JPS59158073A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS59158073A
JPS59158073A JP58032080A JP3208083A JPS59158073A JP S59158073 A JPS59158073 A JP S59158073A JP 58032080 A JP58032080 A JP 58032080A JP 3208083 A JP3208083 A JP 3208083A JP S59158073 A JPS59158073 A JP S59158073A
Authority
JP
Japan
Prior art keywords
active material
manganese dioxide
type
discharge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58032080A
Other languages
Japanese (ja)
Inventor
Kazuhide Miyazaki
宮崎 和英
Hideki Nishihama
西浜 秀樹
Toshiteru Okada
岡田 敏照
Hiroshi Shinkawa
新川 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP58032080A priority Critical patent/JPS59158073A/en
Publication of JPS59158073A publication Critical patent/JPS59158073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the flatness of the discharge voltage of a nonaqueous electrolyte battery as well as the duration in the last stage of the discharge of the battery by using a light metal represented by Li or Na as a negative active material and using beta-type MnO2 obtained through wet treatment as a positive active material. CONSTITUTION:A sheet consisting of a light metal represented by Li or Na metal used as a negative active material 4, is pressed and fixed on a negative plate 3. A positive mixture 6 containing beta-type MnO2 obtained by subjecting gamma-type MnO2 to wet treatment as a positive active material, is brought into close contact with a positive electrode 7. After that, a nonwoven fabric separator 5 containing nonaqueous electrolyte is interposed between the negative and the positive active material 4 and 6 to constitute a battery. By using such a positive active material, the discharge duration in the last stage of the discharge of the battery is widely improved.

Description

【発明の詳細な説明】 本発明はリチウム、ナトリウムで代表される軽金属を陰
極活物質とし、二酸化マンガンを陽極活物質とし、電解
液として前記軽金属を酸化しない非水有機溶媒を使用し
た非水電解′fLt池の改良に関する。
Detailed Description of the Invention The present invention provides non-aqueous electrolysis using light metals such as lithium and sodium as the cathode active material, manganese dioxide as the anode active material, and a non-aqueous organic solvent that does not oxidize the light metals as the electrolyte. 'fLt pond improvement.

非水電解液電池の陽極活物質として二酸化マンガンが有
効であることは広く知られている。
It is widely known that manganese dioxide is effective as an anode active material for non-aqueous electrolyte batteries.

しかしながら、非水電解液電池の陽極活物質として従来
からマンガン電池用等に使用されているγ型二酸化マン
〃ンを使用すると、放電時間の延びが悪く、また放電中
の電圧の平坦性も悪いという結果を招来する。そのため
、これらγ型二酸化マンカンは加熱処理して使用するこ
とが提唱されているが、加熱処理して得られる二酸化マ
ンガンは加熱温度が低ずぎるとγ型のままであり、また
加熱温度が450℃以上の高温で処理して得られる二酸
化マンガンはβ型となるもののその表面の一部がMn2
O3に還元される等の現象が起り易(、良好な電池性能
を発揮することが困難である欠点があった。従って加熱
処理は400℃前後の狭い温度領域で実施し、それによ
り得られる、所蛸β−γ型二敗化マンガンが最も良い電
池性能を発揮するとされていた。
However, when γ-type mandioxide, which has traditionally been used for manganese batteries, is used as an anode active material for non-aqueous electrolyte batteries, the discharge time is not long enough, and the voltage flatness during discharge is also poor. This results in the following result. Therefore, it has been proposed that these γ-type manganese dioxide be used after being heat-treated, but if the heating temperature is too low, the manganese dioxide obtained by heat treatment will remain in the γ-type, and if the heating temperature is 450°C. Manganese dioxide obtained by processing at higher temperatures becomes β-type, but part of its surface is Mn2.
Phenomena such as reduction to O3 easily occur (there was a drawback that it was difficult to exhibit good battery performance. Therefore, the heat treatment was carried out in a narrow temperature range of around 400 ° C. It was believed that the beta-gamma type two-ferromagnetic manganese exhibited the best battery performance.

しかしながら、このような従来の加熱処理して得られる
β−γ型二酸二酸化マンガン極活物質として用いる場合
でも二酸化マンガンの利用率はそれ程高くな(、また放
電末期に′j6ける電圧の平坦性もかなり悪いものであ
った。
However, the utilization rate of manganese dioxide is not so high even when it is used as a β-γ type diacid manganese dioxide polar active material obtained by such conventional heat treatment (also, the flatness of the voltage at the end of discharge It was also pretty bad.

本発明者らは、上記した従来の陽極活物質としての二酸
化マンガンの問題点を改善し、放電中の電圧が平坦性を
有し、しかも放電末期における持続時間の太r1]な延
びが笑現される非水電解液電池を提供することを目的と
し1種々検討を重ねる過程において、非水電解液電池の
陽極活物質の製法としては従来全く常識外として顧りみ
られなかった湿式処理を適用することにより極めて有用
なβ型の陽極活物質が得られ、これを使用した非水電解
液電池によれは前記仮相課題が達成されるという*(べ
き知見を得た。
The present inventors have improved the above-mentioned problems with manganese dioxide as a conventional anode active material, and have achieved a flatness of the voltage during discharge and a large extension of the duration at the end of discharge. In the process of conducting various studies with the aim of providing a non-aqueous electrolyte battery, we decided to apply wet processing, which had previously been considered completely out of the norm and had not been considered as a manufacturing method for the anode active material of a non-aqueous electrolyte battery. As a result, an extremely useful β-type anode active material can be obtained, and a non-aqueous electrolyte battery using this material can achieve the above-mentioned pseudophase problem.

不発明はこれら知見に基き、完成されたものである。The invention was completed based on these findings.

すなわち、本発明はリチウム、ナトリウムで代表される
軽金属を陰極活物質とし、二酸化マンガンを陽極活物質
とする非水電解液電池において、陽極活物質が湿式処理
されてβ型二酸化マンガンとされたものであることを特
徴とするものである。
That is, the present invention relates to a nonaqueous electrolyte battery in which a light metal such as lithium or sodium is used as a cathode active material and manganese dioxide is used as an anode active material, and the anode active material is wet-treated to form β-type manganese dioxide. It is characterized by:

本発明に−P6ける陰極活物質としてはリチウム、ナト
リウム等で代表される軽金属を用い、これらのシート状
体を適宜裁断して適用する。
As the cathode active material in -P6 of the present invention, light metals represented by lithium, sodium, etc. are used, and sheet-like materials of these are suitably cut and applied.

また、非水電解液としては陰極活物質である軽金属を酸
化しない非水有機溶媒を使用する。
Further, as the nonaqueous electrolyte, a nonaqueous organic solvent that does not oxidize the light metal that is the cathode active material is used.

その具体的−9iを示せはプロピレンカーゼネートおよ
び1,2−ジメトキシエタンの混合溶媒に過垣素酸リチ
ウムを溶解して得られる。
Specifically, -9i is obtained by dissolving lithium peroxide in a mixed solvent of propylene carzenate and 1,2-dimethoxyethane.

本発明において、陽極活物質として用いる二酸化マンガ
ンはγ型二酸化マンカンを湿式処理することによりβ型
とされたものである。本発明における湿式処理とは、γ
型二酸化マンガン粉末を二価のマンカンイオンおよび/
またはマグネシウムイオンを含む硫酸酸性浴中に浸漬し
、マクロ的にポーラスでしかも強度のある二酸化マンガ
ン塊状物をつくることが骨子となる。次いで、得られた
塊状物を粗砕、過当な粒度への整粒を行った後、脱酸お
よび残留不純物を洗浄するために水洗、湯洗を行う。こ
の湯洗の温度が低すぎると不純物の除去が不完全となる
の℃少(とも70℃以上で湯洗することが望ましい。
In the present invention, the manganese dioxide used as the positive electrode active material is made into the β type by wet-processing the γ type mancan dioxide. Wet processing in the present invention refers to γ
type manganese dioxide powder with divalent manganese ions and/or
Alternatively, the key is to create manganese dioxide lumps that are macroporous and strong by immersing them in a sulfuric acid bath containing magnesium ions. Next, the obtained lumps are coarsely crushed and sized to an appropriate particle size, and then washed with water and hot water in order to deoxidize and wash away residual impurities. If the temperature of this hot water washing is too low, the removal of impurities will be incomplete.

また、二酸化マンガン粉末が浸漬される酸性溶成の&1
.温はそのi液の沸点以下でできるだけ高い方が良く、
浸漬時間は負い方がより好ましい。
In addition, &1 of acid melting in which manganese dioxide powder is immersed
.. The temperature should be as high as possible and below the boiling point of the i-liquid.
It is more preferable that the immersion time be negative.

このような湿式処理により良好なβ型二酸化マンガンが
得られる。このβ氾二酸化マンガンはその後、導電材お
よび粕漕判とともに加圧成型され、非水電解液゛電池の
1赫極合剤として適用される。
By such wet treatment, good β-type manganese dioxide can be obtained. This β-flooded manganese dioxide is then pressure-molded together with a conductive material and a slag paste, and is applied as a primary polarization mixture for non-aqueous electrolyte batteries.

次に実施例により本発明の匁呆をより詳細に一兄甲ヨで
rる。
Next, the advantages of the present invention will be explained in more detail with examples.

実施例に 価のマンガンイオン2og//J、マグネシウムイオン
zofi/11.硫酸]−009/lを含む硫酸酸性浴
を90℃に保持し、この浴中に粉末状二酸化マンガンを
浸漬し、浴をそのまま90℃に保持したまま6日間静置
して強固な二酸化マンガン塊状物を得た。この塊状物を
粗砕し、適当な粒度に督粒した俊、水洗および湯洗(9
0”C)し、乾旅後整粒してβ型二酸化マンガンを得た
Examples include manganese ions of 2 og//J and magnesium ions of zofi/11. A sulfuric acid acidic bath containing -009/l of sulfuric acid was kept at 90°C, powdered manganese dioxide was immersed in this bath, and the bath was kept at 90°C and allowed to stand for 6 days to form solid manganese dioxide lumps. I got something. This lump was coarsely crushed and granulated to an appropriate particle size, washed with water, and washed with hot water (9
0''C), and after drying, the particles were sized to obtain β-type manganese dioxide.

このβ型二酸化マンカンのX線回折図を第1図のA1と
して示す。なお、比戟のため従来のγ型二酸化マンカン
および加熱処理して得られたβ−γ型二咳化マンカンの
X#1回折図をそれぞれJIEi 2およびA3として
第1図に示した。この第1図にみられるように本発明に
おり“るβ型二眩化マンガンは36°付近で大きなピー
クが現われ、全体的にピークは高く且つ鋭い。これに反
し、A3のβ−γ型二酸二酸化マンガン6°・付近のピ
ークはなだらかで、それ程明<4ではなく、また7・ん
2のγ型二酸化マ/カンは36°付近のピークは全(み
られ1”、28°(ツ近1(ピークが現われている。
The X-ray diffraction diagram of this β-type mankan dioxide is shown as A1 in FIG. For comparison, the X#1 diffractograms of conventional γ-type mankan dioxide and β-γ-type mankan dioxide obtained by heat treatment are shown in FIG. 1 as JIEi 2 and A3, respectively. As can be seen in FIG. 1, the β-type dazzling manganese according to the present invention has a large peak around 36°, and the overall peak is high and sharp.On the contrary, the β-γ type of A3 The peak around 6°·manganese dioxide is gentle and not so bright <4, and the peak around 36° for γ-type ma/can dioxide in 7·n2 is all (seeing 1", 28°( Near 1 (peak appears).

また、第2図はβ型二酸化マンカンの300℃加熱乾珠
時の残留水分を図中の人1としてボす。なお図中のA2
はβ型二酸化マンガンの残留水分を示すものである。そ
れぞれの残留水分はカールフィッシャ法で測定し、それ
を経時変化で表わしたものである。この$2図より本発
明におけるβ型二酸化マンガンは非水電解液′電池で最
も有害であるとされる水分の含有量が乾燥前でも2〜ノ
3%と低く、乾燥時間も短くてすみ、しかも乾沫後の水
分も低い。このように従来最も水分を嫌う非水電解液電
池の陽極活物質を調製するために不発明では従来の當識
では全く考えも及ばなかった湿式処理を行うものであり
、しかもそれにより得られる二酸化マンガンはβ型で、
このβ型二酸化マンガンを使用することにより電池性能
が大巾に向上するものである。
In addition, in Figure 2, the residual moisture of β-type mankan dioxide when heated and dried at 300°C is shown as person 1 in the figure. In addition, A2 in the figure
indicates the residual water content of β-type manganese dioxide. The residual moisture content of each sample was measured using the Karl Fischer method, and the results are expressed as changes over time. From this $2 figure, the β-type manganese dioxide in the present invention has a low water content of 2 to 3% even before drying, which is considered to be the most harmful in non-aqueous electrolyte batteries, and the drying time is short. Moreover, the moisture content after drying is low. In this way, in order to prepare the anode active material for non-aqueous electrolyte batteries, which is the most sensitive to moisture, a wet process was carried out, which was completely unthinkable with conventional wisdom, and the resulting carbon dioxide Manganese is in the beta form,
By using this β-type manganese dioxide, battery performance is greatly improved.

次に、前記のようにして得られたβ型二酸化マンカン0
.135 gに、黒鉛0091および四フッ化エチレン
樹脂o、 061を混合し、3t/dで加圧成型し陽極
合剤を調製した。なお、これら二酸化マンガン、焦鉛お
よび四7ツ化エチレン樹脂は予備乾燥したものを用(・
た。得られた陽極合剤を用いて第3図に示されるような
テストセルを作製し、20℃室温下で2.5にΩの連続
放電試験を行った。なお、以上の操作はすべてアルゴン
雰囲気下のドクイデツクス中で行った。
Next, β-type mancan dioxide obtained as described above
.. 135 g of graphite 0091 and tetrafluoroethylene resin O, 061 were mixed and pressure molded at 3 t/d to prepare an anode mixture. In addition, use pre-dried manganese dioxide, pyrolead, and ethylene tetrachloride resin (・
Ta. A test cell as shown in FIG. 3 was prepared using the obtained anode mixture, and a continuous discharge test of 2.5Ω was conducted at room temperature at 20°C. All of the above operations were performed in a docu-dex under an argon atmosphere.

電屏漱は)゛ロピレンカー〆ネート、1,2−ジメトキ
シエタンのi : l(1合浴媒に過塩素酸リチウム1
 mol/l溶解したものを用いた。この場合に使用し
た試薬は常法により乾燥処理したものを用いた。また、
陰極はシート状の金属リチウムを陽極合剤と同一の直径
になるように打ち抜いて使用した。
Denpeisho is) 1:1 of ``propylene carnate, 1,2-dimethoxyethane'' (1:1 of lithium perchlorate to the combined bath medium)
A mol/l solution was used. The reagents used in this case were dried by a conventional method. Also,
The cathode was used by punching out a sheet of metal lithium to have the same diameter as the anode mixture.

なお、第31において、1は′電流を外部に取り出すた
めの陰極端子、2はテフロン樹脂製の絶縁物で、それぞ
れがねじ込み式でセルの密閉ができるよ5になっている
。3は陰極板、4は圧着したシート状の金属リチウム、
5は不織布製のセパレーター、6は前記の方法で作成し
た陽極合剤、7はステンレス製の陽極、をそれぞれ示し
ている。
In the 31st cell, 1 is a cathode terminal for extracting current to the outside, and 2 is an insulator made of Teflon resin, each of which is screwed in to seal the cell. 3 is a cathode plate, 4 is a pressed metal lithium sheet,
Reference numeral 5 indicates a separator made of nonwoven fabric, 6 indicates an anode mixture prepared by the method described above, and 7 indicates an anode made of stainless steel.

放電試験の結果は第4図に示す。図中のAIは実施例1
に係る電池の放電試験結果を示している。またA2は結
晶形の変化のないように250℃で脱水処理したβ型二
酸化マンガンを、また屋3はβ型二酸化マンガンを38
0℃で加熱処理して得られたβ−β型二酸化マンガンを
用いて陽極合剤としたこと以外は実施例1の場合と全<
IoJ様にして電池を作製し、同一条件で放電試験を行
った結果を示すものである。
The results of the discharge test are shown in Figure 4. AI in the figure is Example 1
The results of the discharge test of the battery are shown. In addition, A2 uses β-type manganese dioxide that has been dehydrated at 250°C to avoid changes in crystal form, and Ya3 uses β-type manganese dioxide at 38°C.
Same as in Example 1 except that β-β type manganese dioxide obtained by heat treatment at 0°C was used as the anode mixture.
This figure shows the results of a battery prepared according to IoJ and a discharge test performed under the same conditions.

この第4図より、実施例1に係る竜?114は比較し1
1に比べて放′亀末期における持続時間の大巾な延びか
みもれ、また放亀甲の電圧の平坦性も良好であり、非水
電解′e、′a池として極めて良好な電池特性を具えた
ものであった。
From this FIG. 4, the dragon according to Example 1? 114 compares 1
Compared to No. 1, the duration at the end of the release period is greatly extended, and the voltage of the release shell is also better in flatness, and it has extremely good battery characteristics as a non-aqueous electrolytic cell. It was something like that.

実施例2 マグネシウムイオンを含まブよいこと以外は実施例1と
同様の組成の硫酸浴を用い、β型二酸化マンガンを得た
。実施例1と同様の方法で、このβ型二鹸化マンカンを
陽極活物質として用い、陽償合剤を調製、リチウム′亀
池のテストセルを構成した。これを20℃、2.5 K
Ωの連続放電を行なった結果、終止電圧2.1 Vまで
の放電時間は28.1時間であった。一方比較例として
、従来の加熱処理して得られたβ−γ型二喰化マンガン
(380℃処理)を陽極活物質として構成したテストセ
ルの放電時間は23.8時間であった。
Example 2 β-type manganese dioxide was obtained using a sulfuric acid bath having the same composition as in Example 1 except that it contained magnesium ions. In the same manner as in Example 1, this β-type disaponified mancan was used as the positive electrode active material to prepare a positive compensation mixture, and a lithium Kameike test cell was constructed. This was heated at 20℃ and 2.5K.
As a result of continuous discharge of Ω, the discharge time to reach the final voltage of 2.1 V was 28.1 hours. On the other hand, as a comparative example, the discharge time of a test cell in which β-γ type manganese diferent obtained by conventional heat treatment (treated at 380° C.) was used as the anode active material was 23.8 hours.

このことから、マグネシウムイオンを含まない硫ば浴で
得られたβ型二酸化マンガンも優れた性能であることが
確認された。
From this, it was confirmed that β-type manganese dioxide obtained in a sulfur bath containing no magnesium ions also had excellent performance.

財施例3 マンガンイオンを含まないこと以外は実施例1と同様の
組成の硫酸性浴を用いて、β型二酸化マンガンを得た。
Example 3 β-type manganese dioxide was obtained using a sulfuric acid bath having the same composition as in Example 1 except that it did not contain manganese ions.

このβ型二酸化マンガンを用いて実施例1と同様の方法
でテストセルを構成シ、20°C12,5KΩの連続放
電を行なった。
A test cell was constructed using this β-type manganese dioxide in the same manner as in Example 1, and continuous discharge was performed at 20° C. and 12,5 KΩ.

その結果、終止電圧2.lVまでの放電時間は27.0
時間であった。また同時に比較としてβ型二酸化マンガ
ンを陽極活?2I質としたテストセルを傅成し放電した
が、放′gL時間は162時間であった。
As a result, the final voltage 2. Discharge time to lV is 27.0
It was time. At the same time, for comparison, is β-type manganese dioxide active as an anode? A test cell of 2I quality was fabricated and discharged, and the discharge time was 162 hours.

以上の実施例で示される様に上記各々の方法によって得
られたβ型二酸化マンガンは、従来のβ−γ型、γ型二
酸化マンカンではとうてい得ることのできなかったきわ
めて良好な電池性能を発揮し、その工業的価値は飛躍的
なものである。
As shown in the examples above, the β-type manganese dioxide obtained by each of the above methods exhibits extremely good battery performance that could not be obtained with conventional β-γ type or γ-type manganese dioxide. , its industrial value is tremendous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各独二酸化マンガンのXi回折図である。 第2図は第1図における各槍二酸化マンガンの加熱脱水
時のTA笛水分と就床時間との関係図である。 第3図は本発明実施例にどけるテストセルの概略断面説
明図である。 第4図は本発明実施例1におけるテストセルの放電曲線
図である。 1・・・陰極端子  2・・・絶 縁 物3・・・陰 
極板  4・・・リチウム5・・・セパレーター   
 6°゛・陽極合剤笥1凹 20 数電竹、ネ乞υfTNI(吟間)
FIG. 1 is a Xi diffraction pattern of each German manganese dioxide. FIG. 2 is a diagram showing the relationship between TA whistle moisture and bed time during heating dehydration of each spear manganese dioxide in FIG. 1. FIG. 3 is a schematic cross-sectional view of a test cell according to an embodiment of the present invention. FIG. 4 is a discharge curve diagram of the test cell in Example 1 of the present invention. 1... Cathode terminal 2... Insulator 3... Shadow
Electrode plate 4...Lithium 5...Separator
6°゛・Anode mixture bowl 1 recess 20 Number of electric bamboos, Negashi υfTNI (Ginma)

Claims (1)

【特許請求の範囲】 1、 リチウム、ナトリウムで代表される軽金属を陰極
活物質とし、二酸化マンガンを陽極活物質とする非水電
解液電池において、陽極活物質が湿式処理されてβ型二
酸化マンガンとされたものであることを%徴とする非水
電解液電池。 2 湿式処理が二酸化マンガン粉末を二価のマンガンイ
オンおよび/またはマグネシウムイオンを含む硫酸酸性
浴中に浸漬して得られる塊状物を整粒し、水洗および湯
洗することかしなる特許請求の範囲第1項記載の非水電
解液1E池。
[Scope of Claims] 1. In a nonaqueous electrolyte battery in which a light metal such as lithium or sodium is used as a cathode active material and manganese dioxide is used as an anode active material, the anode active material is wet-treated to form β-type manganese dioxide. A non-aqueous electrolyte battery that is characterized by the fact that it is 2 Claims in which the wet treatment consists of sizing a lump obtained by immersing manganese dioxide powder in a sulfuric acid acidic bath containing divalent manganese ions and/or magnesium ions, and washing with water and hot water. The non-aqueous electrolyte 1E pond described in item 1.
JP58032080A 1983-02-28 1983-02-28 Nonaqueous electrolyte battery Pending JPS59158073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58032080A JPS59158073A (en) 1983-02-28 1983-02-28 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58032080A JPS59158073A (en) 1983-02-28 1983-02-28 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS59158073A true JPS59158073A (en) 1984-09-07

Family

ID=12348897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58032080A Pending JPS59158073A (en) 1983-02-28 1983-02-28 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59158073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281671A (en) * 1988-05-09 1989-11-13 Fuji Elelctrochem Co Ltd Battery with nonaqueous electrolyte
EP1633009A1 (en) * 2004-09-03 2006-03-08 Matsushita Electric Industries Co., Ltd. Lithium primary battery
CN100334756C (en) * 2004-09-03 2007-08-29 松下电器产业株式会社 Lithium primary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504479A (en) * 1973-05-18 1975-01-17
JPS52147732A (en) * 1976-06-02 1977-12-08 Yuasa Battery Co Ltd Lithiummmanganese dioxide battery
JPS53111429A (en) * 1977-03-09 1978-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing battery and positive electrode active material thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504479A (en) * 1973-05-18 1975-01-17
JPS52147732A (en) * 1976-06-02 1977-12-08 Yuasa Battery Co Ltd Lithiummmanganese dioxide battery
JPS53111429A (en) * 1977-03-09 1978-09-29 Matsushita Electric Ind Co Ltd Method of manufacturing battery and positive electrode active material thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281671A (en) * 1988-05-09 1989-11-13 Fuji Elelctrochem Co Ltd Battery with nonaqueous electrolyte
EP1633009A1 (en) * 2004-09-03 2006-03-08 Matsushita Electric Industries Co., Ltd. Lithium primary battery
CN100334756C (en) * 2004-09-03 2007-08-29 松下电器产业株式会社 Lithium primary battery
US7588860B2 (en) 2004-09-03 2009-09-15 Panasonic Corporation Lithium primary battery

Similar Documents

Publication Publication Date Title
JPH0349178B2 (en)
JPS6117424A (en) Manganese dioxide and manufacture
JPH0578142B2 (en)
JPS59158073A (en) Nonaqueous electrolyte battery
CN108448069B (en) Method for modifying high-nickel lithium ion battery positive electrode material
US4335192A (en) Method of preparing a sintered iron electrode
JPS6116473A (en) Nonaqueous electrolyte battery
JPH03122968A (en) Manufacture of manganese dioxide for lithium primary battery
JPH01234330A (en) Manganese dioxide and its production
US2186929A (en) Method for manufacturing a highly active depolarizer from natural pyrolusite
US2771499A (en) Electric battery plate and method of producing the same
JPH06150914A (en) Manganese dioxide for lithium battery and manufacture thereof
US3663296A (en) Method for removal of residual nitrate from negative battery plates
US2971042A (en) Method of making storage batteries
JPH0380120A (en) Production of manganese dioxide for lithium primary cell
JPS634555A (en) Activated chemical treatment manganese dioxide for dry batterry and its manufacture
JPS58158856A (en) Nonaqueous electrolytic battery
JPS6146948B2 (en)
JPH088102B2 (en) Method for producing improved electrolytic manganese dioxide
JPH0380121A (en) Production of manganese dioxide for lithium secondary cell
US1305250A (en) Charles f
CN117878267A (en) Double-coated lithium battery positive electrode material and preparation method and application thereof
JPH1040900A (en) Positive electrode for lithium ion secondary battery
JPS59224073A (en) Nonaqueous electrolyte cell
US1305252A (en) Charles f