JPH03213162A - Impact type air jet grinder and grinding method - Google Patents

Impact type air jet grinder and grinding method

Info

Publication number
JPH03213162A
JPH03213162A JP2006459A JP645990A JPH03213162A JP H03213162 A JPH03213162 A JP H03213162A JP 2006459 A JP2006459 A JP 2006459A JP 645990 A JP645990 A JP 645990A JP H03213162 A JPH03213162 A JP H03213162A
Authority
JP
Japan
Prior art keywords
raw material
powder
material supply
supply pipe
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006459A
Other languages
Japanese (ja)
Other versions
JPH0696126B2 (en
Inventor
Yasuhide Goseki
康秀 後関
Satoshi Mitsumura
三ッ村 聡
Hitoshi Kanda
仁志 神田
Yusuke Yamada
祐介 山田
Masakichi Kato
政吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP645990A priority Critical patent/JPH0696126B2/en
Priority to CN 90107336 priority patent/CN1027350C/en
Priority to EP90116657A priority patent/EP0417561B1/en
Priority to DE69027492T priority patent/DE69027492T2/en
Priority to KR1019900013516A priority patent/KR920009291B1/en
Publication of JPH03213162A publication Critical patent/JPH03213162A/en
Priority to US07/983,287 priority patent/US5316222A/en
Priority to US08/178,849 priority patent/US5435496A/en
Publication of JPH0696126B2 publication Critical patent/JPH0696126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the fusion in a grinder hard to generate and to perform stable continuous preparation by mounting a secondary air introducing port between a raw material port and the outlet of a raw material supply pipe. CONSTITUTION:A raw material 7 to be ground is supplied to a raw material supply pipe 3 from a powder raw material charging port 1 by a compressed air supply nozzle 2. Compressed air is introduced into the raw material supply pipe 3 from the compressed air supply nozzle 2 and emitted to a grinding chamber 8 at high speed from the outlet 13 of the raw material supply pipe 3. The raw material 7 to be ground collides with the impact surface of the impact member 4 provided in opposed relation to the outlet 13 of the raw material supply pipe 3 to be ground. A secondary air introducing port 10 is provided to the raw material supply pipe between the powder raw material charging port 1 and outlet 13 of the raw material supply pipe 3 and, by introducing secondary air into the raw material supply pipe 3, the powder in the raw material supply pipe is dispersed to be allowed to efficiently collide with the impact surface. By this method, the particle size of a product can be more reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ジェット気流(高圧気体)を用いた衝突式気
流粉砕機及び粉砕方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an impingement type air flow crusher and a crushing method using a jet stream (high pressure gas).

また、本発明は、電子写真法、静電印刷法、磁気記録法
などの画像形成方法に用いられるトナーまたはトナー用
着色樹脂粉体を効率良く生成するための衝突式気流粉砕
機及び粉砕方法に関する。
The present invention also relates to an impingement type air flow crusher and a crushing method for efficiently producing toner or colored resin powder for toner used in image forming methods such as electrophotography, electrostatic printing, and magnetic recording. .

[従来の技術] ジェット気流を用いた衝突式気流粉砕機は、ジェット気
流で粉体原料を搬送し、粉体原料を衝突部材に衝突させ
、その衝撃力により粉砕するものである。
[Prior Art] A collision-type air current pulverizer using a jet stream conveys a powder raw material by a jet stream, collides the powder raw material with a collision member, and crushes it by the impact force.

以下に、その詳細を第5図に基づいて説明する。The details will be explained below based on FIG. 5.

圧縮気体供給ノズル2を設けたエゼクタ一方式の原料供
給管3の出口13に対向して衝突部材4を設け、前記原
料供給管3ノズル2より供給される高圧気体により原料
供給口1より被粉砕物原料7を引き込み、これを高圧気
体とともに噴射して衝突部材4の表面14に衝突させ、
その衝撃によって粉砕するようにしたものである。そし
て、粉体原料を所望の粒度に粉砕するために使用する場
合には、粉体原料供給口1と排出口5の間に分級機を配
して閉回路とし、分級機に粉体原料を供給し、その粗粉
を粉体原料供給口1から供給し、粉砕を行い、その粉砕
物を排出口5から分級機に戻すようにして再度分級する
ようにしてあり、その微粉が、所望の粒度の微粉砕物と
なる。
A collision member 4 is provided opposite the outlet 13 of the raw material supply pipe 3 of the ejector one-way type provided with the compressed gas supply nozzle 2, and the material to be crushed is crushed from the raw material supply port 1 by the high pressure gas supplied from the nozzle 2 of the raw material supply pipe 3. The raw material 7 is drawn in and injected together with high pressure gas to collide with the surface 14 of the collision member 4,
The impact causes it to shatter. When using the powder raw material to grind it to a desired particle size, a classifier is placed between the powder raw material supply port 1 and the discharge port 5 to form a closed circuit, and the powder raw material is supplied to the classifier. The coarse powder is supplied from the powder raw material supply port 1, pulverized, and the pulverized material is returned to the classifier from the discharge port 5 to be classified again. It becomes a finely pulverized product.

しかしながら、上記従来例では、原料供給管内に吸引導
入された粉体原料を高圧気流中で充分に分散させること
は困難であることから、原料供給管出口から噴出する粉
流は粉塵濃度の濃い流れとうすい流れに分離してしまう
However, in the above conventional example, it is difficult to sufficiently disperse the powder raw material sucked into the raw material supply pipe in a high-pressure airflow, so the powder flow jetting out from the raw material supply pipe outlet is a flow with a high dust concentration. It separates into a thin stream.

そのため、対向する衝突板にあたる粉流は、部分的(局
所的)なものとなり、効率が低下し、処理能力の低下を
引き起こす。また、このような状態で処理能力を大きく
しようとすれば、更に粉塵濃度が部分的に高(なるため
、効率がより低下し、特に樹脂含有物では衝突板面上で
融着物が発生し、好ましくない。
Therefore, the powder flow that hits the opposing collision plates becomes partial (local), resulting in a decrease in efficiency and a decrease in throughput. In addition, if we try to increase the processing capacity under these conditions, the dust concentration will become higher in some areas, which will further reduce the efficiency, and especially for resin-containing materials, fused materials will occur on the collision plate surface. Undesirable.

加速管内部での粒子の粉砕の効率を上げるために、加速
管出口の手前側に二次高圧ガスを噴出せしめる高圧ガス
給送管な設けた粉砕管が特公昭46−22778号公報
で提案されている。これは加速管内部での衝突を促進さ
せることを意図しており、加速管内でのみ粉砕を行うよ
うな粉砕機には有用な手段であるが、衝突部材に衝突さ
せて粉砕を行う衝突式気流粉砕機では、有用な方法では
ない。
In order to increase the efficiency of particle pulverization inside the acceleration tube, a crushing tube equipped with a high-pressure gas supply pipe for blowing out secondary high-pressure gas in front of the acceleration tube outlet was proposed in Japanese Patent Publication No. 46-22778. ing. This is intended to promote collisions inside the accelerating tube, and is a useful method for crushers that only perform pulverization within the accelerating tube. In a crusher, this is not a useful method.

なぜならば、加速管内で衝突を促進させるために二次高
圧ガスを導入すれば、圧縮気体供給ノズルから導入され
る高圧気体による搬送気流が阻害され、原料供給管出口
から噴出する粉流の速度が低下してしまう。そのため衝
突部材に衝突する衝撃力が低下し、粉砕効率が低下して
しまい好ましくない。
This is because if secondary high-pressure gas is introduced in the acceleration tube to promote collisions, the carrier airflow caused by the high-pressure gas introduced from the compressed gas supply nozzle is inhibited, and the speed of the powder flow ejected from the raw material supply tube outlet is reduced. It will drop. Therefore, the impact force colliding with the collision member decreases, and the crushing efficiency decreases, which is not preferable.

それ故、粉砕効率の良好な粉砕機及び粉砕方法が待望さ
れている。
Therefore, a crusher and a crushing method with good crushing efficiency are desired.

一方、電子写真法による画像形成方法に用いられるトナ
ーまたはトナー用着色樹脂粉体は、通常結着樹脂及び着
色剤または磁性粉を少なくとも含有している。トナーは
、潜像担持体に形成された静電荷像を現像し、形成され
たトナー像は普通紙またはプラスチックフィルムの如き
転写材へ転写され、加熱定着手段、圧力ローラ定着手段
または加熱加圧ローラ定着手段の如き定着装置によって
転写材上のトナー像は転写材に定着される。したがって
、トナーに使用される結着樹脂は、熱及び/または圧力
が付加されると塑性変形する特性を有する。
On the other hand, toners or colored resin powders for toners used in electrophotographic image forming methods usually contain at least a binder resin, a colorant, or magnetic powder. The toner develops the electrostatic charge image formed on the latent image carrier, and the formed toner image is transferred to a transfer material such as plain paper or plastic film, and is then transferred to a transfer material such as a heat fixing means, a pressure roller fixing means, or a heat pressure roller. The toner image on the transfer material is fixed to the transfer material by a fixing device such as a fixing means. Therefore, the binder resin used in the toner has the property of being plastically deformed when heat and/or pressure is applied.

現在、トナーまたはトナー用着色樹脂粉体は、結着樹脂
及び着色剤または磁性粉(必要により、さらに第三成分
を含有)を少なくとも含有する混合物を溶融混練し、溶
融混線物を冷却し、冷却物を粉砕し、粉砕物を分級して
調製される。冷却物の粉砕は、通常、機械的衝撃式粉砕
機により粗粉砕(または中粉砕)され、次いで粉砕粗粉
をジェット気流を用いた衝突式気流粉砕機で微粉砕して
いるのが一般的である。
Currently, toner or colored resin powder for toner is produced by melt-kneading a mixture containing at least a binder resin and a colorant or magnetic powder (further containing a third component if necessary), cooling the molten mixture, and then cooling the mixture. It is prepared by crushing a substance and classifying the crushed substance. Generally, when pulverizing a cooled material, it is coarsely (or medium) pulverized using a mechanical impact pulverizer, and then the coarse powder is pulverized into a fine pulverizer using an impingement airflow pulverizer that uses a jet stream. be.

かかる場合、従来の第5図に示すような衝突式気流粉砕
機及び粉砕方法では、処理能力を更に向上させようとす
れば、衝突板面上で融着物が発生し、安定生産が行えな
い。そのため、電子写真法による画像形成方法に用いら
れるトナーまたはトナー用着色樹脂粉体を更に効率良く
生成するため上記問題点を解決した、効率のよい衝突式
気流粉砕機及び粉砕方法が望まれている。
In such a case, if the conventional collision-type airflow crusher and crushing method shown in FIG. 5 were to further improve the processing capacity, fused materials would occur on the collision plate surface, making stable production impossible. Therefore, in order to more efficiently produce toner or colored resin powder for toner used in electrophotographic image forming methods, there is a need for an efficient impingement type air flow mill and a milling method that solves the above problems. .

[発明が解決しようとする課題] 本発明の目的は、上記問題点が解消された効率のよい衝
突式気流粉砕機及び粉砕方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide an efficient impingement type air flow crusher and a crushing method in which the above-mentioned problems are solved.

さらに本発明の目的は、熱可塑性樹脂を主体とする粉体
を効率良(粉砕する衝突式気流粉砕機及び粉砕方法を提
供することにある。
A further object of the present invention is to provide an impingement air flow mill and a milling method for efficiently milling powder mainly composed of thermoplastic resin.

さらに本発明の目的は粉砕機内に融着が発生しに<<、
安定な連続生産の可能な衝突式気流粉砕機及び粉砕方法
を提供することにある。
Furthermore, it is an object of the present invention to prevent fusion from occurring within the crusher.
The object of the present invention is to provide an impingement type air flow crusher and a crushing method that enable stable continuous production.

さらに本発明の目的は、加熱加圧ローラ定着手段を有す
る複写機及びプリンタに使用されるトナーまたはトナー
用着色樹脂粒子を効率良(生成し得る衝突式気流粉砕機
を提供することにある。
A further object of the present invention is to provide an impingement-type air current pulverizer that can efficiently produce toner or colored resin particles for toner used in copying machines and printers having heating and pressure roller fixing means.

さらに本発明の目的は、平均粒径20〜2000gmを
有する樹脂粒子を平均粒径3〜l 5pmに効率良(微
粉砕し得る衝突式気流粉砕機を提供することにある。
A further object of the present invention is to provide an impingement type air flow mill that can efficiently (pulverize) resin particles having an average particle size of 20 to 2,000 gm to an average particle size of 3 to 15 pm.

[課題を解決するための手段及び作用]本発明の特徴と
するところは、原料供給口より被粉砕物を引き入れ、高
圧ガスにより該被粉砕物を粉砕室内に送り出すエゼクタ
−と、該エゼクタ−により噴出する被粉砕物を衝撃力に
より粉砕するための衝突部材とを具備し、該衝突部材を
原料供給管出口に対向して粉砕室内に設けた衝突式気流
粉砕機において、原料供給口と原料供給管出口の間に2
次空気導入口を有することを特徴とする衝突式気流粉砕
機であり、さらに原料供給口と原料供給管出口との距離
をX、原料供給口と2次空気導入口との距離をyとした
場合、Xとyが0.2≦−≦0.9 を満足することが良く、 さらに原料供給管に設けられた2次空気導入口の導入角
度ψが原料供給管の軸方向に対して10°≦ψ≦80°
を満足することが良い。
[Means and effects for solving the problems] The present invention is characterized by an ejector that draws in the material to be crushed from a raw material supply port and sends the material to be crushed into the crushing chamber using high-pressure gas; In a collision type airflow crusher, the collision type air flow crusher is equipped with a collision member for crushing the spouted material to be crushed by impact force, and the collision member is installed in the crushing chamber facing the raw material supply pipe outlet. 2 between the pipe outlets
This is a collision type airflow crusher characterized by having a secondary air inlet, and the distance between the raw material supply port and the raw material supply pipe outlet is defined as X, and the distance between the raw material supply port and the secondary air inlet is defined as y. In this case, it is preferable that X and y satisfy 0.2≦−≦0.9, and furthermore, the introduction angle ψ of the secondary air inlet provided in the raw material supply pipe is 10 with respect to the axial direction of the raw material supply pipe. °≦ψ≦80°
Good to be satisfied.

またエゼクタ−により引き入れた粉体を高圧気体により
原料供給管より粉砕室内に吐出させ、対向する衝突部材
に粉体な衝突させて粉砕する粉砕方法において、該原料
供給管内に2次空気を導入させることを特徴とする粉体
の粉砕方法であり、さらにエゼクタ−のノズルにより供
給される高圧気体の風量をa Nm’/min 、原料
供給管に導入される2次空気の風量をb Nm”/mi
nとして、aとbが0.0.001≦b/a≦0,5を
満足する条件下で粉砕することを特徴とする粉体の粉砕
方法である。
In addition, in a grinding method in which the powder drawn in by an ejector is discharged into the grinding chamber from a raw material supply pipe using high-pressure gas, and the powder collides with an opposing collision member to be crushed, secondary air is introduced into the raw material supply pipe. This method is characterized in that the air volume of the high-pressure gas supplied by the nozzle of the ejector is a Nm'/min, and the air volume of the secondary air introduced into the raw material supply pipe is b Nm'/min. mi
This is a powder pulverizing method characterized in that the powder is pulverized under conditions where a and b satisfy 0.0.001≦b/a≦0.5, where n is 0.0.001≦b/a≦0.5.

本発明を添付図面に基づいて詳細に説明する。The present invention will be explained in detail based on the accompanying drawings.

第1図は、本発明の気流式粉砕機の概略的断面図及び該
粉砕機を使用した粉砕工程及び分級機による分級工程を
組み合せた粉砕方法のフローチャートを示した図である
FIG. 1 is a diagram showing a schematic cross-sectional view of the pneumatic pulverizer of the present invention and a flowchart of a pulverization method that combines a pulverization process using the pulverizer and a classification process using a classifier.

被粉砕物原料7は、原料供給口−より圧縮気体供給ノズ
ル2により及び自重により原料供給管3に供給される。
The raw material 7 to be crushed is supplied from the raw material supply port to the raw material supply pipe 3 by the compressed gas supply nozzle 2 and by its own weight.

原料供給管3には圧縮空気の如き圧縮気体が前記ノズル
2から導入されており、供給された被粉砕物は圧縮空気
の力により原料供給管3を通り、原料供給管出口13か
ら粉砕室8に高速度で吐出される。吐出された被粉砕物
は原料供給管出口13に対向して設けられた衝突部材4
の衝突面14に衝突して粉砕される。
A compressed gas such as compressed air is introduced into the raw material supply pipe 3 from the nozzle 2, and the supplied material to be crushed passes through the raw material supply pipe 3 by the force of the compressed air, and enters the crushing chamber 8 from the raw material supply pipe outlet 13. is discharged at high speed. The discharged material to be crushed is collided with a collision member 4 provided opposite to the raw material supply pipe outlet 13.
It collides with the collision surface 14 of , and is crushed.

本発明では、第1図において原料供給管の被粉砕物原料
供給口1と原料供給管出口13との間に2次空気導入口
10を設け、2次空気を原料供給管に導入することによ
り、原料供給管内の粉体を分散し、原料供給管出口から
粉体なより均一に噴出させ、対向する衝突面に効率よ(
衝突させることで粉砕効率を従来より向上させることが
できる。
In the present invention, as shown in FIG. 1, a secondary air inlet 10 is provided between the raw material supply port 1 of the raw material supply pipe and the raw material supply pipe outlet 13, and secondary air is introduced into the raw material supply pipe. , the powder in the raw material supply pipe is dispersed, the powder is ejected more uniformly from the raw material supply pipe outlet, and the powder is efficiently sprayed onto the opposing collision surface (
By colliding, the crushing efficiency can be improved compared to the conventional method.

導入される2次空気は、原料供給管内を高速移動する粉
体の凝集をときほぐし、粉体を分散させるために寄与し
ている。
The introduced secondary air contributes to loosening the agglomeration of the powder moving at high speed within the raw material supply pipe and dispersing the powder.

また本発明では原料供給管にエゼクタ−タイプを使用し
ているため、原料供給口1よりの被粉砕物7の吸い込み
が良好であり、凝集性の強い粉体やより微粒径の粉体を
扱う場合に好適である。
In addition, in the present invention, since an ejector type is used for the raw material supply pipe, the material to be crushed 7 can be suctioned well from the raw material supply port 1, and powder with strong cohesiveness or powder with a finer particle size can be easily absorbed. Suitable for handling.

第2図に原料供給管の拡大断面図を示し、より詳細に説
明する。導入される2次空気の導入方法については鋭意
検討を重ねた結果、次のような結論に到達した。
FIG. 2 shows an enlarged sectional view of the raw material supply pipe, and will be explained in more detail. As a result of extensive studies regarding the method of introducing secondary air, the following conclusions were reached.

即ち、2次空気の導入の位置については、第2図におい
て被粉砕物原料供給口1と原料供給管出口13との距離
をX、被粉砕物原料供給口1と2次空気導入口lOとの
距離をyとした場合、Xとyが を満たした時良好な結果が得られた。
That is, regarding the introduction position of the secondary air, in FIG. Good results were obtained when X and y satisfied the following, where y is the distance between .

また、2次空気導入口の導入角度については、原料供給
管の軸方向に対する角度をψ(第2図)とした時、ψが
10°≦ψ≦80°より好ましくは20°≦ψ≦80°
の条件を満たした場合に、良好な粉砕結果が得られた。
Regarding the introduction angle of the secondary air inlet, when ψ is the angle with respect to the axial direction of the raw material supply pipe (Fig. 2), ψ is 10°≦ψ≦80°, preferably 20°≦ψ≦80. °
Good pulverization results were obtained when the following conditions were met.

導入される2次空気の風量については、圧縮気体供給ノ
ズル2から導入される高圧気体による搬送気流の風量を
a Nm’/min 、 2次空気導入口から導入され
る2次空気の総風量なり Nm3/minとじた時、 a、 bが  0.0.001≦b/a≦0,5より好
ましくは0.O1≦−≦0.4 を満足する条件下で粉砕を行った場合に良好な結果が得
られた。
Regarding the volume of the secondary air introduced, the volume of the carrier airflow by the high-pressure gas introduced from the compressed gas supply nozzle 2 is a Nm'/min, and the total volume of secondary air introduced from the secondary air inlet is calculated as follows. When Nm3/min is set, a and b are 0.0.001≦b/a≦0.5, preferably 0. Good results were obtained when pulverization was performed under conditions satisfying O1≦−≦0.4.

本発明における技術思想は、圧縮気体供給ノズルから導
入される高圧気体による搬送気流に被粉砕物原料を投入
し、原料供給管出口から噴出させ、対向する衝突板に粉
体を衝突させて粉砕を行う衝突式気流粉砕機において、
原料供給管内での粉体の分散状態が粉砕効率に影響を及
ぼすのではないかという考え方に基づいている。すなわ
ち、原料供給管から供給される被粉砕物原料は、凝集し
た状態で原料供給管に流入するため、原料供給管内の分
散が不充分となり、そのため原料供給管出口から噴出す
る時、粉塵濃度にバラツキが生じ、衝突板面を有効に利
用できず、粉砕効率が低下するものと考えた。この現象
は粉砕処理量が大き(なるほど顕著になる。
The technical idea of the present invention is to introduce the raw material to be crushed into a carrier airflow made of high-pressure gas introduced from a compressed gas supply nozzle, jet it out from the raw material supply pipe outlet, and cause the powder to collide with an opposing collision plate to crush the powder. In the collision type air flow crusher,
This method is based on the idea that the state of dispersion of powder within the raw material supply pipe may affect the pulverization efficiency. In other words, the raw material to be crushed, which is supplied from the raw material supply pipe, flows into the raw material supply pipe in a coagulated state, so it is not sufficiently dispersed within the raw material supply pipe, and therefore, when it is ejected from the raw material supply pipe outlet, the dust concentration increases. It was thought that variations would occur, the collision plate surface could not be used effectively, and the crushing efficiency would decrease. This phenomenon becomes more noticeable as the amount of pulverization increases.

そこで、これを解決するために、2次空気の導入を考え
出した。2次空気を高圧気体による搬送気流を阻害しな
いで、原料粉体を分散させるように原料供給管に導入す
るという考えに基づいて、本発明に到った。2次空気は
高圧縮気体、常圧気体のいずれを用いてもよい。2次空
気導入口にバルブの如き開閉装置を取り付は導入風量を
制御することは非常に好ましい。原料供給管の円周方向
のどの位置に何本導入口を取り付けるかは、被粉砕物原
料、目標粒子径等により適宜設定すればよい。第3図に
一例として原料供給管の円周方向に2次空気導入口を8
ケ所取り付けた場合のA−A’視断面図を示す。この場
合、8ケ所からどのような配分で2次空気を導入するか
は適宜設定すればよい。また原料供給管の断面は円形に
限定されるものではない。
Therefore, in order to solve this problem, we came up with the idea of introducing secondary air. The present invention was developed based on the idea of introducing secondary air into a raw material supply pipe so as to disperse raw material powder without interfering with the conveying airflow of high-pressure gas. The secondary air may be either highly compressed gas or normal pressure gas. It is highly preferable to attach an opening/closing device such as a valve to the secondary air inlet to control the amount of air introduced. The location and number of inlets to be installed in the circumferential direction of the raw material supply pipe may be determined as appropriate depending on the raw material to be crushed, the target particle diameter, etc. As an example, Figure 3 shows 8 secondary air inlets in the circumferential direction of the raw material supply pipe.
A sectional view taken along line A-A' shows the case where the parts are attached. In this case, the distribution of the secondary air to be introduced from the eight locations may be determined as appropriate. Further, the cross section of the raw material supply pipe is not limited to a circular shape.

原料供給管出口13の内径は、通常lO〜100mmを
有し、衝突部材4の直径よりも小さい内径を有すること
が好ましい。
The raw material supply pipe outlet 13 usually has an inner diameter of 10 to 100 mm, and preferably has an inner diameter smaller than the diameter of the collision member 4.

管出口13と衝突部材4の先端部との距離は、衝突部材
4の直径の0.3倍乃至3倍が好ましい。
The distance between the tube outlet 13 and the tip of the collision member 4 is preferably 0.3 to 3 times the diameter of the collision member 4.

0.3倍未満では、過粉砕が生じる傾向があり、3倍を
越える場合は、粉砕効率が低下する傾向がある。
If it is less than 0.3 times, over-pulverization tends to occur, and if it exceeds 3 times, the grinding efficiency tends to decrease.

なお、本発明における衝突式気流粉砕機の粉砕室は第1
図に示す箱型に限定されるものではない。また衝突部材
の衝突面は第1図に示すような管の軸方向に対して垂直
に限定されるものではなく、管出口から噴出する粉体を
効率良く反射し、粉砕室壁に2次衝突させるような形状
にすることがより好ましい。
Note that the crushing chamber of the collision type airflow crusher in the present invention is the first
It is not limited to the box shape shown in the figure. In addition, the collision surface of the collision member is not limited to be perpendicular to the axial direction of the tube as shown in Figure 1, but it can efficiently reflect the powder ejected from the tube outlet and cause secondary collision with the crushing chamber wall. It is more preferable to have a shape that allows

また第4図のようにエゼクタ−に加速管タイプの原料供
給管を用い、2次空気を導入して用いてもよい。
Alternatively, as shown in FIG. 4, an accelerating tube type raw material supply pipe may be used as the ejector to introduce secondary air.

[実施例] 以下本発明を実施例に基づいて詳細に説明する。[Example] The present invention will be described in detail below based on examples.

去11肌1 rスチレン−ブチルアクリレート共重合体     1
00重量部上記原材料をヘンシェルミキサーにて混合し
、原料混合物を得た。次にこの混合物をエクストルーダ
ーにて混線を行なった後、冷却用ローラーを用いて冷却
し、ハンマーミルを用いて100〜11000pの粒子
に粗粉砕を行った。この粗粉砕物を被粉砕物原料とし、
第1図に示す粉砕機及びフローで粉砕を行った。粉砕さ
れた粉体を細粉と粗粉とに分級するための手段として回
転羽根型風力分級機を使用した。
11 skin 1 r styrene-butyl acrylate copolymer 1
00 parts by weight of the above raw materials were mixed in a Henschel mixer to obtain a raw material mixture. Next, this mixture was mixed with an extruder, cooled using a cooling roller, and coarsely ground into particles of 100 to 11,000 particles using a hammer mill. This coarsely ground material is used as the raw material for the material to be ground,
Grinding was carried out using the grinder and flow shown in FIG. A rotary vane type wind classifier was used as a means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において x=80m/m  、y=45m/m  (−”=0.
56)ψ=45゜ 2次空気導入口は円周方向8ケ所(第3図)に設けたも
のを用いた。
In Fig. 2, the raw material supply pipe of the collision type air flow crusher is x=80m/m, y=45m/m (-"=0.
56) ψ=45° Secondary air inlets were provided at eight locations in the circumferential direction (Fig. 3).

圧縮気体供給ノズルからa = 6.2Nm3/m1n
(6,0kg/cm”)の圧縮空気を導入し、2次空気
は第3図におけるA、C,E、Gの4ケ所(B、 DF
、Hは全閉)から、各0. lNm37m1n(6,0
kg/cm2)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm3/m1n
(6,0 kg/cm”) compressed air was introduced, and secondary air was distributed at four locations A, C, E, and G in Fig. 3 (B, DF).
, H is fully closed) to 0. lNm37m1n(6,0
kg/cm2) of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定し、原料供給口1か
ら25kg/時間の割合で被粉砕物原料を供給した。粉
砕された粉体原料は分級機に運ばれ、細粉は分級粉体と
して取り除き、粗粉゛は再び供給口1より粉体原料と共
に原料供給管に投入した。
The classification point of the rotary vane type wind classifier was set so that the volume average particle diameter on the fine powder side was 7.5 μm, and the raw material to be crushed was supplied from the raw material supply port 1 at a rate of 25 kg/hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径7.5#Lmの粉砕粉体が25
kg/時間の割合で収集された。そして、3時間の連続
運転を行ったが融着物の発生は全くみられなかった。
As a fine powder, pulverized powder with a volume average particle diameter of 7.5 #Lm is 25
Collected at the rate of kg/hour. After continuous operation for 3 hours, no fused material was observed.

ここで、粉体の粒度分布は種々の方法によって測定でき
るが、本発明においてはコールタ−カウンターを用いて
行った。
Although the particle size distribution of the powder can be measured by various methods, in the present invention it was measured using a Coulter counter.

すなわち、測定装置としてはコールタ−カウンターTA
−n型(コールタ−社製)を用い、個数分布1体積分布
を出力するインターフェイス(日科機製)及びCX−1
パーソナルコンピユータ(キャノン製)を接続し、電解
液は1級塩化ナトリウムを用いて1%NaCj?水溶液
を調製する。測定法としては前記電解水溶液100〜1
50mp中に分散剤として界面活性剤、好ましくはアル
キルベンゼンスルホン酸塩を0.1〜5mi’加え、更
に測定試料を2〜20mg加える。試料を懸濁した電解
液は超音波分散器で約1〜3分間分散処理を行い、前記
コールタ−カウンターTA−II型により、アパチャー
として100μアパチヤーを用い、個数を基準として2
〜40μの粒子の粒度分布を測定して、それから本発明
に係るところの値を求めた。
In other words, the measuring device is Coulter counter TA.
- An interface (manufactured by Nikkaki) and CX-1 that outputs number distribution 1 volume distribution using n type (manufactured by Coulter)
A personal computer (manufactured by Canon) is connected, and the electrolyte is 1% NaCj? using primary sodium chloride. Prepare an aqueous solution. As a measurement method, the electrolytic aqueous solution 100-1
A surfactant, preferably an alkylbenzene sulfonate, is added to 50 mp as a dispersant, and 0.1 to 5 mi' of an alkylbenzene sulfonate is added thereto, and 2 to 20 mg of a measurement sample is added thereto. The electrolytic solution in which the sample was suspended was subjected to a dispersion treatment for about 1 to 3 minutes using an ultrasonic disperser, and then dispersed using the Coulter Counter TA-II model using a 100 μ aperture as the aperture.
The particle size distribution of particles of ~40μ was measured and the values according to the invention were determined therefrom.

支1困ユ 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
The same raw material to be crushed as in Example 1 was crushed using the crusher and flow shown in FIG.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary vane type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において x =80m/m  、  y =45m/m  (−
岬0.56)ψ=55゜ 2次空気導入口は実施例1と同様のものを用いた。
In Fig. 2, the raw material supply pipe of the collision type air flow crusher is x = 80 m/m, y = 45 m/m (-
Cape 0.56) ψ=55° The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa = 6.2Nm3/m1n
(6,0kg/cm2)の圧縮空気を導入し、2次空気
は第3図におけるA、C,E、Gの4ケ所(B、D。
From compressed gas supply nozzle a = 6.2Nm3/m1n
(6.0 kg/cm2) of compressed air was introduced, and the secondary air was placed at four locations A, C, E, and G in Figure 3 (B, D).

F、Hは全閉)から、各0. lNm3/m1n(6,
0kg/cm”)の圧縮空気を導入した。
F and H are fully closed) to 0. lNm3/m1n(6,
Compressed air of 0 kg/cm") was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.51Lmとなるように設定し、原料供給口1
から24kg/時間の割合で被粉砕物原料を供給した。
The classification point of the rotary vane type wind classifier was set so that the volume average particle size on the fine powder side was 7.51 Lm, and the raw material supply port 1
The raw material to be crushed was supplied at a rate of 24 kg/hour.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径7.5#Lmの粉砕粉体が24
kg/時間の割合で収集された。
24 pieces of pulverized powder with a volume average particle size of 7.5 #Lm as fine powder
Collected at the rate of kg/hour.

見見見ユ 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
The same raw material to be crushed as in Example 1 was pulverized using the pulverizer and flow shown in FIG. 1.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary vane type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において ψ=456 2次空気導入口は実施例1と同様のものを用いた。The raw material supply pipe of the collision type air flow crusher is shown in Figure 2. ψ=456 The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa = 6.2Nm3/m1n
(6,0kg7cm2)の圧縮空気を導入し、2次空気
は第3図におけるA、B、C,E、H,Gの6ケ所(D
、Fは全閉)から、各0. lNm37m1n (6,
0kg/cm”)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm3/m1n
(6.0 kg 7 cm2) of compressed air was introduced, and the secondary air was distributed at 6 locations A, B, C, E, H, and G in Figure 3 (D
, F is fully closed) to 0. lNm37m1n (6,
Compressed air of 0 kg/cm") was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5Pmとなるように設定し、原料供給口1か
ら26kg/時間の割合で被粉砕物原料を供給した。粉
砕された粉体原料は分級機に運ばれ、細粉は分級粉体と
して取り除き、粗粉は再び供給口1より被粉砕物原料と
共に原料供給管に投入した。
The classification point of the rotary vane type wind classifier was set so that the volume average particle diameter on the fine powder side was 7.5 Pm, and the raw material to be crushed was supplied from the raw material supply port 1 at a rate of 26 kg/hour. The crushed powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the raw material to be crushed.

細粉として体積平均粒径7.5#Lmの粉砕物が26k
g/時間の割合で収集された。
A pulverized product with a volume average particle size of 7.5#Lm is 26k as a fine powder.
g/hour.

庭較ヨユ 実施例1と同様の被粉砕物原料を第5図に示す粉砕機及
びフローで粉砕を行った。
The same raw material to be crushed as in Example 1 was crushed using the crusher and flow shown in FIG. 5.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary vane type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管には、圧縮気体供給ノズ
ルから6.6Nm3/min (6,0kg/cm2)
の圧縮空気を導入し、前記回転羽根型風力分級機の分級
点を細粉側の体積平均粒径が7.5μmとなるように設
定し、粉体原料供給口1からt4kg/時間の割合で被
粉砕物原料を供給した。粉砕された粉体原料は分級機に
運ばれ、細粉は分級粉体として取り除き、粗粉は再び供
給口1より粉体原料と共に原料供給管に投入した。
6.6Nm3/min (6.0kg/cm2) from the compressed gas supply nozzle to the raw material supply pipe of the collision type air flow crusher.
of compressed air was introduced, the classification point of the rotary vane type wind classifier was set so that the volume average particle size on the fine powder side was 7.5 μm, and the powder was fed from the powder raw material supply port 1 at a rate of t4 kg/hour. The raw material to be crushed was supplied. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径7.5pmの微粉砕物カ月4k
g/時間の割合で収集された。
4k per month of finely ground powder with a volume average particle size of 7.5pm
g/hour.

見立l 実施例1と同様の被粉砕物原料を実施例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から2
8kg/時間の割合で被粉砕物原料を供給した。
Mitate 1 The same raw material to be crushed as in Example 1 was processed from powder raw material supply ports 1 to 2 under the same configuration and conditions of the collision type air flow mill as in Example 1.
The raw material to be ground was supplied at a rate of 8 kg/hour.

分級機の分級点は細粉側の体積平均粒径が8.5pmと
なるように設定した。
The classification point of the classifier was set so that the volume average particle diameter on the fine powder side was 8.5 pm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径8.5μmの粉砕粉体が28k
g/時間の割合で収集された。
As a fine powder, pulverized powder with a volume average particle size of 8.5 μm is 28k.
g/hour.

見立亘玉 実施例1と同様の被粉砕物原料を実施例3と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から2
9kg/時間の割合で被粉砕物原料を供給した。
Mitate Watama The same material to be crushed as in Example 1 was processed from powder raw material supply ports 1 to 2 under the same configuration and conditions of the collision type air flow crusher as in Example 3.
The raw material to be ground was supplied at a rate of 9 kg/hour.

分級機の分級点は細粉側の体積平均粒径が8.5I1.
mとなるように設定した。
The classification point of the classifier is that the volume average particle size on the fine powder side is 8.5I1.
It was set to be m.

粉砕された原料は分級機に運ばれ、細粉は分級粉体とし
て取り除き、粗粉は再び供給口1より被粉砕物と共に原
料供給管に投入した。
The pulverized raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe from the supply port 1 together with the material to be crushed.

細粉として体積平均粒径8.5pmの粉砕粉体が29k
g/時間の割合で収集された。
29k of pulverized powder with a volume average particle size of 8.5pm as fine powder
g/hour.

L敗週ユ 実施例1と同様の被粉砕物原料を比較例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から1
7kg/時間の割合で被粉砕物原料を供給した。
The same raw material to be crushed as in Example 1 was processed from powder raw material supply port 1 to 1 under the same configuration and conditions of the collision type air flow mill as in Comparative Example 1.
The raw material to be ground was supplied at a rate of 7 kg/hour.

分級機の分級点は細粉側の体積平均粒径が8,5pmと
なるように設定した。
The classification point of the classifier was set so that the volume average particle diameter on the fine powder side was 8.5 pm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として重量平均粒径8.5pmの粉砕粉体が17k
g/時間の割合で収集された。
17k of pulverized powder with a weight average particle size of 8.5pm as fine powder
g/hour.

支血■ヱ 実施例1と同様の被粉砕物原料を実施例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から3
2kg/時間の割合で被粉砕物原料を供給した。
The raw material to be crushed is the same as in Example 1, and the same configuration and conditions as in Example 1 are used for the powder raw material supply ports 1 to 3.
The raw material to be ground was supplied at a rate of 2 kg/hour.

分級機の分級点は細粉側の体積平均粒径が9.5#Lm
となるように設定した。
The classification point of the classifier is that the volume average particle size on the fine powder side is 9.5#Lm
It was set so that

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径9.5pmの粉砕粉体が32k
g/時間の割合で収集された。
As a fine powder, pulverized powder with a volume average particle size of 9.5 pm is 32k.
g/hour.

見立■ユ 実施例1と同様の被粉砕物原料を実施例3と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から3
3kg/時間の割合で被粉砕物原料を供給した。
Mitate ■U The same raw material to be crushed as in Example 1 was processed through the powder raw material supply ports 1 to 3 under the same configuration and conditions of the collision type air flow mill as in Example 3.
The raw material to be ground was supplied at a rate of 3 kg/hour.

分級機の分級点は細粉側の体積平均粒径が9.5μmと
なるように設定した。
The classification point of the classifier was set so that the volume average particle diameter on the fine powder side was 9.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口1より粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径9.5pmの粉砕粉体が33k
g/時間の割合で収集された。
A pulverized powder with a volume average particle size of 9.5pm is 33k as a fine powder.
g/hour.

L較■1 実施例1と同様の被粉砕物原料を比較例1と同様の衝突
式気流粉砕機の構成及び条件で粉体原料供給口1から2
1kg/時間の割合で被粉砕物原料を供給した。
L Comparison ■1 The same raw material to be crushed as in Example 1 was processed from powder raw material supply ports 1 to 2 under the same configuration and conditions of the collision type air flow mill as in Comparative Example 1.
The raw material to be ground was supplied at a rate of 1 kg/hour.

分級機の分級点は細粉側の体積平均粒径が9.5μmと
なるように設定した。
The classification point of the classifier was set so that the volume average particle diameter on the fine powder side was 9.5 μm.

粉砕された粉体原料は分級機に運ばれ、細粉は分級粉体
として取り除き、粗粉は再び供給口lより粉体原料と共
に原料供給管に投入した。
The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径9.5)zmの粉砕粉体が21
kg/時間の割合で収集された。
A pulverized powder with a volume average particle size of 9.5) zm as a fine powder is 21
Collected at the rate of kg/hour.

実施例1乃至7及び比較例1乃至3の結果を第1表に示
す。
The results of Examples 1 to 7 and Comparative Examples 1 to 3 are shown in Table 1.

(以下余白) 第 表 *l) *2) *3) 比較例1の供給高圧空気流量I Nm”/min あた
りの粉砕処理能力を1とした時の処理能力比比較例2の
供給高圧空気流量I Nm3/min あたりの粉砕処
理能力を1とした時の処理能力比比較例3の供給高圧空
気流量I Nm3/min あたりの粉砕処理能力を1
とした時の処理能カ比実IL溢 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
(Leaving space below) Table *l) *2) *3) Processing capacity ratio when the pulverization processing capacity per I Nm”/min of supply high-pressure air flow rate of Comparative Example 1 is set to 1. Supply high-pressure air flow rate of Comparative Example 2 Processing capacity ratio when the crushing capacity per I Nm3/min is 1
The same raw material to be crushed as in Example 1 was pulverized using the pulverizer and flow shown in FIG. 1.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary vane type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において x=80m/m  、y=55m/m  (−”Fo、
69)ψ=456 2次空気導入口は実施例1と同様のものを用いた。
In Fig. 2, the raw material supply pipe of the collision type air flow crusher is x = 80 m/m, y = 55 m/m (-"Fo,
69) ψ=456 The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa = 6.2Nm3/m1n
(6,0kg/cm”)の圧縮空気を導入し、2次空気
は第3図におけるA、B、C,E、H,Gの6ケ所(D
、Fは全閉)から、各0. lNm3/m1n(6,0
kg/cm”)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm3/m1n
(6,0 kg/cm”) compressed air is introduced, and secondary air is supplied at six locations A, B, C, E, H, and G in Figure 3 (D
, F is fully closed) to 0. lNm3/m1n(6,0
kg/cm") of compressed air was introduced.

a       I)、Z 前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5pmとなるように設定した。
a I), Z The classification point of the rotary vane type wind classifier was set so that the volume average particle diameter on the fine powder side was 7.5 pm.

粉体原料供給口1から26.0kg/時間の割合で被粉
砕物原料を供給した。粉砕された粉体原料は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び供給
口lより粉体原料と共に原料供給管に投入した。
The raw material to be ground was supplied from the powder raw material supply port 1 at a rate of 26.0 kg/hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径7.5gmの粉砕粉体が26、
0kg/時間の割合で収集された。
26 pulverized powder with a volume average particle size of 7.5 gm as fine powder;
Collected at a rate of 0 kg/hour.

支1■上 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
Support 1② The same raw material to be crushed as in Example 1 was pulverized using the pulverizer and flow shown in FIG. 1.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary vane type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の加速管は、第2図においてx =8
0m/m  、  y =36m/m  (=0.45
)ψ= 45” 2次空気導入口は実施例1と同様のものを用いた。
The acceleration tube of the collision type air flow crusher is x = 8 in Fig. 2.
0m/m, y = 36m/m (=0.45
) ψ=45'' The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa = 6.2Nm”/m1n
(6,Okg/cm”)の圧縮空気を導入し、2次空気
は第3図におけるA、B、C,E、H,Gの6ケ所(D
、Fは全閉)から、各0.1Nm”/m1n(6,0k
g/cm”)の圧縮空気を導入した。
From compressed gas supply nozzle a = 6.2Nm”/m1n
(6,0 kg/cm”) of compressed air was introduced, and secondary air was supplied at six locations A, B, C, E, H, and G in Figure 3 (D
, F is fully closed) to 0.1Nm”/m1n (6,0k
g/cm") of compressed air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmとなるように設定した。
The classification point of the rotary vane type wind classifier was set so that the volume average particle size on the fine powder side was 7.5 μm.

粉体原料供給口1から24.0kg/時間の割合で被粉
砕物原料を供給した。粉砕された粉体原料は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び供給
口1より粉体原料と共に原料供給管に投入した。
The raw material to be ground was supplied from the powder raw material supply port 1 at a rate of 24.0 kg/hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径7.5μm (コールタ−カウ
ンターによる測定)の粉砕粉体が24.0kl;7時間
の割合で収集された。
A pulverized powder having a volume average particle size of 7.5 μm (as measured by a Coulter counter) was collected as fine powder at a rate of 24.0 kl; 7 hours.

及Llu且 実施例1と同様の被粉砕物原料を第1図に示す粉砕機及
びフローで粉砕を行った。
The same materials as in Example 1 were pulverized using the pulverizer and flow shown in FIG. 1.

粉砕された粉体を細粉と粗粉とに分級するための分級手
段として回転羽根型風力分級機を使用した。
A rotary vane type wind classifier was used as a classification means to classify the pulverized powder into fine powder and coarse powder.

衝突式気流粉砕機の原料供給管は、第2図において x=80m/m  、y=45m/m  (−=0.5
6)ψ= 45″ 2次空気導入口は実施例1と同様のものを用いた。
In Fig. 2, the raw material supply pipe of the collision type air flow crusher is x = 80 m/m, y = 45 m/m (- = 0.5
6) ψ=45″ The same secondary air inlet as in Example 1 was used.

圧縮気体供給ノズルからa := 6.2Nm37mi
n(6,0kg/cn+2)の圧縮空気を導入し、2次
空気は第3図におけるA、C,E、Gの4ケ所(B。
From compressed gas supply nozzle: = 6.2Nm37mi
n (6.0 kg/cn+2) of compressed air was introduced, and secondary air was distributed at four locations A, C, E, and G in Fig. 3 (B.

D、F、Hは全閉)を開放系にし、常圧空気を導入した
D, F, and H (fully closed) were made open systems, and normal pressure air was introduced.

前記回転羽根型風力分級機の分級点を細粉側の体積平均
粒径が7.5μmになるように設定した。
The classification point of the rotary vane type wind classifier was set so that the volume average particle size on the fine powder side was 7.5 μm.

粉体原料供給口1から15.5kg/時間の割合で被粉
砕物原料を供給した。粉砕された粉体原料は分級機に運
ばれ、細粉は分級粉体として取り除き、粗粉は再び供給
口lより粉体原料と共に原料供給管に投入した。
The raw material to be ground was supplied from the powder raw material supply port 1 at a rate of 15.5 kg/hour. The pulverized powder raw material was conveyed to a classifier, the fine powder was removed as classified powder, and the coarse powder was again fed into the raw material supply pipe together with the powder raw material from the supply port 1.

細粉として体積平均粒径7.5ILmの粉砕粉体が15
.5kg/時間の割合で収集され、比較例1に較べて、
粉砕処理量は大であった。
A pulverized powder with a volume average particle size of 7.5 ILm is used as a fine powder.
.. Collected at a rate of 5 kg/hour, compared to Comparative Example 1,
The grinding throughput was large.

[発明の効果] 以上説明したように、本発明の装置及び方法によれば、
原料供給管内の被粉砕物原料の分散が良好なため、衝突
板面に効率良く衝突し、粉砕効率が向上する。即ち、従
来の粉砕機に較べ、処理能力が向上し、また、同一処理
能力では得られる製品の粒子径をより゛小さくできる。
[Effects of the Invention] As explained above, according to the apparatus and method of the present invention,
Since the raw material to be crushed in the raw material supply pipe is well dispersed, it efficiently collides with the collision plate surface, improving the crushing efficiency. That is, compared to conventional pulverizers, the processing capacity is improved, and the particle size of the product obtained can be made smaller with the same processing capacity.

また、従来例では、粉体が凝集した状態で、衝突板に衝
突するため、特に熱可塑性樹脂を主体とする粉体を原料
とした場合、融着物を発生しやすい。これに対して、本
発明によれば、分散された状態で、衝突板に衝突するた
め、融着物を発生しにくい。
In addition, in the conventional example, since the powder collides with the collision plate in an aggregated state, it is easy to generate fused materials, especially when the powder is mainly composed of a thermoplastic resin. In contrast, according to the present invention, since the particles collide with the collision plate in a dispersed state, it is difficult to generate fused materials.

また従来例では、粉体が凝集しているため、過粉砕を生
じやすく、そのため得られる粉砕品の粒度分布が幅広の
ものとなるという問題があった。
In addition, in the conventional example, since the powder is agglomerated, over-pulverization tends to occur, resulting in a problem that the resulting pulverized product has a wide particle size distribution.

これに対して、本発明によれば、過粉砕を防止でき、粒
度分布のシャープな粉砕品が得られる。
On the other hand, according to the present invention, over-pulverization can be prevented and a pulverized product with a sharp particle size distribution can be obtained.

また本発明によれば、2次空気を効率良く導入すること
で、原料供給口での空気の吸込能力がさらに向上し、そ
のため、被粉砕物原料の原料供給管内での搬送能力が向
上し、粉砕処理量を従来より高めることができる。本発
明の装置及び方法は粒径が小さ(なる程、効果が顕著に
なる。
Further, according to the present invention, by efficiently introducing secondary air, the air suction capacity at the raw material supply port is further improved, and therefore, the conveyance capacity of the raw material to be crushed within the raw material supply pipe is improved. The amount of pulverization can be increased compared to conventional methods. The device and method of the present invention have a smaller particle size (the smaller the particle size, the more pronounced the effect).

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第4図は、本発明の衝突式気流粉砕機の概
略的断面図及び該粉砕機を使用した粉砕工程及び分級機
による分級工程を組み合わせた粉砕方法のフローチャー
トを示した図であり、第2図は、本発明の衝突式気流粉
砕機の原料供給管の断面図であり、第3図は、第2図の
A−A’面における断面の一具体例を示した図であり、
第5図は、従来例の衝突式気流粉砕機の概略的断面図、
及び該粉砕機を使用した粉砕工程及び分級機による分級
工程を組み合わせた粉砕方法のフローチャートを示した
図である。
FIG. 1 and FIG. 4 are diagrams showing a schematic cross-sectional view of the impingement type air flow crusher of the present invention and a flowchart of a crushing method that combines a crushing process using the crusher and a classification process using a classifier. , FIG. 2 is a cross-sectional view of the raw material supply pipe of the collision type air flow crusher of the present invention, and FIG. 3 is a diagram showing a specific example of the cross section taken along the line A-A' in FIG. ,
FIG. 5 is a schematic cross-sectional view of a conventional collision type air flow crusher;
FIG. 3 is a diagram showing a flowchart of a pulverization method that combines a pulverization process using the pulverizer and a classification process using a classifier.

Claims (1)

【特許請求の範囲】 (1)原料供給口より被粉砕物を引き入れて高圧ガスに
より該被粉砕物を粉砕室内に送り出すエゼクターと、該
エゼクターにより噴出する被粉砕物を衝突力により粉砕
するための衝突部材とを具備し、該衝突部材を原料供給
管出口に対向して粉砕室内に設けた衝突式気流粉砕機に
おいて、前記原料供給口と原料供給管出口の間に2次空
気導入口を有することを特徴とする衝突式気流粉砕機。 (2)原料供給口と原料供給管出口との距離をx、原料
供給口と2次空気導入口との距離をyとした場合、xと
yが 0.2≦y/x≦0.9 を満足することを特徴とする請求項(1)記載の衝突式
気流粉砕機。 (3)原料供給管に設けられた2次空気導入口の導入角
度ψが原料供給管の軸方向に対して 10゜≦ψ≦80゜ を満足することを特徴とする請求項(1)又は(2)記
載の衝突式気流粉砕機。 (4)エゼクターにより引き入れた粉体を高圧気体によ
り原料供給管より粉砕室内に吐出させ、対向する衝突部
材に粉体を衝突させて粉砕する粉砕方法において、該原
料供給管内に2次空気を導入することを特徴とする粉体
の粉砕方法。 (5)エゼクターのノズルにより供給される高圧気体の
風量をaNm^3/min、原料供給管に導入される2
次空気の風量をbNm^3/minとして、aとbが0
.001≦b/a≦0.5 を満足する条件下で粉砕することを特徴とする請求項(
4)記載の粉体の粉砕方法。
[Scope of Claims] (1) An ejector that draws in a material to be crushed from a raw material supply port and sends the material to be crushed into a crushing chamber using high-pressure gas, and an ejector for pulverizing the material to be crushed by collision force ejected by the ejector. A collision type air flow pulverizer is provided with a collision member, and the collision member is provided in the pulverizing chamber facing the raw material supply pipe outlet, and the collision type air flow mill has a secondary air introduction port between the raw material supply port and the raw material supply pipe outlet. A collision type air flow crusher characterized by: (2) If the distance between the raw material supply port and the raw material supply pipe outlet is x, and the distance between the raw material supply port and the secondary air introduction port is y, then x and y are 0.2≦y/x≦0.9 The impingement type air flow crusher according to claim 1, which satisfies the following. (3) Claim (1) or (2) The collision type air flow crusher described in (2). (4) In a grinding method in which the powder drawn in by an ejector is discharged into the grinding chamber from a raw material supply pipe using high-pressure gas, and the powder is crushed by colliding with an opposing collision member, secondary air is introduced into the raw material supply pipe. A method for pulverizing powder, characterized by: (5) The flow rate of high-pressure gas supplied by the ejector nozzle is aNm^3/min, and the amount of air introduced into the raw material supply pipe is 2
Next, when the air flow rate is bNm^3/min, a and b are 0.
.. 001≦b/a≦0.5.
4) The method for pulverizing the powder described above.
JP645990A 1989-08-30 1990-01-17 Collision type airflow crusher and crushing method Expired - Lifetime JPH0696126B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP645990A JPH0696126B2 (en) 1990-01-17 1990-01-17 Collision type airflow crusher and crushing method
CN 90107336 CN1027350C (en) 1989-08-30 1990-08-30 Shock-pneumatic pulverizer and puoverizing method for powdered body
EP90116657A EP0417561B1 (en) 1989-08-30 1990-08-30 Collision-type gas current pulverizer and method for pulverizing powders
DE69027492T DE69027492T2 (en) 1989-08-30 1990-08-30 Device and method for impact jet grinding of powdery solids
KR1019900013516A KR920009291B1 (en) 1989-08-30 1990-08-30 Collision type gas current pulverizer and method for pulverizing powders
US07/983,287 US5316222A (en) 1989-08-30 1992-11-30 Collision type gas current pulverizer and method for pulverizing powders
US08/178,849 US5435496A (en) 1989-08-30 1994-01-07 Collision-type gas current pulverizer and method for pulverizing powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP645990A JPH0696126B2 (en) 1990-01-17 1990-01-17 Collision type airflow crusher and crushing method

Publications (2)

Publication Number Publication Date
JPH03213162A true JPH03213162A (en) 1991-09-18
JPH0696126B2 JPH0696126B2 (en) 1994-11-30

Family

ID=11639025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP645990A Expired - Lifetime JPH0696126B2 (en) 1989-08-30 1990-01-17 Collision type airflow crusher and crushing method

Country Status (1)

Country Link
JP (1) JPH0696126B2 (en)

Also Published As

Publication number Publication date
JPH0696126B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JP3101416B2 (en) Collision type airflow pulverizer and method for producing toner for electrostatic image development
KR920009291B1 (en) Collision type gas current pulverizer and method for pulverizing powders
JPH0549349B2 (en)
JP3114040B2 (en) Collision type air crusher
JP3110965B2 (en) Collision type airflow pulverizer and method for producing toner for developing electrostatic image using the same
JP3093344B2 (en) Collision type air flow crusher and powder material crushing method
JP2663046B2 (en) Collision type air flow crusher and crushing method
JPH03213162A (en) Impact type air jet grinder and grinding method
JP2654989B2 (en) Powder grinding method
JP2759499B2 (en) Powder grinding method
JP3703256B2 (en) Collision type airflow crusher and toner manufacturing method
JP3093343B2 (en) Collision type air flow crusher and powder material crushing method
JP2805332B2 (en) Grinding method
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH0386257A (en) Collision-type jet pulverizer and crushing method
JPH03296446A (en) Impact type jet grinder and grinding method
JP2704787B2 (en) Powder material grinding method
JPH08103685A (en) Impact type pneumatic pulverizer and production of electrostatic charge image developing toner
JP2663041B2 (en) Collision type air crusher
JP3101786B2 (en) Collision type air crusher
JPH07185383A (en) Circulation type pulverizing and classifying machine
JPH08182938A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JPH08117633A (en) Production of impact pneumatic pulverizer and static charge developing toner
JPH03109951A (en) Collision type air flow grinder and grinding method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 16