4の先端部との距離は、衝突部材4
の直径0.3倍乃至3倍が好ましい。0.3倍未満では、過粉
砕が生じる傾向があり、3倍を越える場合は、粉砕効率
が低下する傾向がある。
The distance between the tube outlet 13 and the tip of the collision member 4 is
The diameter is preferably 0.3 to 3 times. If it is less than 0.3 times, over-pulverization tends to occur, and if it exceeds 3 times, the pulverization efficiency tends to decrease.

なお、本発明における衝突式気流粉砕機の粉砕室は第1
図に示す箱型に限定されるものではない。また衝突部材
の衝突面は第1図に示すような管の軸方向に対して垂直
に限定されるものではなく、管出口から噴出する粉体を
効率良く反射し、粉砕室壁に2次衝突させるような形状
にすることがより好ましい。
The crushing chamber of the collision type airflow crusher according to the present invention has the first
The shape is not limited to the box shape shown in the figure. Further, the collision surface of the collision member is not limited to be perpendicular to the axial direction of the pipe as shown in FIG. 1, but the powder ejected from the pipe outlet is efficiently reflected and the secondary collision with the crushing chamber wall is performed. It is more preferable that the shape is such that

また第4図のようにエゼクター方式の原料供給管3とし
て、内面が原料供給管出口13に向かって部分的に狭くな
るテーパー状の原料供給管を用い、この原料供給管3に
2次空気導入口10を設けてもよい。
As shown in FIG. 4, a taper-shaped raw material supply pipe whose inner surface is partially narrowed toward the raw material supply pipe outlet 13 is used as the ejector-type raw material supply pipe 3, and secondary air is introduced into this raw material supply pipe 3. A mouth 10 may be provided.

この場合には、原料供給口1から原料供給管3内に引き
込まれて供給された被粉砕物原料7は、原料供給管出口
13に向かうに従って前記の部分的に狭くなるテーパー状
の部分を通過することにより供給速度が加速されて、原
料供給管出口13からより高速度で粉砕室8内に吐出され
る。
In this case, the material 7 to be crushed drawn from the raw material supply port 1 into the raw material supply pipe 3 and supplied is the raw material supply pipe outlet.
The feed speed is accelerated by passing through the above-mentioned tapered portion which becomes partially narrower toward 13 and is discharged from the raw material feed pipe outlet 13 into the crushing chamber 8 at a higher speed.

[実施例] 以下本発明を実施例に基づいて詳細に説明する。[Examples] The present invention will be described in detail below based on examples.

実施例1 上記原材料をヘンシェルミキサーにて混合し、原料混合
物を得た。次にこの混合物をエクストルーダーにて混練
を行なった後、冷却用ローラーを用いて冷却し、ハンマ
ーミルを用いて100〜1000μmの粒子に粗粉砕を行っ
た。この粗粉砕物を被粉砕物原料とし、第1図に示す粉
砕機及びフローで粉砕を行った。粉砕された粉体を細粉
と粗粉とに分級するための手段として回転羽根型風力分
級機を使用した。
Example 1 The above raw materials were mixed with a Henschel mixer to obtain a raw material mixture. Next, this mixture was kneaded in an extruder, cooled using a cooling roller, and coarsely crushed into particles of 100 to 1000 μm using a hammer mill. This coarsely pulverized material was used as the material to be pulverized and pulverized by the pulverizer and the flow shown in FIG. A rotary blade type air classifier was used as a means for classifying the crushed powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において 2次空気導入口は円周方向8ケ所(第3図)に設けたも
のを用いた。
The raw material supply pipe of the collision type airflow crusher is shown in Fig. 2. Secondary air inlets provided at eight locations in the circumferential direction (Fig. 3) were used.

圧縮気体供給ノズルからa=6.2Nm3/min(6.0kg/cm2
の圧縮空気を導入し、2次空気は第3図におけるA,C,E,
Gの4ケ所(B,D,F,Hは全閉)から、各0.1Nm3/min(6.0k
g/cm2)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm 3 / min (6.0kg / cm 2 )
Compressed air is introduced and the secondary air is A, C, E,
From 4 locations of G (B, D, F, H are fully closed), each 0.1Nm 3 / min (6.0k
g / cm 2 ) of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定し、原料供給口1から2
5kg/時間の割合で被粉砕物原料を供給した。粉砕された
粉体原料は分級機に運ばれ、細粉は分級粉体として取り
除き、荒粉は再び供給口1より粉体原料と共に原料供給
管に投入した。
The classification point of the rotary blade type air classifier is set so that the volume average particle size on the fine powder side is 7.5 μm, and the raw material supply ports 1 to 2 are used.
The material to be ground was supplied at a rate of 5 kg / hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として体積平均粒径7.5μmの粉砕粉体が25kg/時間
の割合で収集された。そして、3時間の連続運転を行っ
たが融着物の発生は全くみられなかった。
A fine powder having a volume average particle size of 7.5 μm was collected at a rate of 25 kg / hour. After continuous operation for 3 hours, no fusion deposit was found.

ここで、粉体の粒度分布は種々の方法によって測定でき
るが、本発明においてはコールターカウンターを用いて
行った。
Here, the particle size distribution of the powder can be measured by various methods, but in the present invention, it was measured using a Coulter counter.

すなわち、測定装置としてはコールターカウンターTA−
II型(コールター社製)を用い、個数分布,体積分布を
出力するインターフェイス(日科機製)及びCX−1パー
ソナルコンピュータ(キャノン製)を接続し、電解液は
1級塩化ナトリウムを用いて1%NaCl水溶液を調製す
る。測定法としては前記電解水溶液100〜150ml中に分散
剤として界面活性剤、好ましくはアルキルベンゼンスル
ホン酸塩を0.1〜5ml加え、更に測定試料を2〜20mg加え
る。試料を懸濁した電解液は超音波分散器で約1〜3分
間分散処理を行い、前記コールターカウンターTA−II型
により、アパチャーとして100μアパチャーを用い、個
数を基準として2〜40μの粒子の粒度分布を測定して、
それから本発明に係るところの値を求めた。
That is, Coulter Counter TA-
Type II (manufactured by Coulter) is connected to an interface (manufactured by Nikkaki) that outputs the number distribution and volume distribution, and a CX-1 personal computer (manufactured by Canon), and the electrolyte is 1% sodium chloride. Prepare an aqueous NaCl solution. As a measuring method, a surfactant, preferably 0.1 to 5 ml of alkylbenzene sulfonate is added as a dispersant to 100 to 150 ml of the electrolytic aqueous solution, and 2 to 20 mg of a measurement sample is further added. The electrolytic solution in which the sample is suspended is subjected to a dispersion treatment for about 1 to 3 minutes with an ultrasonic disperser, and with the Coulter Counter TA-II type, a 100 μ aperture is used as an aperture, and the particle size of the particles is 2 to 40 μ based on the number. Measure the distribution,
Then, the value according to the present invention was determined.

実施例2 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
Example 2 The same raw material to be ground as in Example 1 was crushed by the crusher and the flow shown in FIG.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary blade type air classifier was used as a classifying means for classifying the crushed powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において 2次空気導入口は実施例1と同様のものを用いた。The raw material supply pipe of the collision type airflow crusher is shown in Fig. 2. The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa=6.2Nm3/min(6.0kg/cm2
の圧縮空気を導入し、2次空気は第3図におけるA,C,E,
Gの4ケ所(B,D,F,Hは全閉)から、各0.1Nm3/min(6.0k
g/cm2)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm 3 / min (6.0kg / cm 2 )
Compressed air is introduced and the secondary air is A, C, E,
From 4 locations of G (B, D, F, H are fully closed), each 0.1Nm 3 / min (6.0k
g / cm 2 ) of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定し、原料供給口1から2
4kg/時間の割合で被粉砕物原料を供給した。粉砕された
粉体原料は分級機に運ばれ、細粉は分級粉体として取り
除き、粗粉は再び供給口1より粉体原料と共に原料供給
管に投入した。
The classification point of the rotary blade type air classifier is set so that the volume average particle size on the fine powder side is 7.5 μm, and the raw material supply ports 1 to 2 are used.
The material to be ground was supplied at a rate of 4 kg / hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として体積平均粒径7.5μmの粉砕粉体が24kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a volume average particle size of 7.5 μm was collected at a rate of 24 kg / hour.

実施例3 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
Example 3 The same raw material to be ground as in Example 1 was ground with the grinder and flow shown in FIG.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary blade type air classifier was used as a classifying means for classifying the crushed powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において 2次空気導入口は実施例1と同様のものを用いた。The raw material supply pipe of the collision type airflow crusher is shown in Fig. 2. The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa=6.2Nm3/min(6.0kg/cm2
の圧縮空気を導入し、2次空気は第3図におけるA,B,C,
E,H,Gの6ケ所(D,Fは全閉)から、各0.1Nm3/min(6.0k
g/cm2)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm 3 / min (6.0kg / cm 2 )
Compressed air is introduced, and the secondary air is A, B, C,
From 6 locations of E, H and G (D and F are fully closed), 0.1Nm 3 / min (6.0km each)
g / cm 2 ) of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定し、原料供給口1から2
6kg/時間の割合で被粉砕物原料を供給した。粉砕された
粉体原料は分級機に運ばれ、細粉は分級粉体として取り
除き、粗粉は再び供給口1より被粉砕物原料と共に原料
供給管に投入した。
The classification point of the rotary blade type air classifier is set so that the volume average particle size on the fine powder side is 7.5 μm, and the raw material supply ports 1 to 2 are used.
The material to be ground was supplied at a rate of 6 kg / hour. The pulverized powder raw material was conveyed to the classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the raw material to be ground.

細粉として体積平均粒径7.5μmの粉砕物が26kg/時間の
割合で収集された。
As a fine powder, a pulverized product having a volume average particle size of 7.5 μm was collected at a rate of 26 kg / hour.

比較例1 実施例1と同様の被粉砕物原料を第5図に示す粉砕機及
びフローで粉砕を行った。
Comparative Example 1 The same material to be ground as in Example 1 was ground with the grinder and the flow shown in FIG.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary blade type air classifier was used as a classifying means for classifying the crushed powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管には、圧縮気体供給ノズ
ルから6.6Nm3/min(6.0kg/cm2)の圧縮空気を導入し、
前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定し、粉体原料供給口1
から14kg/時間の割合で被粉砕物原料を供給した。粉砕
された粉体原料は分級機に運ばれ、細粉は分級粉体とし
て取り除き、粗粉は再び供給口1より粉体原料と共に原
料供給管に投入した。
Compressed air of 6.6 Nm 3 / min (6.0 kg / cm 2 ) was introduced from the compressed gas supply nozzle into the raw material supply pipe of the collision type air flow crusher,
The classification point of the rotary blade type air classifier is set so that the volume average particle size on the fine powder side is 7.5 μm, and the powder raw material supply port 1
The raw material to be ground was supplied at a rate of 14 kg / hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉としては体積平均粒径7.5μmの微粉砕物が14kg/時
間の割合で収集された。
Fine powder having a volume average particle size of 7.5 μm was collected at a rate of 14 kg / hour.

実施例4 実施例1と同様の被粉砕物原料を実施例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から28
kg/時間の割合で被粉砕物原料を供給した。
Example 4 The same raw material to be pulverized as in Example 1 was mixed with the powder raw material supply ports 1 to 28 under the same configuration and conditions of the collision type air flow pulverizer as in Example 1.
The material to be ground was supplied at a rate of kg / hour.

分級機の分級点は細粉側の体積平均粒径が8.5μmとな
るように設定した。
The classification point of the classifier was set so that the volume average particle size on the fine powder side was 8.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として体積平均粒径8.5μmの粉砕粉体が28kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a volume average particle diameter of 8.5 μm was collected at a rate of 28 kg / hour.

実施例5 実施例1と同様の被粉砕物原料を実施例3と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から29
kg/時間の割合で被粉砕物原料を供給した。
Example 5 The same raw material to be ground as in Example 1 was mixed with the powder raw material supply ports 1 to 29 under the same configuration and conditions as in the collision type air flow pulverizer as in Example 3.
The material to be ground was supplied at a rate of kg / hour.

分級機の分級点は細粉側の体積平均粒径が8.5μmとな
るように設定した。
The classification point of the classifier was set so that the volume average particle size on the fine powder side was 8.5 μm.

粉砕された原料は分級機に運ばれ、細粉は分級粉体とし
て取り除き、粗粉は再び供給口1より被粉砕物と共に原
料供給管に投入した。
The crushed raw material was conveyed to the classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the object to be pulverized.

細粉として体積平均粒径8.5μmの粉砕粉体が29kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a volume average particle diameter of 8.5 μm was collected at a rate of 29 kg / hour.

比較例2 実施例1と同様の被粉砕物原料を比較例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から17
kg/時間の割合で被粉砕物原料を供給した。
Comparative Example 2 The same raw material to be ground as in Example 1 was mixed with the powder raw material supply ports 1 to 17 under the same configuration and conditions of the collision type air flow mill as in Comparative Example 1.
The material to be ground was supplied at a rate of kg / hour.

分級機の分級点は細粉側の体積平均粒径が8.5μmとな
るように設定した。
The classification point of the classifier was set so that the volume average particle size on the fine powder side was 8.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として重量平均粒径8.5μmの粉砕粉体が17kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a weight average particle diameter of 8.5 μm was collected at a rate of 17 kg / hour.

実施例6 実施例1と同様の被粉砕物原料を実施例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から32
kg/時間の割合で被粉砕物原料を供給した。
Example 6 The same raw material to be ground as in Example 1 was mixed with the powder raw material supply ports 1 to 32 under the same configuration and conditions as in the collision type air flow mill as in Example 1.
The material to be ground was supplied at a rate of kg / hour.

分級機の分級点は細粉側の体積平均粒径が9.5μmとな
るように設定した。
The classification point of the classifier was set so that the volume average particle size on the fine powder side was 9.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として体積平均粒径9.5μmの粉砕粉体が32kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a volume average particle diameter of 9.5 μm was collected at a rate of 32 kg / hour.

実施例7 実施例1と同様の被粉砕物原料を実施例3と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から33
kg/時間の割合で被粉砕物原料を供給した。
Example 7 The same raw material to be crushed as in Example 1 was mixed with the powder raw material supply ports 1 to 33 under the same configuration and conditions of the collision type air flow pulverizer as in Example 3.
The material to be ground was supplied at a rate of kg / hour.

分級機の分級点は細粉側の体積平均粒径が9.5μmとな
るように設定した。
The classification point of the classifier was set so that the volume average particle size on the fine powder side was 9.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として体積平均粒径9.5μmの粉砕粉体が33kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a volume average particle diameter of 9.5 μm was collected at a rate of 33 kg / hour.

比較例3 実施例1と同様の被粉砕物原料を比較例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から21
kg/時間の割合で被粉砕物原料を供給した。
Comparative Example 3 The same raw material to be crushed as in Example 1 was mixed with the powder raw material supply ports 1 to 21 under the same configuration and conditions of the collision type airflow pulverizer as in Comparative Example 1.
The material to be ground was supplied at a rate of kg / hour.

分級機の分級点は細粉側の体積平均粒径が9.5μmとな
るように設定した。
The classification point of the classifier was set so that the volume average particle size on the fine powder side was 9.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the powder raw material.

細粉として体積平均粒径9.5μmの粉砕粉体が21kg/時間
の割合で収集された。
As the fine powder, pulverized powder having a volume average particle diameter of 9.5 μm was collected at a rate of 21 kg / hour.

実施例1乃至7及び比較例1乃至3の結果を第1表に示
す。
The results of Examples 1 to 7 and Comparative Examples 1 to 3 are shown in Table 1.

実施例8 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
Example 8 The same material to be ground as in Example 1 was ground with the grinder and flow shown in FIG.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary blade type air classifier was used as a classifying means for classifying the crushed powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において 2次空気導入口は実施例1と同様のものを用いた。The raw material supply pipe of the collision type airflow crusher is shown in Fig. 2. The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa=6.2Nm3/min(6.0kg/cm2
の圧縮空気を導入し、2次空気は第3図におけるA,B,C,
E,H,Gの6ケ所(D,Fは全閉)から、各0.1Nm3/min(6.0k
g/cm2)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm 3 / min (6.0kg / cm 2 )
Compressed air is introduced, and the secondary air is A, B, C,
From 6 locations of E, H and G (D and F are fully closed), 0.1Nm 3 / min (6.0km each)
g / cm 2 ) of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定した。
The classification point of the rotary blade type air classifier was set so that the volume average particle size on the fine powder side was 7.5 μm.

粉体原料供給口1から26.0kg/時間の割合で被粉砕物原
料を供給した。粉砕された粉体原料は分級機に運ばれ、
細粉は分級粉体として取り除き、粗粉は再び供給口1よ
り粉体原料と共に原料供給管に投入した。
The material to be ground was supplied from the powder material supply port 1 at a rate of 26.0 kg / hour. The crushed powder raw material is conveyed to the classifier,
The fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe through the supply port 1 together with the powder raw material.

細粉として体積平均粒径7.5μmの粉砕粉体が26.0kg/時
間の割合で収集された。
As the fine powder, pulverized powder having a volume average particle size of 7.5 μm was collected at a rate of 26.0 kg / hour.

実施例9 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
Example 9 The same material to be ground as in Example 1 was ground with the grinder and flow shown in FIG.

粉砕された粉体を細粉と粗粉に分級するための分級手段
として回転羽根型風力分級機を使用した。
A rotary blade type air classifier was used as a classifying means for classifying the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の加速管は、第2図において 2次空気導入口は実施例1と同様のものを用いた。The acceleration tube of the collision type airflow crusher is shown in Fig. 2. The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa=6.2Nm3/min(6.0kg/cm2
の圧縮空気を導入し、2次空気は第3図におけるA,B,C,
E,H,Gの6ケ所(D,Fは全閉)から、各0.1Nm3/min(6.0k
g/cm2)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm 3 / min (6.0kg / cm 2 )
Compressed air is introduced, and the secondary air is A, B, C,
From 6 locations of E, H and G (D and F are fully closed), 0.1Nm 3 / min (6.0km each)
g / cm 2 ) of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定した。
The classification point of the rotary blade type air classifier was set so that the volume average particle size on the fine powder side was 7.5 μm.

粉体原料供給口1から24.0kg/時間の割合で被粉砕物原
料を供給した。粉砕された粉体原料は分級機に運ばれ、
細粉は分級粉体として取り除き、粗粉は再び供給口1よ
り粉体原料と共に原料供給管に投入した。
The raw material to be ground was supplied from the powder raw material supply port 1 at a rate of 24.0 kg / hour. The crushed powder raw material is conveyed to the classifier,
The fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe through the supply port 1 together with the powder raw material.

細粉として体積平均粒径7.5μm(コールターカウンタ
ーによる測定)の粉砕粉体が24.0kg/時間の割合で収集
された。
As the fine powder, pulverized powder having a volume average particle size of 7.5 μm (measured by a Coulter counter) was collected at a rate of 24.0 kg / hour.

実施例10 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
Example 10 The same raw material to be ground as in Example 1 was ground with the grinder and flow shown in FIG.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary blade type air classifier was used as a classifying means for classifying the crushed powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において 2次空気導入口は実施例1と同様のものを用いた。The raw material supply pipe of the collision type airflow crusher is shown in Fig. 2. The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa=6.2Nm3/min(6.0kg/cm2
の圧縮空気を導入し、2次空気は第3図におけるA,C,E,
Gの4ケ所(B,D,F,Hは全閉)を開放系にし、常圧空気を
導入した。
From compressed gas supply nozzle a = 6.2Nm 3 / min (6.0kg / cm 2 )
Compressed air is introduced and the secondary air is A, C, E,
Four places of G (B, D, F, H are fully closed) were made open system and atmospheric pressure air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒系が7.5μmになるように設定した。
The classification point of the rotary blade type air classifier was set so that the volume average particle system on the fine powder side was 7.5 μm.

粉体原料供給口1から15.5kg/時間の割合で被粉砕物原
料を供給した。粉砕された粉体原料は分級機に運ばれ、
細粉は分級粉体として取り除き、粗粉は再び供給口1よ
り粉体原料と共に原料供給管に投入した。
The raw material to be ground was supplied from the powder raw material supply port 1 at a rate of 15.5 kg / hour. The crushed powder raw material is conveyed to the classifier,
The fine powder was removed as a classified powder, and the coarse powder was again fed into the raw material supply pipe through the supply port 1 together with the powder raw material.

細粉として体積平均粒径7.5μmの粉砕粉体が15.5kg/時
間の割合で収集され、比較例1に較べて、粉砕処理量は
大であった。
As the fine powder, pulverized powder having a volume average particle size of 7.5 μm was collected at a rate of 15.5 kg / hour, and the pulverization amount was large as compared with Comparative Example 1.

[発明の効果] 以上説明したように、本発明の装置及び方法によれば、
エゼクター方式の原料供給管を用いているため、被粉砕
物原料を原料供給口から原料供給管に積極的に引き込ん
で供給することから、より円滑に且つ確実に供給するこ
とが可能であり、凝集性の強い粉体や、より微粒径の粉
体であっても、粉塵濃度にバラツキが生じることなく原
料供給管に供給することができ、さらに、原料供給管内
に2次空気導入口から2次空気を導入しながら被粉砕物
原料の粉砕を行うことから、原料供給管内の被粉砕物原
料の分散が良好なため、衝突板面に効率良く衝突し、粉
砕効率が向上する。即ち、従来の粉砕機に較べ、処理能
力が向上し、また、同一処理能力では得られる製品の粒
子径をより小さくできる。
As described above, according to the device and method of the present invention,
Since the ejector system raw material supply pipe is used, the material to be crushed is positively drawn into the raw material supply pipe from the raw material supply port and supplied, so that it is possible to supply more smoothly and reliably, and agglomerate. Powder having a strong property or powder having a smaller particle size can be supplied to the raw material supply pipe without variation in dust concentration, and further, from the secondary air inlet to the raw material supply pipe. Since the raw material to be ground is pulverized while introducing the next air, the raw material to be ground is well dispersed in the raw material supply pipe, so that it efficiently collides with the collision plate surface and the pulverization efficiency is improved. That is, compared with the conventional pulverizer, the processing capacity is improved, and the particle size of the obtained product can be made smaller with the same processing capacity.

また、従来例では、粉体が凝集した状態で、衝突板に衝
突するため、特に熱可塑性樹脂を主体とする粉体を原料
とした場合、融着物を発生しやすい。これに対して、本
発明によれば、分散された状態で、衝突板に衝突するた
め、融着物を発生しにくい。
Further, in the conventional example, since the powder collides with the collision plate in a state where the powder is agglomerated, a fused substance is likely to be generated particularly when powder mainly containing a thermoplastic resin is used as a raw material. On the other hand, according to the present invention, since the colliding plate collides with the colliding plate in a dispersed state, it is difficult to generate a fused substance.

また従来例では、粉体が凝集しているため、過粉砕を生
じやすく、そのため得られる粉砕品の粒度分布が幅広の
ものとなるという問題があった。これに対して、本発明
によれば、過粉砕を防止でき、粒度分布のシャープな粉
砕品が得られる。
Further, in the conventional example, since the powder is agglomerated, there is a problem that over-pulverization is likely to occur, and the resulting pulverized product has a wide particle size distribution. On the other hand, according to the present invention, it is possible to prevent excessive pulverization and obtain a pulverized product having a sharp particle size distribution.

また本発明によれば、2次空気を効率良く導入すること
で、原料供給口での空気の吸込能力がさらに向上し、そ
のため、被粉砕物原料の原料供給管内での搬送能力が向
上し、粉砕処理量を従来より高めることができる。本発
明の装置及び方法は粒径が小さくなる程、効果が顕著に
なる。
Further, according to the present invention, by efficiently introducing the secondary air, the suction capacity of air at the raw material supply port is further improved, and therefore, the transfer ability of the material to be ground in the raw material supply pipe is improved, The amount of pulverization processing can be increased more than ever before. The effect of the apparatus and method of the present invention becomes more remarkable as the particle size becomes smaller.

【図面の簡単な説明】[Brief description of drawings]

第1図および第4図は、本発明の衝突式気流粉砕機の概
略的断面図及び該粉砕機を使用した粉砕工程及び分級機
による分級工程を組み合わせた粉砕方法のフローチャー
トを示した図であり、第2図は、本発明の衝突式気流粉
砕機の原料供給管の断面図であり、第3図は、第2図の
A−A′面における断面の一具体例を示した図であり、
第5図は、従来例の衝突式気流粉砕機の概略的断面図、
及び該粉砕機を使用した粉砕工程及び分級機による分級
工程を組み合わせた粉砕方法のフローチャートを示した
図である。 1……粉体原料投入口、2……圧縮気体供給ノズル 3……原料供給管、4……衝突部材 5……排出口、7……被粉砕物 8……粉砕室、10……2次空気導入口 13……原料供給管出口、14……衝突面
FIG. 1 and FIG. 4 are schematic cross-sectional views of a collision type airflow crusher of the present invention and a flow chart of a crushing method in which a crushing process using the crusher and a classifying process by a classifier are combined. 2 is a cross-sectional view of a raw material supply pipe of the collision type airflow crusher of the present invention, and FIG. 3 is a view showing a specific example of a cross section taken along the line AA ′ of FIG. ,
FIG. 5 is a schematic sectional view of a conventional collision-type airflow crusher,
It is the figure which showed the flowchart of the pulverization method which combined the pulverization process using this pulverizer, and the classification process by a classifier. 1 ... Powder raw material inlet, 2 ... Compressed gas supply nozzle 3 ... Raw material supply pipe, 4 ... Collision member 5 ... Discharge port, 7 ... Grinding object, 8 ... Grinding chamber, 10 ... 2 Secondary air inlet 13 …… Raw material supply pipe outlet, 14 …… Collision surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 祐介 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 加藤 政吉 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yusuke Yamada 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Masakichi Kato 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Within the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】原料供給口より被粉砕物を引き入れて高圧
ガスにより該被粉砕物を粉砕室内に送り出すエゼクター
と、該エゼクターにより噴出する被粉砕物を衝突力によ
り粉砕するための衝突部材とを具備し、該衝突部材を原
料供給管出口に対向して粉砕室内に設けた衝突式気流粉
砕機において、前記原料供給口と原料供給管出口の間に
2次空気導入口を有することを特徴とする衝突式気流粉
砕機。
1. An ejector for drawing in an object to be ground from a raw material supply port and sending the object to be ground into a grinding chamber by a high pressure gas, and a collision member for grinding the object to be ground ejected by the ejector with a collision force. The collision type airflow crusher, wherein the collision member is provided in the crushing chamber so as to face the raw material supply pipe outlet, the secondary air introduction port being provided between the raw material supply port and the raw material supply pipe outlet. Collision type airflow crusher.
【請求項2】原料供給口と原料供給管出口との距離を
x、原料供給口と2次空気導入口との距離をyとした場
合、xとyが を満足することを特徴とする請求項(1)記載の衝突式
気流粉砕機。
2. When the distance between the raw material supply port and the raw material supply pipe outlet is x and the distance between the raw material supply port and the secondary air introduction port is y, x and y are The collision-type airflow crusher according to claim 1, wherein
【請求項3】原料供給管に設けられた2次空気導入口の
導入角度ψが原料供給管の軸方向に対して 10゜≦ψ≦80゜ を満足することを特徴とする請求項(1)又は(2)記
載の衝突式気流粉砕機。
3. An inlet angle ψ of a secondary air inlet provided in the raw material supply pipe satisfies 10 ° ≦ ψ ≦ 80 ° with respect to the axial direction of the raw material supply pipe. ) Or (2) the collision type airflow crusher.
【請求項4】エゼクターにより引き入れた粉体を高圧気
体により原料供給管より粉砕室内に吐出させ、対向する
衝突部材に粉体を衝突させて粉砕する粉砕方法におい
て、該原料供給管内に2次空気を導入することを特徴と
する粉体の粉砕方法。
4. A pulverizing method in which a powder drawn by an ejector is discharged from a raw material supply pipe into a pulverizing chamber by a high-pressure gas, and the powder collides against an opposing collision member to pulverize the secondary air in the raw material supply pipe. A method for pulverizing powder, which comprises introducing
【請求項5】エゼクターのノズルにより供給される高圧
気体の風量をa Nm3/min、原料供給管に導入される2次
空気の風量をb Nm3/minとして、aとbが を満足する条件下で粉砕することを特徴とする請求項
(4)記載の粉体の粉砕方法。
5. The flow rate of high-pressure gas supplied by the nozzle of the ejector is a Nm 3 / min, and the flow rate of secondary air introduced into the raw material supply pipe is b Nm 3 / min. The powder pulverizing method according to claim 4, wherein the powder is pulverized under a condition satisfying the above condition.
JP645990A 1989-08-30 1990-01-17 Collision type airflow crusher and crushing method Expired - Lifetime JPH0696126B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP645990A JPH0696126B2 (en) 1990-01-17 1990-01-17 Collision type airflow crusher and crushing method
CN 90107336 CN1027350C (en) 1989-08-30 1990-08-30 Shock-pneumatic pulverizer and puoverizing method for powdered body
EP90116657A EP0417561B1 (en) 1989-08-30 1990-08-30 Collision-type gas current pulverizer and method for pulverizing powders
DE69027492T DE69027492T2 (en) 1989-08-30 1990-08-30 Device and method for impact jet grinding of powdery solids
KR1019900013516A KR920009291B1 (en) 1989-08-30 1990-08-30 Collision type gas current pulverizer and method for pulverizing powders
US07/983,287 US5316222A (en) 1989-08-30 1992-11-30 Collision type gas current pulverizer and method for pulverizing powders
US08/178,849 US5435496A (en) 1989-08-30 1994-01-07 Collision-type gas current pulverizer and method for pulverizing powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP645990A JPH0696126B2 (en) 1990-01-17 1990-01-17 Collision type airflow crusher and crushing method

Publications (2)

Publication Number Publication Date
JPH03213162A JPH03213162A (en) 1991-09-18
JPH0696126B2 true JPH0696126B2 (en) 1994-11-30

Family

ID=11639025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP645990A Expired - Lifetime JPH0696126B2 (en) 1989-08-30 1990-01-17 Collision type airflow crusher and crushing method

Country Status (1)

Country Link
JP (1) JPH0696126B2 (en)

Also Published As

Publication number Publication date
JPH03213162A (en) 1991-09-18

Similar Documents

Publication Publication Date Title
US5358183A (en) Pneumatic pulverizer and process for producing toner
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JPH0549349B2 (en)
JP3114040B2 (en) Collision type air crusher
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP2654989B2 (en) Powder grinding method
JP2759499B2 (en) Powder grinding method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JP2704787B2 (en) Powder material grinding method
JPH0696126B2 (en) Collision type airflow crusher and crushing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP2805332B2 (en) Grinding method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH0651129B2 (en) Collision type airflow crusher and crushing method
JPH03296446A (en) Impact type jet grinder and grinding method
JP2663041B2 (en) Collision type air crusher
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP3313922B2 (en) Crusher
JP3101786B2 (en) Collision type air crusher
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH0651130B2 (en) Collision type airflow crusher and crushing method
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20081130

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20091130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 16