JPH0684517A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPH0684517A
JPH0684517A JP4259091A JP25909192A JPH0684517A JP H0684517 A JPH0684517 A JP H0684517A JP 4259091 A JP4259091 A JP 4259091A JP 25909192 A JP25909192 A JP 25909192A JP H0684517 A JPH0684517 A JP H0684517A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon fiber
vapor
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4259091A
Other languages
Japanese (ja)
Inventor
Takashi Osaki
孝 大崎
Masanao Terasaki
正直 寺崎
Shigeo Komatsu
茂生 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Japan Storage Battery Co Ltd
Original Assignee
Nikkiso Co Ltd
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd, Japan Storage Battery Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP4259091A priority Critical patent/JPH0684517A/en
Publication of JPH0684517A publication Critical patent/JPH0684517A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase capacity and reduce deterioration accompanying a charge and discharge cycle by using vapor phase epitaxy carbon fiber, heat treated for graphitizing and thereafter pulverized, as a negative electrode. CONSTITUTION:Vapor phase epitaxy carbon fiber is produced by decomposing hydrocarbon gas at temperature of 950-1200 deg.C, and is heat treated at the temperature of 2000-3000 deg.C so as to graphitize. Thereafter, the same is ground into an assigned length so as to be used as negative electrode material for a non- aqueous electrolyte secondary cell. It is desirable for the ground vapor phase epitaxy carbon fiber after the graphitizing to have diameters of 0.1-5.0, and an aspect ratio of 50 or less. That is, the non-aqueous electrolyte secondary cell uses the heat treated and thereafter ground vapor phase epitaxy carbon fiber as a negative electrode. Thereby, it is possible to produce the non-aqueous electrolyte secondary cell allowing large capacity and less deterioration accompanying a charge and discharge cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池の改
良に関するもので、高容量で、充放電サイクル寿命の長
い炭素負極を使用した非水電解液二次電池を提供するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a non-aqueous electrolyte secondary battery, and provides a non-aqueous electrolyte secondary battery using a carbon negative electrode having a high capacity and a long charge / discharge cycle life. is there.

【0002】[0002]

【従来の技術】近年の各種電子機器の小型化やポータブ
ル化により、小形軽量の高エネルギー密度二次電池の開
発が要望されている。また、大気汚染や二酸化炭素の増
加等の環境問題により、電気自動車の早期実用化が望ま
れており、高効率、高出力、高エネルギー密度、軽量等
の特徴を有する優れた二次電池の開発が要望されてい
る。特に非水電解液を使用した二次電池は、従来の水溶
液電解液を使用した電池の数倍のエネルギー密度を有す
ることから、その実用化が待たれている。
2. Description of the Related Art Due to recent miniaturization and portability of various electronic devices, development of compact and lightweight high energy density secondary batteries has been demanded. In addition, due to environmental problems such as air pollution and increase in carbon dioxide, early commercialization of electric vehicles is desired, and development of excellent secondary batteries having characteristics such as high efficiency, high output, high energy density, and light weight. Is required. In particular, a secondary battery using a non-aqueous electrolytic solution has an energy density several times higher than that of a battery using a conventional aqueous electrolytic solution, and therefore its practical application is awaited.

【0003】非水電解液二次電池の正極活物質には、二
硫化チタンをはじめとして、リチウムコバルト複合酸化
物、リチウムマンガン酸化物、五酸化バナジウム、硫化
モリブデン、酸化モリブデン等、種々のものが検討され
ている。
As positive electrode active materials for non-aqueous electrolyte secondary batteries, various materials such as titanium disulfide, lithium cobalt composite oxide, lithium manganese oxide, vanadium pentoxide, molybdenum sulfide, molybdenum oxide and the like are available. Is being considered.

【0004】非水電解液は、非プロトン性の有機溶媒に
電解液となる金属塩を溶解させたものが用いられてい
る。例えば、リチウム塩に関しては、 LiClO4 、LiP
F6 、LiBF 4 、 LiAsF6 、LiCF3 SO3 等をエチレンカー
ボネート、1,2-ジメトキシエタン、γ- ブチロラクト
ン、ジオキソラン、2-メチルテトラヒドロフラン、ジエ
チルカーボネート、ジメチルカーボネート等の単独もし
くは混合溶媒に溶解させたものが使用されている。これ
らの非水電解液は、電池容器に注入されて使用される
が、多孔質のセパレータに含浸したり、高分子量の樹脂
を添加して高粘性にしたり、ゲル化させて流動性をなく
した状態で使用されることもある。
The non-aqueous electrolyte is an aprotic organic solvent.
A solution in which a metal salt serving as an electrolytic solution is dissolved is used.
It For example, for lithium salts, LiClOFour, LiP
F6, LiBF Four, LiAsF6, LiCF3SO3Ethylene car
Bonate, 1,2-dimethoxyethane, γ-butyrolacto
Amine, dioxolane, 2-methyltetrahydrofuran, die
Chill carbonate, dimethyl carbonate, etc.
What is dissolved in a mixed solvent is used. this
The non-aqueous electrolyte solution is used by injecting it into the battery container.
Can be impregnated into a porous separator or a high molecular weight resin
To make it highly viscous or gel to eliminate fluidity.
It may also be used in the state of being.

【0005】非水電解液電池の負極活物質として、従来
より様々な物質が検討されてきたが、高エネルギー密度
が期待されるものとして、リチウム系の負極が注目を浴
びている。特に非水電解液二次電池の負極として、リチ
ウム金属、リチウム合金、リチウムイオンを保持させた
炭素等が検討されている。
Various materials have been studied as a negative electrode active material for non-aqueous electrolyte batteries, but a lithium-based negative electrode has been attracting attention as a material expected to have a high energy density. Particularly, as a negative electrode of a non-aqueous electrolyte secondary battery, lithium metal, lithium alloy, carbon having lithium ions retained, and the like have been studied.

【0006】リチウム金属は高い起電力を有し、高エネ
ルギー密度が期待できるが、その高い反応性のために電
池の安全性に問題があり、充電反応において微粒子状の
金属リチウムが発生しやすく、内部短絡や充放電効率の
低下等が起こるという大きな問題を抱えている。
Lithium metal has a high electromotive force and can be expected to have a high energy density, but due to its high reactivity, there is a problem in battery safety, and particulate lithium metal is likely to be generated in the charging reaction. It has a big problem that internal short circuit and charge / discharge efficiency decrease.

【0007】リチウム合金は、このような放電反応に関
与しない金属リチウムの発生を防止することができる
が、特性上合金の電位がリチウム電位に対して貴方向に
シフトし、放電電圧が低下するという欠点があった。ま
た成分に金属リチウムを含有しているために、安全性に
は問題を残していた。
Lithium alloys can prevent the generation of metallic lithium that is not involved in the discharge reaction, but due to the characteristics, the potential of the alloy shifts to the noble direction relative to the lithium potential, and the discharge voltage decreases. There was a flaw. Further, since the component contains metallic lithium, there was a problem in safety.

【0008】安全性の問題を改善するために、リチウム
イオンを保持するホスト物質として、炭素負極が検討さ
れている。充電された炭素負極は、結晶格子の層間にリ
チウムイオンを保持しており、放電反応により容易にリ
チウムイオンを放出する。炭素負極は、金属リチウムを
使用しないので安全性に優れ、充放電による劣化も少な
く、長寿命の有機電解液二次電池が可能となった。
In order to improve the safety problem, a carbon negative electrode has been studied as a host material that holds lithium ions. The charged carbon negative electrode holds lithium ions between the layers of the crystal lattice, and easily discharges lithium ions by the discharge reaction. The carbon negative electrode is excellent in safety because it does not use metallic lithium, and is less likely to deteriorate due to charge / discharge, making it possible to provide a long-life organic electrolyte secondary battery.

【0009】ホスト物質として炭素を使用することによ
り、リチウム以外のアルカリ金属のイオンも使用するこ
とが可能となった。カリウムやナトリウムはリチウムよ
り安価であり、イオン状態で使用するかぎり安定であ
り、危険性はない。
The use of carbon as the host material has enabled the use of alkali metal ions other than lithium. Potassium and sodium are cheaper than lithium, are stable as long as they are used in the ionic state, and are not dangerous.

【0010】従来、負極の炭素結晶に関しては、完全に
黒鉛化したものは好ましくないとされていた。黒鉛化の
程度は炭素結晶の格子面間距離である d002 で表され、
完全黒鉛化したものは0.3354nmであるが、たとえば特開
昭62-122066 、特開昭63-26953、特開昭63-69154、特開
昭63-114056 、特開昭63-276873 など、 d002 が0.337n
m 以上と黒鉛化の充分でないもののほうが好ましい特性
を示すとされていた。従来より電解液としてプロピレン
カーボネートを主とした非水電解液が使用されている
が、完全に黒鉛化した炭素はポロピレンカーボネートを
分解する性質があり、長寿命の非水電解液電池を得るこ
とができなかったからである。(A.N.Dey,et al. J. El
ectrochem. Soc. 117 (2), 222, (1970) ) しかしながら、非水電解液の主成分としてプロピレンカ
ーボネート以外の溶媒を使用するとこのような現象はな
く、結晶化が進み、 d002 が0.337nm 未満の黒鉛化した
炭素でも使用できることが判明した。本発明は黒鉛化の
進んだ気相成長炭素繊維を負極に使用した非水電解液二
次電池を提供するものである。
Conventionally, regarding the carbon crystals of the negative electrode, it has been said that completely graphitized carbon crystals are not preferable. The degree of graphitization is represented by d 002 , which is the distance between carbon crystal lattice planes,
The completely graphitized one has a thickness of 0.3354 nm, but for example, JP-A-62-122066, JP-A-63-26953, JP-A-63-69154, JP-A-63-114056, JP-A-63-276873, etc. 002 is 0.337n
It was said that those with m or more and insufficient graphitization exhibited more preferable properties. Conventionally, non-aqueous electrolytic solution mainly composed of propylene carbonate has been used as an electrolytic solution, but completely graphitized carbon has a property of decomposing poropylene carbonate, and a long-life non-aqueous electrolytic battery can be obtained. Because I couldn't. (ANDey, et al. J. El
ectrochem. Soc. 117 (2), 222, (1970)) However, when a solvent other than propylene carbonate is used as the main component of the non-aqueous electrolyte, such a phenomenon does not occur and crystallization proceeds, and d 002 is 0.337 nm. It has been found that less than less than graphitized carbon can also be used. The present invention provides a non-aqueous electrolyte secondary battery using a vapor-grown carbon fiber having advanced graphitization as a negative electrode.

【0011】[0011]

【発明が解決しようとする課題】従来、黒鉛化した気相
成長炭素繊維は充放電サイクル寿命が短いという欠点が
あった。従来の気相成長炭素繊維の黒鉛化は以下に述べ
る製造法で作られていた。
Conventionally, the graphitized vapor grown carbon fiber has a shortcoming that the charge / discharge cycle life is short. The conventional graphitization of vapor-grown carbon fibers was made by the manufacturing method described below.

【0012】黒鉛化は不活性気流中2000℃以上で熱処理
されるが、気相成長炭素繊維は連続繊維ではないので、
通気性のある耐熱容器に充填して黒鉛化炉へ供給される
のであるが、そのままでは見かけ密度が小さくて充填効
率が悪いので、予め粉砕することによって見かけ密度を
高くしてから充填されるのが通常であった。
Graphitization is heat-treated at 2000 ° C. or above in an inert gas stream, but since vapor grown carbon fiber is not continuous fiber,
It is filled in a breathable heat-resistant container and supplied to the graphitization furnace, but since the apparent density is small and the filling efficiency is poor as it is, it is filled by crushing it in advance to increase the apparent density. Was normal.

【0013】このようにして得られた気相成長炭素繊維
黒鉛化物は、初期の放電容量は大きいが、充放電サイク
ルを繰り返すと急激に容量が減少した。このために、黒
鉛化した気相成長炭素繊維は、非水電解液二次電池の負
極として好ましくないと考えられていた。
The vapor-grown carbon fiber graphitized material thus obtained had a large initial discharge capacity, but the capacity suddenly decreased with repeated charge and discharge cycles. For this reason, the graphitized vapor-grown carbon fiber was considered to be unfavorable as the negative electrode of the non-aqueous electrolyte secondary battery.

【0014】本発明者らは、この粉砕工程を黒鉛化前で
なく黒鉛化後におこなった繊維を使用すれば、この欠点
が解決することを見いだして本発明に達した。
The inventors of the present invention have found that this drawback can be solved by using a fiber which has been subjected to the pulverizing step after graphitization, not before graphitization, and reached the present invention.

【0015】[0015]

【課題を解決するための手段】本発明の非水電解液二次
電池は、温度950 〜1200℃で炭化水素ガスを分解して得
た気相成長炭素繊維を、温度2000〜3000℃で熱処理して
黒鉛化した後、所定の長さに粉砕したものを負極の電極
材料に使用したことを特徴とするものである。黒鉛化し
た後、粉砕した気相成長炭素繊維は、直径が0.1 〜5.0
μm 、アスペクト比が50以下であることが好ましい。す
なわち、本発明の非水電解液二次電池は、気相成長炭素
繊維を熱処理後に粉砕したものを負極として使用するこ
とを特徴とするものである。
The non-aqueous electrolyte secondary battery of the present invention comprises a vapor-grown carbon fiber obtained by decomposing a hydrocarbon gas at a temperature of 950 to 1200 ° C. and a heat treatment at a temperature of 2000 to 3000 ° C. It is characterized in that it is graphitized, and then pulverized to a predetermined length and used as an electrode material for the negative electrode. After graphitization, the pulverized vapor grown carbon fiber has a diameter of 0.1 to 5.0.
It is preferable that the μm and aspect ratio are 50 or less. That is, the non-aqueous electrolyte secondary battery of the present invention is characterized by using vapor-grown carbon fibers that have been heat-treated and then ground as a negative electrode.

【0016】気相成長炭素繊維は、水素などのキャリア
ガスと、触媒となる有機遷移金属化合物と、ベンゼンや
プロパン等の炭化水素ガスとの混合ガスを、950 〜1200
℃の炉を通過させることにより得られる繊維状の炭素で
ある。炉内では、まず炭化水素の蒸気中に浮遊する触媒
の表面上から直径の小さい素繊維が成長し、さらにこの
素繊維上に蒸気層から炭素が蒸着することにより太さ方
向に成長する。繊維の成生と長さの成長は低温で起こり
易く、高温では太さの成長が起こり易い。炉内では初期
に繊維の生成と長さの成長が、後期には太さの成長が起
こり易い。したがって、炉の入り口をやや低温に、出口
側を高温に設定すると生産性が高くなる。また炉内での
繊維の滞在時間を長くすることにより、繊維径を太くす
ることができる。このような炭素繊維の製法は流動気相
法と称され、その一例は特開昭60-54998に示されてい
る。気相成長炭素繊維の製造法としては、この流動気相
法が生産性の点から優れているが、基板に繊維生成触媒
をシーディングするいわゆる基板法によっても製造する
ことができる。炉から取り出された炭素繊維の形状は、
電池特性の点から、直径0.1 〜5.0 μm 、さらには1.5
〜3.0 μm が好ましい。
The vapor-grown carbon fiber contains a mixed gas of a carrier gas such as hydrogen, an organic transition metal compound serving as a catalyst, and a hydrocarbon gas such as benzene and propane at 950 to 1200.
Fibrous carbon obtained by passing through a furnace at ℃. In the furnace, elemental fibers having a small diameter first grow on the surface of the catalyst suspended in the hydrocarbon vapor, and carbon is vapor-deposited from the vapor layer on the elemental fibers to grow in the thickness direction. Fiber growth and length growth are likely to occur at low temperatures and thickness growth is likely to occur at high temperatures. In the furnace, fiber formation and length growth are likely to occur in the initial stage, and thickness growth is likely to occur in the latter stage. Therefore, if the furnace inlet is set to a slightly low temperature and the outlet side is set to a high temperature, the productivity will increase. Further, the fiber diameter can be increased by increasing the residence time of the fiber in the furnace. Such a carbon fiber production method is called a fluidized vapor phase method, and an example thereof is disclosed in JP-A-60-54998. As a method for producing vapor grown carbon fiber, the fluidized vapor phase method is excellent in terms of productivity, but it can also be produced by a so-called substrate method in which a fiber-forming catalyst is seeded on a substrate. The shape of the carbon fiber taken out of the furnace is
From the point of battery characteristics, the diameter is 0.1-5.0 μm, and even 1.5
~ 3.0 μm is preferred.

【0017】気相成長炭素繊維の黒鉛化度を上げる場合
は、黒鉛化炉により行われる。気相成長炭素繊維は連続
繊維ではないために、容器にいれて熱処理が行われる。
粉砕後の炭素繊維を黒鉛やセラミック等の耐熱容器に充
填して黒鉛化炉を通過させることにより、黒鉛化に必要
な熱処理が行われる。該容器は雰囲気を置換できるよう
に、小孔がいくつか穿たれている。黒鉛化炉内で容器は
真空に引かれ、アルゴンや窒素、その他の不活性ガスで
置換された後、加熱域に導入される。ここで黒鉛化とは
d002 を0.345nm 以下、好ましくは0.337nm 以下にする
ことをいい、そのための熱処理温度は原料繊維によって
も異なるが、一般に2000℃以上、好ましくは2700℃以上
である。熱処理することにより炭素繊維の結晶子の大き
さも増大する。学振法により求めたC 軸方向の結晶子の
大きさLcは、熱処理前の5nm 以下から10nm以上に増大す
る。
When increasing the degree of graphitization of the vapor grown carbon fiber, it is carried out in a graphitization furnace. Since vapor-grown carbon fibers are not continuous fibers, they are heat-treated in a container.
The heat treatment required for graphitization is performed by filling the crushed carbon fiber in a heat-resistant container such as graphite or ceramic and passing it through a graphitization furnace. The container has some small holes to allow the atmosphere to be replaced. In the graphitization furnace, the container is evacuated and replaced with argon, nitrogen or other inert gas, and then introduced into the heating zone. What is graphitization here?
It means that d 002 is 0.345 nm or less, preferably 0.337 nm or less, and the heat treatment temperature for that is generally 2000 ° C. or higher, preferably 2700 ° C. or higher, though it varies depending on the raw material fibers. The heat treatment also increases the crystallite size of the carbon fiber. The crystallite size Lc in the C-axis direction obtained by the Gakshin method increases from 5 nm or less before heat treatment to 10 nm or more.

【0018】黒鉛化された繊維は次に所定の長さに粉砕
される。粉砕は常用されているボールミル、液体中でセ
ラミックボールと共に激しく攪拌させるアクアマイザー
TM(細川ミクロン(株)製)、気流中で回転羽根で激し
く攪拌させるハイブリダイザーTM(奈良機械製作所
(株)製)などを使用して行われる。アスペクト比を50
以下、好ましくは30以下にまで粉砕する。アスペクト比
が大きいと嵩密度が大きくなり、電極への充填密度が低
くなり、容積効率が低下する。
The graphitized fibers are then crushed to length. Grinding is a commonly used ball mill, an aquamizer that vigorously agitates with ceramic balls in a liquid.
TM (manufactured by Hosokawa Micron Co., Ltd.) and Hybridizer TM (manufactured by Nara Machinery Co., Ltd.) that vigorously stirs with a rotary blade in an air stream. Aspect ratio 50
It is pulverized to the following, preferably 30 or less. When the aspect ratio is large, the bulk density is large, the packing density in the electrode is low, and the volume efficiency is low.

【0019】ここで所定の長さに粉砕するとは、黒鉛化
後に目的とする長さを達成することであり、熱処理前の
粉砕を禁止するものでなく、最終長さへの粉砕を熱処理
後に行って、繊維の破断面のほとんどが熱処理後に生成
していればよい。
Grinding to a predetermined length means achieving a target length after graphitization, does not prohibit crushing before heat treatment, and crushes to a final length after heat treatment. Thus, it is sufficient that most of the fracture surfaces of the fibers are formed after the heat treatment.

【0020】繊維の粉砕時または粉砕後に繊維の温度が
高くなることは、得られる電池の性能を悪化させるので
好ましくない。なるべく500 ℃以下、好ましくは300 ℃
以下に保つ。そのためには粉砕を液流または気流中で行
うのが好ましい。また電池の製造にあたっても、できる
かぎり加熱を避けるのが好ましい。
An increase in the temperature of the fiber during or after the crushing of the fiber deteriorates the performance of the obtained battery, which is not preferable. 500 ℃ or less, preferably 300 ℃
Keep below For that purpose, it is preferable to carry out the pulverization in a liquid stream or an air stream. Also, in manufacturing the battery, it is preferable to avoid heating as much as possible.

【0021】電池の製造にあたっては、電解液としてプ
ロピレンカーボネートを主体としない非水電解液を用い
さえすれば、従来の技術がそのまま使用可能である。
In the production of the battery, the conventional technique can be used as it is as long as the non-aqueous electrolytic solution containing propylene carbonate as a main component is not used as the electrolytic solution.

【0022】[0022]

【作用】黒鉛化のための熱処理を行った後に粉砕した気
相成長炭素繊維を負極に使用した本発明の非水電解液二
次電池は、充放電サイクル寿命が長く、エネルギー密度
が格段に高い特徴を有している。
[Function] The non-aqueous electrolyte secondary battery of the present invention, which uses the vapor-grown carbon fiber crushed after heat treatment for graphitization as the negative electrode, has a long charge / discharge cycle life and a markedly high energy density. It has features.

【0023】気相成長炭素繊維は、共有結合で結ばれた
炭素原子の六角環網平面が、ファン・デル・ワールス力
で同心円状に何層も積み重なった層状構造を有してい
る。炭素網平面が作る層間に負極のイオンが挿入される
ことにより充電反応が起こり、層間より離脱することに
より放電反応が起こる。層間へのイオンの挿入は、気相
成長炭素繊維の切断面でのみ可能であり、炭素原子の六
角環網平面で覆われた繊維の側面では起こり得ない。し
たがって、気相成長炭素繊維を負極に使用するためには
粉砕は不可欠であるが、粉砕後に熱処理した従来の気相
成長炭素繊維は、充放電サイクル寿命が極めて短かっ
た。この理由は明かでないが、熱処理工程において、気
相成長炭素繊維の切断面に不純物が吸着したり、切断面
の炭素の結合状態が変化したためではないかと考えられ
る。このことはESCA(X 線光電子分光分析)やESR (電
子スピン共鳴分析)により推定された。
The vapor grown carbon fiber has a layered structure in which hexagonal ring network planes of carbon atoms bonded by covalent bonds are concentrically stacked by Van der Waals forces. A charge reaction occurs when ions of the negative electrode are inserted between the layers formed by the carbon mesh plane, and a discharge reaction occurs when the ions are separated from the layers. Intercalation of ions between the layers is possible only at the cut surface of the vapor grown carbon fiber and not at the side of the fiber covered with the hexagonal ring network plane of carbon atoms. Therefore, in order to use the vapor-grown carbon fiber for the negative electrode, pulverization is indispensable, but the conventional vapor-grown carbon fiber obtained by heat treatment after pulverization had an extremely short charge / discharge cycle life. The reason for this is not clear, but it is considered that impurities are adsorbed to the cut surface of the vapor-grown carbon fiber or the carbon bonding state of the cut surface is changed in the heat treatment step. This was estimated by ESCA (X-ray photoelectron spectroscopy analysis) and ESR (electron spin resonance analysis).

【0024】本発明電池に使用する気相成長炭素繊維
は、黒鉛化のための熱処理を行った後に粉砕したもの
で、切断面における不純物の吸着はなく、結晶構造のそ
ろった炭素網層が露出している。このために、充放電反
応にともなう切断面でのイオンの移動が容易であり、サ
イクルを繰り返しても容量の低下は少なくなった。
The vapor-grown carbon fiber used in the battery of the present invention is obtained by crushing after heat treatment for graphitization, no impurities are adsorbed on the cut surface, and the carbon network layer having a uniform crystal structure is exposed. is doing. For this reason, it is easy for the ions to move on the cut surface due to the charge / discharge reaction, and the decrease in capacity is reduced even if the cycle is repeated.

【0025】[0025]

【実施例】【Example】

実施例1 フェロセン(Fe(C5 H5 )2 )を触媒とし、ベンゼン
( C6 H6 )を炭素原料に使用して、1080℃の水素気流
中で気相成長炭素繊維を製造した。太さの成長時間を変
えることによって、平均長さがいずれも100 μm で、平
均直径が0.3 〜3.0 μm の炭素繊維を得た。これらの炭
素繊維の一部はハイブリダイザーで粉砕した後、2000〜
3000℃で熱処理し、他の一部は熱処理した後、粉砕し
た。このようにして得た各種気相成長炭素繊維95部に対
して、結着剤のポリフッ化ビニリデン5 部と溶剤のN-メ
チル-2- ピロリドン25部を混練してペースト状にし、厚
さ1.0mm 、多孔度98%のニッケル発泡体に塗布した後、
乾燥、圧延を施して、厚さ約0.5mm の電極基板を作成し
た。この電極基板を打ち抜いて、幅14mm、長さ52mmの短
冊状の試験電極を得た。これらの試験電極は、リチウム
を対極にして、充放電サイクル試験を行い、放電容量の
変化を測定した。非水電解液として、エチレンカーボネ
ートとジエチルカーボネートの 1:1 混合溶媒にLiPF6
を1 モル/リットルの割合で溶解したものを使用した。
14mAの電流で、リチウムの電位に対して0Vまで充電し、
1.2Vまで放電する充放電サイクルを繰り返した。
Example 1 Using ferrocene (Fe (C 5 H 5 ) 2 ) as a catalyst and benzene (C 6 H 6 ) as a carbon raw material, a vapor-grown carbon fiber was produced in a hydrogen stream at 1080 ° C. Carbon fibers having an average length of 100 µm and an average diameter of 0.3 to 3.0 µm were obtained by changing the growth time of thickness. After crushing some of these carbon fibers with a hybridizer,
Heat treatment was performed at 3000 ° C., and the other part was heat treated and then pulverized. With respect to 95 parts of various vapor-grown carbon fibers thus obtained, 5 parts of polyvinylidene fluoride as a binder and 25 parts of N-methyl-2-pyrrolidone as a solvent were kneaded to form a paste, and a thickness of 1.0 mm, porosity 98% After applying to nickel foam,
After drying and rolling, an electrode substrate having a thickness of about 0.5 mm was prepared. This electrode substrate was punched out to obtain a strip-shaped test electrode having a width of 14 mm and a length of 52 mm. These test electrodes were subjected to a charge / discharge cycle test with lithium as a counter electrode, and changes in discharge capacity were measured. As a non-aqueous electrolyte, LiPF 6 was added to a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate.
Was used at a ratio of 1 mol / liter.
With a current of 14 mA, charge up to 0 V against the lithium potential,
The charge / discharge cycle of discharging to 1.2 V was repeated.

【0026】表1に試験電極に使用した気相成長炭素繊
維の製造条件、その他と炭素繊維の重量当たりの放電容
量を示した。
Table 1 shows the production conditions of the vapor-grown carbon fibers used for the test electrodes, others, and the discharge capacity per weight of the carbon fibers.

【0027】[0027]

【表1】 熱処理をしない炭素繊維であるNo.1〜4 の放電容量は20
0 〜250mAh/gであり、繊維径が大きくなると、充放電サ
イクルにともなう容量の低下が認められた。粉砕後に熱
処理したNo.5〜8 は、何れも10サイクル後の容量低下が
大きかった。粉砕後に熱処理することにより、繊維断面
に何らかの変化を生じたものと思われる。熱処理後に粉
砕したNo.9〜17は放電容量が大きく、10サイクル後もほ
とんど容量の低下は認められなかった。熱処理により、
気相成長炭素繊維の黒鉛化度が上がり、熱処理後に粉砕
することにより、清浄な繊維断面が表れるために容量低
下が少ないものと思われる。
[Table 1] The discharge capacities of carbon fibers No. 1 to 4, which are not heat treated, are 20.
It was 0 to 250 mAh / g, and as the fiber diameter increased, the capacity decreased with charge and discharge cycles. In Nos. 5 to 8 which were heat-treated after crushing, the capacity was significantly decreased after 10 cycles. It is considered that the heat treatment after pulverization caused some change in the fiber cross section. No. 9 to 17 crushed after heat treatment had a large discharge capacity, and almost no decrease in capacity was observed even after 10 cycles. By heat treatment,
It is considered that the degree of graphitization of the vapor-grown carbon fiber is increased, and when the carbon fiber is crushed after the heat treatment, a clean fiber cross section appears, so that the capacity decrease is small.

【0028】実施例2 図1は本発明の一実施例である角形電池の要部断面図で
ある。
Embodiment 2 FIG. 1 is a sectional view of a main part of a prismatic battery which is an embodiment of the present invention.

【0029】1はステンレス鋼製の角形容器であり、そ
の内部に負極2と、セパレータ3、正極4を収納してい
る。負極2は発泡ニッケルに炭素粉末を保持させたもの
であり、非水電解液を含浸したポリプロピレン製の多孔
質セパレータ3を介して、 LiCoO2 正極と交互に挿入さ
れている。5は容器蓋であり、容器1の開口部に周縁部
で溶接されている。容器蓋5の中央部にはガスケット6
を介してはとめ7が固定されており、正極端子9が溶接
されている。8は正極端子9の内部に固定された安全弁
であり、はとめ7の開口部を封止している。10は、電
池の異常時に内部圧力が上昇し、安全弁8が作動したと
きの排気口である。11は負極2の上部に設けた負極リ
ードであり、電池蓋5の内面に接続されている。12は
正極4の上部に設けた正極リードであり、正極接続片1
3を介してはとめ7と接続している。
Reference numeral 1 denotes a stainless steel rectangular container in which a negative electrode 2, a separator 3 and a positive electrode 4 are housed. The negative electrode 2 is formed by holding carbon powder in foamed nickel, and is alternately inserted with the LiCoO 2 positive electrode via the polypropylene porous separator 3 impregnated with the non-aqueous electrolyte. Reference numeral 5 denotes a container lid, which is welded to the opening of the container 1 at the peripheral edge. A gasket 6 is provided at the center of the container lid 5.
The stopper 7 is fixed via the, and the positive electrode terminal 9 is welded. A safety valve 8 is fixed inside the positive electrode terminal 9, and seals the opening of the eyelet 7. Reference numeral 10 denotes an exhaust port when the internal pressure rises when the battery is abnormal and the safety valve 8 operates. Reference numeral 11 denotes a negative electrode lead provided on the upper portion of the negative electrode 2 and connected to the inner surface of the battery lid 5. Reference numeral 12 denotes a positive electrode lead provided on the positive electrode 4, and the positive electrode connecting piece 1
It is connected to the eyelet 7 through 3.

【0030】本発明電池に使用した負極は次のようにし
て作製した。
The negative electrode used in the battery of the present invention was prepared as follows.

【0031】重量比で、負極活物質である炭素材料95部
と、結着剤のポリフッ化ビニリデン5 部からなる炭素合
剤を溶剤のN-メチル-2- ピロリドン25部で混練してペー
スト状にし、厚さ1.0mm 、多孔度98%のニッケル発泡体
に塗布した後、乾燥、圧延を施して、厚さ0.5mm の電極
基板を作成した。この電極基板を打ち抜いて、幅14mm、
長さ52mmの短冊状の負極板を得た。負極1枚当りの活物
質炭素合剤の重量は0.40g であった。ここで用いた炭素
材料は、気相成長法により作製した炭素繊維で、1080℃
の気相中で析出させたものを2800℃で熱処理し、その後
に粉砕して得たものである。繊維の直径は2.0 μm 、ア
スペクト比は5 である。X 線回折法により求めた物性値
は、結晶層間距離( dOO2 )が0.336nm 、C 軸方向の結
晶子の大きさLcは100nm 以上である。
In a weight ratio, 95 parts of a carbon material which is a negative electrode active material and a carbon mixture composed of 5 parts of polyvinylidene fluoride as a binder were kneaded with 25 parts of N-methyl-2-pyrrolidone as a solvent to form a paste. After being applied to a nickel foam having a thickness of 1.0 mm and a porosity of 98%, it was dried and rolled to form an electrode substrate having a thickness of 0.5 mm. This electrode board is punched out, width 14mm,
A strip-shaped negative electrode plate having a length of 52 mm was obtained. The weight of the active material carbon mixture per one negative electrode was 0.40 g. The carbon material used here is carbon fiber produced by vapor phase growth method, and the temperature is 1080 ° C.
It was obtained by heat-treating the substance precipitated in the gas phase at 2800 ° C. and then pulverizing it. The fiber diameter is 2.0 μm and the aspect ratio is 5. The physical properties obtained by X-ray diffractometry are a crystal interlayer distance (d OO2 ) of 0.336 nm and a crystallite size Lc in the C-axis direction of 100 nm or more.

【0032】正極は次のようにして作製した。正極活物
質である LiCoO2 を85部と、導電剤のアセチレンブラッ
ク10部と結着剤のPTFEディスパージョン水溶液(ポリ四
フッ化エチレン樹脂15%)34部を混練し、これを一対の
ロール間に通してシート状にした後、アルミニウム製の
エキスパンドメタルの芯材の両面に圧着して、厚さ0.5m
m の正極基板を作製した。この基板を打ち抜いて、幅14
mm、長さ52mmの短冊状正極を得た。正極1 枚中の活物質
の重量は1.05g で、約100mAhの放電が可能である。
The positive electrode was manufactured as follows. 85 parts of LiCoO 2 which is the positive electrode active material, 10 parts of acetylene black as a conductive agent and 34 parts of an aqueous solution of PTFE dispersion (15% of polytetrafluoroethylene resin) as a binder were kneaded, and were mixed between a pair of rolls. After making it into a sheet shape by passing through, it is crimped to both sides of the core material of aluminum expanded metal, thickness 0.5m
A positive electrode substrate of m 2 was prepared. This board is punched out, width 14
A strip-shaped positive electrode having a length of mm and a length of 52 mm was obtained. The weight of the active material in one positive electrode is 1.05 g, and it is possible to discharge about 100 mAh.

【0033】正極3 枚、負極4 枚で、公称容量300mAhの
二次電池を構成した。セパレータとして、厚さ0.18mm、
目付け 50g/m2 のポリプロピレン不織布を用い、正極板
を被覆し、周囲をヒートシールした。非水電解液とし
て、エチレンカーボネートとジエチルカーボネートの1
:1 混合溶媒にLiPF6 を1 モル/リットルの割合で溶
解したものを使用した。実施例電池の寸法は、厚さ6mm
、幅16mm、高さ65mmであり、この電池をAとする。
A secondary battery having a nominal capacity of 300 mAh was constructed with three positive electrodes and four negative electrodes. As a separator, thickness 0.18 mm,
The positive electrode plate was covered with a polypropylene non-woven fabric having a basis weight of 50 g / m 2 , and the periphery was heat-sealed. As a non-aqueous electrolyte, 1 of ethylene carbonate and diethyl carbonate
: 1 LiPF 6 dissolved in a mixed solvent at a rate of 1 mol / liter was used. The size of the example battery is 6 mm thick
The width is 16 mm and the height is 65 mm, and this battery is designated as A.

【0034】比較例として、負極に従来の製法による気
相成長炭素繊維を使用した比較例電池BとCを作製し
た。負極以外の構成品は本発明実施例と同じものを使用
した。
As comparative examples, comparative batteries B and C using the vapor grown carbon fiber by the conventional method for the negative electrode were prepared. The components other than the negative electrode were the same as those used in the examples of the present invention.

【0035】比較例電池Bに使用した炭素材料は、1080
℃で製造した気相成長炭素繊維を粉砕して、アスペクト
比5 とした後、2800℃で熱処理して黒鉛化したものであ
る。
The carbon material used in Comparative Example Battery B was 1080
The vapor-grown carbon fiber produced at ℃ was pulverized to have an aspect ratio of 5, and then heat-treated at 2800 ℃ for graphitization.

【0036】比較例電池Cに使用した炭素材料は、1080
℃で製造した気相成長炭素繊維を粉砕して、アスペクト
比5 としたもので、黒鉛化のための熱処理をしなかった
ものである。
The carbon material used in Comparative Example Battery C was 1080
The vapor-grown carbon fibers produced at ℃ were crushed to have an aspect ratio of 5, and were not heat-treated for graphitization.

【0037】図2は電池の第1 回目の放電特性である。
Aは本発明の実施例電池であり、BとCは従来の製法に
よる気相成長炭素繊維の負極を使用した比較例電池であ
る。何れも温度25℃において、電流75mAで端子電圧4.1V
まで充電した後、同じ電流で2.8Vまで放電したものであ
る。本発明電池Aと比較例電池Bの放電容量が多く、熱
処理の効果が認められた。
FIG. 2 shows the first discharge characteristic of the battery.
A is an example battery of the present invention, and B and C are comparative example batteries using a negative electrode of vapor grown carbon fiber produced by a conventional method. All have a current of 75mA and a terminal voltage of 4.1V at a temperature of 25 ℃.
After being charged up to 2.8V with the same current. The battery A of the present invention and the battery B of the comparative example had large discharge capacities, and the effect of heat treatment was recognized.

【0038】図3は充放電サイクルにともなう放電容量
の変化を示したものである。粉砕後に熱処理した気相成
長炭素繊維を使用した比較例電池Bは充放電サイクルに
つれて急激に放電容量が減少するのが認められた。本発
明実施例電池Aは、放電容量が大きく、充放電サイクル
における容量の低下が少ないことが示された。電池A、
B、Cは負極のみが異なる同一構成の電池であり、負極
の種類によって特性は大きく変化した。
FIG. 3 shows the change in discharge capacity with charge / discharge cycles. It was observed that the comparative battery B using the vapor-grown carbon fibers that had been heat-treated after crushing had a sharp decrease in discharge capacity with charge / discharge cycles. It was shown that the battery A of the present invention has a large discharge capacity and a small decrease in capacity during charge / discharge cycles. Battery A,
B and C are batteries having the same structure except for the negative electrode, and the characteristics greatly changed depending on the type of the negative electrode.

【0039】[0039]

【発明の効果】950 〜1200℃の温度で製造される気相成
長炭素繊維を、2000〜3000℃で熱処理して黒鉛化した
後、所定の長さに粉砕したものを負極の電極材料に使用
することにより、高容量で充放電サイクルにともなう劣
化の少ない非水電解液二次電池が可能となった。気相成
長炭素繊維を熱処理後に粉砕することにより、イオン拡
散のための清浄な切断面を析出させることができた。
EFFECTS OF THE INVENTION Vapor grown carbon fibers produced at a temperature of 950 to 1200 ° C. are heat treated at 2000 to 3000 ° C. to be graphitized, and then pulverized to a predetermined length to be used as an electrode material for a negative electrode. By doing so, a non-aqueous electrolyte secondary battery with high capacity and less deterioration with charge / discharge cycles has become possible. By crushing the vapor grown carbon fiber after heat treatment, a clean cut surface for ion diffusion could be deposited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における電池の構造を示す断面
図。
FIG. 1 is a cross-sectional view showing a structure of a battery according to an embodiment of the present invention.

【図2】電池の第1 回目の放電特性を示す図。FIG. 2 is a diagram showing a first discharge characteristic of a battery.

【図3】充放電サイクル数と放電容量の関係を示す図。FIG. 3 is a diagram showing the relationship between the number of charge / discharge cycles and the discharge capacity.

【符号の説明】[Explanation of symbols]

1 容器 2 負極 3 セパレータ 4 正極 5 容器蓋 6 ガスケット 7 はとめ 8 安全弁 9 正極端子 10 排気口 11 負極リード 12 正極リード 13 正極接続片 A 実施例電池 B 比較例電池 C 比較例電池 DESCRIPTION OF SYMBOLS 1 container 2 negative electrode 3 separator 4 positive electrode 5 container lid 6 gasket 7 stop 8 safety valve 9 positive electrode terminal 10 exhaust port 11 negative electrode lead 12 positive electrode lead 13 positive electrode connecting piece A example battery B comparative example battery C comparative example battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 茂生 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Komatsu No. 1 Babacho, Inonosho Nishinosho, Kichijoin, Minami-ku, Kyoto

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】温度950 〜1200℃で炭化水素ガスを分解し
て得た気相成長炭素繊維を、温度2000〜3000℃で熱処理
して黒鉛化した後、所定の長さに粉砕したものを負極の
電極材料に使用したことを特徴とする非水電解液二次電
池。
1. A vapor-grown carbon fiber obtained by decomposing a hydrocarbon gas at a temperature of 950 to 1200 ° C. is heat-treated at a temperature of 2000 to 3000 ° C. to be graphitized, and then pulverized to a predetermined length. A non-aqueous electrolyte secondary battery, which is used as a negative electrode material.
【請求項2】黒鉛化した後、粉砕した気相成長炭素繊維
が、直径0.1 〜5.0 μm 、アスペクト比が50以下である
ことを特徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the vapor-grown carbon fibers crushed after graphitization have a diameter of 0.1 to 5.0 μm and an aspect ratio of 50 or less.
JP4259091A 1992-09-01 1992-09-01 Nonaqueous electrolyte secondary cell Pending JPH0684517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4259091A JPH0684517A (en) 1992-09-01 1992-09-01 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4259091A JPH0684517A (en) 1992-09-01 1992-09-01 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPH0684517A true JPH0684517A (en) 1994-03-25

Family

ID=17329193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4259091A Pending JPH0684517A (en) 1992-09-01 1992-09-01 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPH0684517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749980A1 (en) * 1996-06-12 1997-12-19 Nikkiso Cy Ltd Lithium ion accumulator with non-aqueous electrolyte
JPH10247495A (en) * 1997-02-28 1998-09-14 Nikkiso Co Ltd Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material
JP2005243619A (en) * 2004-01-27 2005-09-08 Showa Denko Kk Catalyst carrier and fuel cell using the same
US7150840B2 (en) 2002-08-29 2006-12-19 Showa Denko K.K. Graphite fine carbon fiber, and production method and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749980A1 (en) * 1996-06-12 1997-12-19 Nikkiso Cy Ltd Lithium ion accumulator with non-aqueous electrolyte
JPH10247495A (en) * 1997-02-28 1998-09-14 Nikkiso Co Ltd Carbon material for secondary battery negative electrode, its manufacture, and nonaqueous electrolyte secondary battery using carbon material
US7150840B2 (en) 2002-08-29 2006-12-19 Showa Denko K.K. Graphite fine carbon fiber, and production method and use thereof
JP2005243619A (en) * 2004-01-27 2005-09-08 Showa Denko Kk Catalyst carrier and fuel cell using the same

Similar Documents

Publication Publication Date Title
KR101588954B1 (en) Porous silicon based anode active material, preparation method thereof, and lithium secondary battery comprising the same
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4666876B2 (en) Composite graphite material and method for producing the same, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR20000029812A (en) Graphite particles and lithium secondary battery using them as cathode material
JP5245201B2 (en) Negative electrode, secondary battery
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
JPWO2012001845A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3532016B2 (en) Organic electrolyte secondary battery
EP3675252A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JPH0896798A (en) Negative electrode for lithium battery and lithium battery using this negative electrode
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP4354723B2 (en) Method for producing graphite particles
EP3896758B1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
EP4044279B1 (en) Anode active material, method for preparing anode active material, anode comprising same, and lithium secondary battery
KR20140081679A (en) Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
JP2019220350A (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
JP3734145B2 (en) Lithium secondary battery
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP4216307A1 (en) Method for manufacturing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery manufactured thereby
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees