JPH0677457B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH0677457B2
JPH0677457B2 JP63111933A JP11193388A JPH0677457B2 JP H0677457 B2 JPH0677457 B2 JP H0677457B2 JP 63111933 A JP63111933 A JP 63111933A JP 11193388 A JP11193388 A JP 11193388A JP H0677457 B2 JPH0677457 B2 JP H0677457B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
battery
type
aqueous electrolyte
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63111933A
Other languages
Japanese (ja)
Other versions
JPH01281671A (en
Inventor
健一 篠田
浩平 山本
▲吉▼郎 原田
雅一 北方
Original Assignee
富士電気化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電気化学株式会社 filed Critical 富士電気化学株式会社
Priority to JP63111933A priority Critical patent/JPH0677457B2/en
Publication of JPH01281671A publication Critical patent/JPH01281671A/en
Publication of JPH0677457B2 publication Critical patent/JPH0677457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は非水電解液電池に関し、詳しくは、正極活物
質に二酸化マンガンを使用する非水電解液電池におい
て、特定の物性の二酸化マンガンを用いることで電池性
能の向上を図るようにしたものである。
Description: TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte battery, and more specifically, in a non-aqueous electrolyte battery using manganese dioxide as a positive electrode active material, manganese dioxide having specific physical properties is used. By using it, the battery performance is improved.

<従来の技術> 従来、この種の非水電解液電池で正極活物質として二酸
化マンガンを使用する場合、通常EMD、即ち硫酸マンガ
ン水溶液を電解する等して得られる、X線的にγ形の電
解二酸化マンガンが使用されている。
<Prior Art> Conventionally, when manganese dioxide is used as a positive electrode active material in a non-aqueous electrolyte battery of this type, it is usually obtained by electrolysis of an EMD, that is, an aqueous solution of manganese sulfate, and a γ-type X-ray is obtained. Electrolytic manganese dioxide is used.

ところが、このEMDは、相当量の結合水をその結晶構造
中に保有しており、このまま電池の正極活物質とする
と、電池の保存劣化が顕著であった。
However, this EMD has a considerable amount of bound water in its crystal structure, and if it is used as a positive electrode active material for a battery, storage deterioration of the battery is remarkable.

このため、このEMDに適当な処理、例えば加熱処理(350
〜400℃)や硫酸処理などを施してその結晶形をβ形に
して、結合水を充分に減縮したり、あるいは無水の二酸
化マンガンにして使用することが一般に行われている。
Therefore, a suitable treatment for this EMD, such as heat treatment (350
It is generally used by subjecting the crystal form to β form by subjecting it to a treatment with sulfuric acid or the like to form β form to sufficiently reduce the bound water or to form anhydrous manganese dioxide.

<発明が解決しようとする課題> ところで、例えばEMDを加熱処理した場合、第3図に示
した如き放電特性を得る。
<Problems to be Solved by the Invention> By the way, for example, when EMD is heat-treated, the discharge characteristic as shown in FIG. 3 is obtained.

即ち、第3図に示したのは、各々の温度で熱処理したMn
O2(は150℃で4時間、は250℃で4時間、は350
℃で4時間、は450℃で4時間)と導電剤としてのア
セチレンブラックとバインダーとしての4弗化エチレン
樹脂の混合粉末を直径15mmで厚み0.25mmに加圧成形した
ものを正極とし、またプロピレンカーボネイトとジメト
キシエタンの容積比で1:1の混合溶液にLiClO4を1mol/l
溶解させたものを電解液とし、更に厚み0.15mmのポリプ
ロピレン製不織布をセパレータとして組立てたCR2025形
(外径20mm,高さ2.5mm)の電池を、温度20℃にて負荷15
kΩで試験した結果である。
That is, FIG. 3 shows that Mn heat-treated at each temperature.
O 2 (at 150 ℃ for 4 hours, at 250 ℃ for 4 hours, at 350
4 hours at ℃, 4 hours at 450 ℃) and a powder mixture of acetylene black as a conductive agent and tetrafluoroethylene resin as a binder, pressure-molded to a diameter of 15 mm and a thickness of 0.25 mm as a positive electrode, and propylene. 1 mol / l of LiClO 4 was added to a mixed solution of 1: 1 by volume of carbonate and dimethoxyethane.
A battery of CR2025 type (outer diameter 20 mm, height 2.5 mm) assembled by using the melted material as an electrolytic solution and a polypropylene non-woven fabric with a thickness of 0.15 mm as a separator was loaded at a temperature of 20 ° C.
It is the result of testing with kΩ.

ところが、第3図に示したのはあくまでも初期放電特性
であって、この結果から電池が最も特性の良い電池と
は言えない。つまり、これらの電池を60℃で40日間保存
後に同様の条件で試験した結果を示したのが第4図であ
る。これから、保存後においては電池は全く低調な結
果であることが判る。
However, what is shown in FIG. 3 is only the initial discharge characteristic, and from this result, the battery cannot be said to have the best characteristic. That is, FIG. 4 shows the results of testing these batteries under the same conditions after storage at 60 ° C. for 40 days. From this, it can be seen that the battery has a very poor result after storage.

従って、初期放電では、150℃程度で熱処理したMnO2
放電特性を持ち、また保存後は350℃程度で熱処理したM
nO2の特性を持つMnO2が望ましいといえる。
Therefore, the initial discharge has the discharge characteristics of MnO 2 heat-treated at about 150 ° C, and the MnO 2 heat-treated at about 350 ° C after storage.
It can be said that MnO 2 having the characteristics of nO 2 is desirable.

尚、本発明のβ形MnO2を使った他は全く同じようにして
作製した電池は、両図ともで示した通り優れた特性を
示した。
The batteries produced in exactly the same manner except that the β-type MnO 2 of the present invention was used exhibited excellent characteristics as shown in both figures.

一方、硝酸処理をしたEMDの場合、非常にシャープなβ
型のX線回折ピークが得られる半面、放電性能が悪くな
るという問題がある。
On the other hand, in the case of EMD treated with nitric acid, β is very sharp.
On the other hand, the X-ray diffraction peak of the mold is obtained, but there is a problem that the discharge performance is deteriorated.

このため、この種のβ形化処理したものであって、放電
性能の高い二酸化マンガンの開発が望まれている。
Therefore, development of manganese dioxide that has been subjected to this type of β-formation treatment and has high discharge performance is desired.

<課題を解決するための手段> この発明の非水電解液電池は、リチウムやナトリウムな
どの軽金属を活物質とする負極と、二酸化マンガンを活
物質とする正極と、非水電解液を備えてなり、前記二酸
化マンガンとして、γ形の二酸化マンガンを高圧下でH2
SO4水溶液中にて130〜145℃の範囲で処理して得られる
β類似形二酸化マンガンを用いたことを要旨とする。
<Means for Solving the Problems> The non-aqueous electrolyte battery of the present invention includes a negative electrode using a light metal such as lithium or sodium as an active material, a positive electrode using manganese dioxide as an active material, and a non-aqueous electrolyte solution. As the manganese dioxide, γ-type manganese dioxide is converted into H 2 under high pressure.
The gist is to use β-analogous manganese dioxide obtained by treating in an aqueous solution of SO 4 at a temperature of 130 to 145 ° C.

<作用> 上記のようにγ形の二酸化マンガンをH2SO4水溶液中に
おいて130〜145℃の範囲で処理することで、このγ形二
酸化マンガンをβ形二酸化マンガンに変換することがで
きる。但し、この処理で得られる二酸化マンガンは、X
線回折法による結晶相がβ形であるのであって、従来の
加熱処理でγ形からβ形に変えた二酸化マンガンとまっ
たく同じものではなく、いうなればβ類似形二酸化マン
ガンである。
<Operation> By treating the γ-type manganese dioxide in the H 2 SO 4 aqueous solution at 130 to 145 ° C. as described above, the γ-type manganese dioxide can be converted to the β-type manganese dioxide. However, the manganese dioxide obtained by this treatment is X
Since the crystal phase by the line diffraction method is β-type, it is not exactly the same as manganese dioxide in which the γ-type is changed to β-type by the conventional heat treatment, and it is β-analogous manganese dioxide.

第5図(A)〜(C)に示したのは、市販のEMDについ
てのX線回折パターン(ターゲット、フィルタFe−Mn)
である。尚、(A)は本発明による処理方法のMnO2
(B)は従来より一般に行われている様にEMDを375℃で
処理したMnO2、(C)は比較のために示した未処理のEM
Dのパターンである。
5 (A) to (C) show X-ray diffraction patterns (target, filter Fe-Mn) of commercially available EMD.
Is. Incidentally, (A) is MnO 2 of the treatment method according to the present invention,
(B) is MnO 2 which has been treated with EMD at 375 ° C as in the conventional practice, and (C) is the untreated EM shown for comparison.
It is a D pattern.

これを見ると、本発明のMnO2は、従来の熱処理をしたMn
O2と同じくβ形と呼ばれるMnO2に特有の回折ピークを示
すが、ピークは非常にシャープになって強度も大となっ
ている。即ち、従来のβ形MnO2とは結晶の形態学的様相
は異なるものと考えることができる。第5図(C)のも
のは、所謂γ形と呼ばれるものである。
From this, it can be seen that the MnO 2 of the present invention is
Similar to O 2, it shows a β-type diffraction peak unique to MnO 2 , but the peak is very sharp and the intensity is high. That is, it can be considered that the crystal morphological aspect is different from that of the conventional β-type MnO 2 . The one shown in FIG. 5C is a so-called γ type.

更に、本発明によるβ類似形MnO2が、従来の所謂β形と
は明らかに異なったものであることは、それらの粒形の
大きな差異に因るものであると思われる。即ち、本発明
のものは、粒子の形が大略球形をしており、従来のβ形
MnO2では角張ったどちらかと言えば無定形である。
Furthermore, the fact that the β-similar MnO 2 according to the present invention is distinctly different from the conventional so-called β-form seems to be due to the large difference in their grain shapes. That is, according to the present invention, the particles have a substantially spherical shape, and
In MnO 2 , it is rather amorphous and rather angular.

そして、このようにして得られたβ類似形二酸化マンガ
ンを非水電解液電池の正極活物質に用いた場合、従来の
加熱処理する等してものに比べて高い放電性能が得られ
る。
When the thus obtained β-analogous manganese dioxide is used as the positive electrode active material of the non-aqueous electrolyte battery, higher discharge performance can be obtained as compared with the conventional heat treatment.

また、本願のようなβ類似形二酸化マンガンへの変換
は、処理温度が130〜145℃の範囲,特に138℃付近で起
こることが知得されている。
Further, it is known that the conversion to β-analogous manganese dioxide as in the present application occurs at a treatment temperature in the range of 130 to 145 ° C, particularly around 138 ° C.

この様に、本願のH2SO4処理によって得られるMnO2が高
い放電性能を有する理由については不明であるが、H2SO
4処理によってMnO2の結合水が一種の脱水反応的な作用
を受けてH2Oの一部離脱が起こり、結晶の骨格としては
β形に近いものとなることが考えられる。
As described above, the reason why MnO 2 obtained by the H 2 SO 4 treatment of the present application has a high discharge performance is unknown, but H 2 SO 4
It is considered that the 4 treatment causes the bound water of MnO 2 to act as a sort of dehydration reaction to cause partial elimination of H 2 O, resulting in a crystal skeleton close to β-form.

この場合、通常の熱処理のみでβ形変換を行わせた場合
と違って、MnO2はH2SO4中で溶解性となり、その後新た
な結晶としての骨格を作るものとも考えられる。
In this case, MnO 2 is considered to become soluble in H 2 SO 4 and then form a skeleton as a new crystal, unlike the case where β-type conversion is performed only by ordinary heat treatment.

<実施例> 以下にこの発明をリチウム電池に適用した例につき説明
する。
<Example> An example in which the present invention is applied to a lithium battery will be described below.

H2SO4の5%水溶液25l中に、硫酸マンガンを電解酸化す
るなどして得たγ形の電解二酸化マンガン粉末6kgを加
え、オートクレーブ中の高圧下で10時間処理した。この
処理により、電解二酸化マンガンはγ形からβ類似形に
変換し、またこの類似β形電解二酸化マンガンは固まっ
てケーキ状になった。
To 25 l of a 5% aqueous solution of H 2 SO 4 , 6 kg of γ-type electrolytic manganese dioxide powder obtained by electrolytically oxidizing manganese sulfate was added, and the mixture was treated under high pressure in an autoclave for 10 hours. This treatment converted the electrolytic manganese dioxide from the γ form to the β-similar form, and the similar β-type electrolytic manganese dioxide solidified into a cake.

次いで、このケーキ状のβ類似形二酸化マンガンを、ボ
ールミルにて粉砕し、また325メッシュのふるい機を通
して、40〜150メッシュのものを得た。
Next, the cake-like β-analogous manganese dioxide was pulverized with a ball mill and passed through a 325 mesh sieving machine to obtain 40 to 150 mesh.

そして、こうして得たβ類似形二酸化マンガン粉末85重
量%,導電剤としてカーボンブラック12重量%,結着剤
としてポリテトラフルオロエチレン3重量%を混合しま
たコイン状に加圧成形して作製した正極合剤1を用い、
また第1図に示したように、有底短円筒状でステンレス
製の電池缶2の内底面にこの正極合剤1を載置し、また
正極合剤1の上面に、ポリエチレン不織布製のセパレー
タ3、リチウム負極4、並びにステンレス製の端子板5
を順次配し、更に電池缶開口部を内方に折曲し、電池缶
周縁部内側と端子板周縁部との間に位置させた合成樹脂
製の封口ガスケット6をこれら周縁部で挟圧し封口し
て、図示した通りのCR2430形の電池(本発明電池)を作
製した。
Then, a positive electrode produced by mixing 85% by weight of the β-similar manganese dioxide powder thus obtained, 12% by weight of carbon black as a conductive agent, and 3% by weight of polytetrafluoroethylene as a binder and press-molding into a coin shape. Using mixture 1,
Further, as shown in FIG. 1, the positive electrode mixture 1 is placed on the inner bottom surface of a battery case 2 made of stainless steel having a bottomed short cylinder, and the separator made of polyethylene nonwoven fabric is placed on the upper surface of the positive electrode mixture 1. 3, lithium negative electrode 4, and stainless steel terminal plate 5
Are sequentially arranged, the opening of the battery can is bent inward, and a sealing gasket 6 made of a synthetic resin, which is located between the inside of the battery can's peripheral portion and the terminal plate's peripheral portion, is clamped by these peripheral portions to seal the same. Then, a CR2430 type battery (invention battery) as shown in the drawing was produced.

また、正極合剤の活物質として、電解二酸化マンガンを
375℃にて加熱処理してβ形化した二酸化マンガンを用
いた他は同様なCR2430形の電池(従来電池)を作製し
た。
In addition, electrolytic manganese dioxide is used as the active material of the positive electrode mixture.
A similar CR2430 type battery (conventional battery) was prepared except that β-type manganese dioxide was used after heat treatment at 375 ° C.

これら2種の電池を、放電抵抗30KΩでそれぞれ連続放
電させてその端子電圧(V)の変化を調べた。結果は第
2図に示した通りである。第2図において、実線は本発
明電池の、また点線は従来電池の放電特性を示す。
These two types of batteries were continuously discharged with a discharge resistance of 30 KΩ, and changes in the terminal voltage (V) were examined. The results are as shown in FIG. In FIG. 2, the solid line shows the discharge characteristics of the battery of the present invention, and the dotted line shows the discharge characteristics of the conventional battery.

第2図より、従来電池は放電後約1700時間経過した時点
で電圧が低下し始め、2000時間経過時の電圧は約2.3Vで
あった。一方、本発明電池では放電開始後2000時間経過
しても電池電圧が約2.9Vと高くて放電末期における電圧
の平坦性が良く、従って放電性能が高い。
As shown in FIG. 2, the voltage of the conventional battery started to decrease at the time of about 1700 hours after discharging, and the voltage at the time of 2000 hours was about 2.3V. On the other hand, in the battery of the present invention, the battery voltage is as high as about 2.9 V even after 2000 hours have elapsed from the start of discharge, and the flatness of the voltage at the end of discharge is good, and therefore the discharge performance is high.

尚、以上は負極活物質にリチウムを用いた例であるが、
ナトリウム等のその他の軽金属を負極活物質とした場合
も同様な結果が得られることは明らかである。
Although the above is an example in which lithium is used as the negative electrode active material,
It is clear that similar results can be obtained when other light metal such as sodium is used as the negative electrode active material.

<発明の効果> 以上のようにこの発明によれば、この種の非水電解液電
池の放電性能の向上が図れる。
<Effects of the Invention> As described above, according to the present invention, the discharge performance of the non-aqueous electrolyte battery of this type can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例の電池の断面図、第2図は本発明電池と
従来電池の放電特性を示したグラフ、第3図は各種のMn
O2を正極活物質に使用した電池の初期放電特性を示した
グラフ、第4図は同じく保存後の放電特性を示したグラ
フ、第5図は(A)〜(C)は各種のMnO2のX線回折パ
ターンを示したグラフである。 1……正極合剤、2……電池缶、3……セパレータ、4
……リチウム負極。
FIG. 1 is a sectional view of the battery of the embodiment, FIG. 2 is a graph showing the discharge characteristics of the battery of the present invention and a conventional battery, and FIG. 3 is various Mn.
A graph showing initial discharge characteristics of a battery using O 2 as a positive electrode active material, FIG. 4 is a graph showing discharge characteristics after storage, and FIGS. 5A to 5C are various MnO 2 2 is a graph showing an X-ray diffraction pattern of 1 ... Positive electrode mixture, 2 ... Battery can, 3 ... Separator, 4
...... Lithium negative electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北方 雅一 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (56)参考文献 特開 昭59−158073(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masakazu Kitakata 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (56) Reference JP-A-59-158073 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムやナトリウムなどの軽金属を活物
質とする負極と、二酸化マンガンを活物質とする正極
と、非水電解液を備えてなり、前記二酸化マンガンとし
て、γ形二酸化マンガンを高圧下でH2SO4水溶液中にて1
30〜145℃の範囲で処理して得られるβ類似形二酸化マ
ンガンを用いたことを特徴とする非水電解液電池。
1. A negative electrode using a light metal such as lithium or sodium as an active material, a positive electrode using manganese dioxide as an active material, and a non-aqueous electrolyte, wherein γ-type manganese dioxide is used as the manganese dioxide under high pressure. In H 2 SO 4 aqueous solution at 1
A non-aqueous electrolyte battery characterized by using β-analogous manganese dioxide obtained by treating at a temperature range of 30 to 145 ° C.
JP63111933A 1988-05-09 1988-05-09 Non-aqueous electrolyte battery Expired - Fee Related JPH0677457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111933A JPH0677457B2 (en) 1988-05-09 1988-05-09 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111933A JPH0677457B2 (en) 1988-05-09 1988-05-09 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01281671A JPH01281671A (en) 1989-11-13
JPH0677457B2 true JPH0677457B2 (en) 1994-09-28

Family

ID=14573773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111933A Expired - Fee Related JPH0677457B2 (en) 1988-05-09 1988-05-09 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0677457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526559B (en) * 2021-07-12 2023-07-28 郑州轻工业大学 Preparation method and application of double-phase manganese dioxide heterojunction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158073A (en) * 1983-02-28 1984-09-07 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JPH01281671A (en) 1989-11-13

Similar Documents

Publication Publication Date Title
KR100328879B1 (en) Lithium secondary battery
DE69819395T2 (en) Positive electrode material for use of the non-aqueous electrolyte-containing battery and method of manufacturing the same and the non-aqueous electrolyte-containing battery
KR20080038163A (en) Positive electrode active material for rechargeable battery with nonaqueous electrolyte, and method for manufacturing the same
DE4215130A1 (en) A MATERIAL CONTAINING MANGANE DIOXIDE AND THE USE THEREOF IN AN ELECTROCHEMICAL CELL
US6673491B2 (en) Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same
DE69837484T2 (en) Secondary cell with nonaqueous electrolyte
JP4435926B2 (en) High crystalline lithium titanate
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
CN111430701A (en) Lithium-rich carbonate precursor and preparation method and application thereof
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
US6706444B1 (en) Process for preparing lithium manganate in spinel structure
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
US6899860B2 (en) Process for producing lithium manganate and lithium battery using the lithium manganate
EP0645834B1 (en) Process for preparing a positive electrode for secondary lithium batteries
JPH10134811A (en) Manufacture of positive electrode material for lithium cell
JPH0677457B2 (en) Non-aqueous electrolyte battery
JPH0364860A (en) Manufacture of active material for organic electrolyte battery
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
JP3610440B2 (en) Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery
JP2003054952A (en) Method of producing lithium-manganese complex oxide and lithium battery obtained by using the lithium- manganese complex oxide
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2005122931A (en) Lithium-manganese compound oxide grain, manufacturing method of the same, and nonaqueous lithium secondary battery
JP2799007B2 (en) Method for producing positive electrode in non-aqueous electrolyte secondary battery
JPS59128765A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees