JPH0676840A - Flat plate solid electrolyte fuel cell - Google Patents

Flat plate solid electrolyte fuel cell

Info

Publication number
JPH0676840A
JPH0676840A JP4225433A JP22543392A JPH0676840A JP H0676840 A JPH0676840 A JP H0676840A JP 4225433 A JP4225433 A JP 4225433A JP 22543392 A JP22543392 A JP 22543392A JP H0676840 A JPH0676840 A JP H0676840A
Authority
JP
Japan
Prior art keywords
solid electrolyte
fuel cell
interconnector
manifold
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4225433A
Other languages
Japanese (ja)
Inventor
Akihiro Yamashita
晃弘 山下
Nobuaki Murakami
信明 村上
Tatsuo Kahata
達雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4225433A priority Critical patent/JPH0676840A/en
Publication of JPH0676840A publication Critical patent/JPH0676840A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To extend the life of a gas seal material by rectangularly molding the end sections of an interconnector and an oxygen ion conducting solid electrolyte, and connecting the end sections to sufficiently filled recesses. CONSTITUTION:An interconnector 4 is made of a La0.9 oxide having the preset composition ratio of lanthanum acetate, strontium acetate, and chromium acetate. This mixture of 60 pts.wt. and distilled water of 40 pts.wt. are mixed, heated, and baked in the air to obtain a composite oxide having the average grain size of about 0.5mum. Preset quantities of ethyl alcohol and ethylene glycol are mixed and wet-crushed. The obtained mixture is poured into a plaster mold, and it is removed from the mold, dried, and baked to form a connector 4. A manifold 5 is machined with slots for holding a unit cell and the connector 4, the connector 4 is assembled into the manifold 5, and its connection section is filled with a gas seal material 6 melted in the operating atmosphere. When the connector 4 and a solid electrolyte 1 are connected to the seal material 6, excellent airtightness and a long life can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質型燃料電池の
改良に関する。
FIELD OF THE INVENTION The present invention relates to improvements in solid oxide fuel cells.

【0002】[0002]

【従来の技術】固体電解質型燃料電池の作動原理を図7
に示す。電極を設けた酸素イオン導電性固体電解質1を
900℃から1000℃の高温にして、この固体電解質
1を隔壁として一方に燃料電極3を介して水素、一酸化
炭素などの還元ガスを、もう一方に空気電極2を介して
空気などの酸化性ガスを供給すると、空気側の電極2に
おいて酸素ガスがイオン化して酸素イオンとなり、この
酸素イオンは固体電解質1中を燃料側に拡散して燃料側
の電極3において還元ガスと反応して水となる。この反
応にあずかる電子を電池外部の負荷9を通して空気側電
極2に供給することによって、電力として出力を取り出
すものである。
2. Description of the Related Art The operating principle of a solid oxide fuel cell is shown in FIG.
Shown in. The oxygen ion conductive solid electrolyte 1 provided with an electrode is heated to a high temperature of 900 ° C. to 1000 ° C., and the solid electrolyte 1 is used as a partition wall, and one side is supplied with a reducing gas such as hydrogen or carbon monoxide through the fuel electrode 3. When an oxidizing gas such as air is supplied to the air electrode 2 through the air electrode 2, the oxygen gas is ionized into oxygen ions at the air side electrode 2, and the oxygen ions diffuse into the solid electrolyte 1 toward the fuel side, and the oxygen side is diffused into the fuel side. It reacts with the reducing gas at the electrode 3 to become water. By supplying the electrons participating in this reaction to the air-side electrode 2 through the load 9 outside the battery, the output is taken out as electric power.

【0003】このような固体電解質型燃料電池の構造に
は円筒型や平板型があるが、燃料電池の単位体積あたり
の出力を向上させるためには平板型が適した構造と考え
られている。平板型固体電解質型燃料電池の積層化は空
気電極、燃料電極を設けた酸素イオン導電性固体電解質
を単位電池として、これに単位電池を直列に接続するた
めのインターコネクタを介して行う。さらに空気及び燃
料を単位電池に供給するためのマニホールドが必要とな
る。マニホールド構造は単位電池内部で空気、燃料をそ
れぞれを分配供給する構造と、積層した電池の外部にお
いて空気、燃料それぞれを分配して、単位電池に供給す
る構造がある。このように、平板型固体電解質型燃料電
池の積層化は単位電池、インターコネクタ、マニホール
ドといった材料特性の異なる各構造部材を一体化するこ
とが必要である。
The structure of such a solid oxide fuel cell includes a cylindrical type and a flat type, but it is considered that the flat type is suitable for improving the output per unit volume of the fuel cell. Stacking of a flat plate type solid oxide fuel cell is carried out by using an oxygen ion conductive solid electrolyte provided with an air electrode and a fuel electrode as a unit cell and an interconnector for connecting the unit cell in series to the unit cell. Further, a manifold for supplying air and fuel to the unit cell is required. The manifold structure has a structure in which air and fuel are distributed and supplied inside the unit cell, and a structure in which air and fuel are distributed outside the stacked cells and supplied to the unit battery. As described above, in order to stack the flat plate solid oxide fuel cell, it is necessary to integrate structural members having different material properties such as a unit cell, an interconnector, and a manifold.

【0004】従来の平板型固体電解質型燃料電池スタッ
クを図5に示す。このうち、単位電池(1,2,3)、
インターコネクタ4とマニホールド5間の構造を拡大し
て図6に示す。図6のように単位電池(1,2,3)、
インターコネクタ4とマニホールド5間は発電雰囲気で
溶融するガスシール材6によって気密性を維持する構造
を有する。
FIG. 5 shows a conventional flat plate solid oxide fuel cell stack. Of these, unit batteries (1, 2, 3),
FIG. 6 shows an enlarged structure between the interconnector 4 and the manifold 5. Unit batteries (1, 2, 3) as shown in FIG.
A space between the interconnector 4 and the manifold 5 is maintained by a gas sealing material 6 that melts in a power generation atmosphere.

【0005】[0005]

【発明が解決しようとする課題】平板型固体電解質型燃
料電池の特徴は上述した通りであるが、900℃から1
000℃の高温で電池を作動させるためには、単位電池
(1,2,3)、インターコネクタ4及びマニホールド
5の各構造部材間で空気と燃料の気密性を十分維持する
必要がある。
The features of the flat plate solid oxide fuel cell are as described above, but from 900 ° C. to 1
In order to operate the battery at a high temperature of 000 ° C., it is necessary to sufficiently maintain the airtightness of air and fuel among the structural members of the unit battery (1, 2, 3), interconnector 4 and manifold 5.

【0006】図5に示したような従来の平板型固体電解
質型燃料電池の単位電池(1,2,3)、インターコネ
クタ4とマニホールド5間のガスシール構造では、溶融
したガスシール材料6が運転中に蒸発が進行した場合、
長時間の使用は困難である。
In the gas seal structure between the unit cells (1, 2, 3) of the conventional flat plate solid oxide fuel cell, the interconnector 4 and the manifold 5 as shown in FIG. 5, the molten gas seal material 6 is used. If evaporation progresses during operation,
It is difficult to use for a long time.

【0007】本発明は上記技術水準に鑑み、溶融したガ
スシール材料が長時間使用に対して適用可能な単位電
池、インターコネクタとマニホールド間の接続構造を有
する平板固体電解質型燃料電池を提供しようとするもの
である。
In view of the above-mentioned state of the art, the present invention is to provide a unit cell in which a molten gas seal material is applicable for long-term use, and a flat plate solid oxide fuel cell having a connection structure between an interconnector and a manifold. To do.

【0008】[0008]

【課題を解決するための手段】本発明は平板型酸素イオ
ン導電性固体電解質の一方の面に陽極を設け、該陽極と
相対する位置に陰極を設け、これに、この平板型酸素イ
オン導電性固体電解質型燃料電池を直列に接続するため
のインターコネクタと、燃料及び空気を供給するための
マニホールドを備えた固体電解質型燃料電池において、
それぞれ端部を直角に成型した酸素イオン導電性固体電
解質とインターコネクタ板の端部を、マニホールドに形
成されたガスシール材が十分充填された凹部に接続して
なることを特徴とする平板固体電解質型燃料電池であ
る。
According to the present invention, an anode is provided on one surface of a flat plate type oxygen ion conductive solid electrolyte, and a cathode is provided at a position opposite to the anode. In an interconnector for connecting solid oxide fuel cells in series, and a solid oxide fuel cell including a manifold for supplying fuel and air,
A flat plate solid electrolyte characterized in that the oxygen ion conductive solid electrolyte whose ends are formed at right angles and the ends of the interconnector plate are connected to the recesses that are sufficiently filled with the gas sealing material formed in the manifold. Type fuel cell.

【0009】[0009]

【作用】本発明の平板固体電解質型燃料電池は上述のよ
うに単位電池、インターコネクタとマニホールド間のガ
スシール材料充填容積が大きくなるため、運転時にガス
シール材の蒸発が進行した場合でも、充分ガスシール性
を維持することが可能となる。
In the flat plate solid oxide fuel cell of the present invention, as described above, the filling volume of the gas seal material between the unit cell, the interconnector and the manifold becomes large, so that even if the gas seal material evaporates during operation, it is sufficient. It becomes possible to maintain the gas sealability.

【0010】[0010]

【実施例】本発明の一実施例を図1に示す。図1は本発
明の平板型固体電解質型燃料電池スタックの断面図を示
す。酸素イオン導電性固体電解質1はZrO2 酸化物に
2 3 を8mol%の割合で混合し、1600℃、空
気中で10時間焼成したZrO2 −Y2 3 (YSZ)
複合酸化物を、重量分率でZrO2 −Y2 3 複合酸化
物80%、ブチルアルコール10%、蒸留水10%の割
合で混合し、この混合物を図2に示したような外径10
0mm、内径105mmの石膏製鋳型7に約50cc流
入し、約3時間後に鋳型から取り外し、空気中200℃
で乾燥後、さらに空気中1600℃で5時間焼成して図
3に示したような円板外周部分が直角に成型された酸素
イオン導電性固体電解質板1を得る。
FIG. 1 shows an embodiment of the present invention. Figure 1 is the main
A cross-sectional view of Ming's flat-plate solid oxide fuel cell stack is shown.
You Oxygen ion conductive solid electrolyte 1 is ZrO2To oxide
Y 2O3Was mixed at a ratio of 8 mol%, and the mixture was emptied at 1600 ° C.
ZrO calcined in air for 10 hours2-Y2O3(YSZ)
ZrO composite oxide in weight fraction2-Y2O3Complex oxidation
80%, butyl alcohol 10%, distilled water 10%
And mix and mix the mixture with an outer diameter of 10
Approximately 50 cc flow in a gypsum mold 7 with 0 mm and inner diameter of 105 mm
Put in, remove from mold after about 3 hours, 200 ℃ in air
After drying in air, baking at 1600 ℃ in air for 5 hours
Oxygen with the outer periphery of the disk formed at a right angle as shown in 3
The ion conductive solid electrolyte plate 1 is obtained.

【0011】電極は空気電極2にLa,Mn系ペロブス
カイト型酸化物を、燃料電極3にはNiO−YSZサー
メット電極を用いる。具体的には空気電極2としてはL
aMnO3 もしくはLaMnO3 のAサイト(Laサイ
ト)をSrもしくはCaでそれぞれ10mol%から3
0mol%部分置換したLa0.9 Sr0.1 MnO3 もし
くはLa0.7 Ca0.3 MnO3 のペロブスカイト型複合
酸化物を使用する。これらの酸化物は酢酸ランタン、酢
酸マンガン、酢酸ストロンチウム、酢酸カルシウムを所
定の組成比となるように秤量したあと、混合物重量60
部と蒸留水40部を混合し、200℃で5時間に加熱し
たあと、800℃、空気中10時間焼成を行い、平均粒
子径が約0.5μmのペロブスカイト型複合酸化物を得
る。得られたペロブスカイト型複合酸化物重量90部に
対して、エチルアルコール5部、エチレングリコール5
部を混合し湿式で24時間混合粉砕を行う。
As the electrodes, La, Mn-based perovskite type oxides are used for the air electrode 2, and NiO-YSZ cermet electrodes are used for the fuel electrode 3. Specifically, the air electrode 2 is L
The A site (La site) of aMnO 3 or LaMnO 3 is 10 mol% to 3 each with Sr or Ca.
A perovskite complex oxide of La 0.9 Sr 0.1 MnO 3 or La 0.7 Ca 0.3 MnO 3 partially substituted with 0 mol% is used. For these oxides, lanthanum acetate, manganese acetate, strontium acetate, and calcium acetate were weighed to obtain a predetermined composition ratio, and then the mixture weight 60
And 40 parts of distilled water are mixed and heated at 200 ° C. for 5 hours and then baked at 800 ° C. in air for 10 hours to obtain a perovskite-type composite oxide having an average particle diameter of about 0.5 μm. 5 parts by weight of ethyl alcohol and 5 parts by weight of ethylene glycol based on 90 parts by weight of the obtained perovskite complex oxide.
Parts are mixed and wet pulverized for 24 hours.

【0012】燃料電極3としてはNiOとZrO2 −Y
2 3 複合酸化物の混合物からなるものを用いる。Ni
O/ZrO2 −Y2 3 はZrO2 酸化物とY2 3
化物を重量分率にして86:14の割合で混合し、15
00℃、空気中で10時間焼成してZrO2 −Y2 3
複合酸化物を合成し、さらに合成したZrO2 −Y2
3 複合酸化物とNiOを重量分率にして、80:20の
割合で混合し、混合物80に対して蒸留水20の割合で
湿式混合を50時間行い、その後蒸留水を蒸発させたZ
rO2 −Y2 3 複合酸化物とNiOの混合物を100
0℃で10時間、空気中で焼成する酸化物混合法により
合成した。合成した混合物を平均粒子径を約50μm及
び20μmとなるような2種の粒子径を有する複合酸化
物を合成する。これら2種の複合酸化物を重量分率で2
0:80の割合で混合し、混合物重量90部に対して、
エチルアルコール5部、エチレングリコール5部を混合
し湿式で24時間混合粉砕を行う。
As the fuel electrode 3, NiO and ZrO 2 -Y are used.
A mixture of 2 O 3 complex oxides is used. Ni
O / ZrO 2 —Y 2 O 3 was prepared by mixing ZrO 2 oxide and Y 2 O 3 oxide at a weight ratio of 86:14, and
ZrO 2 —Y 2 O 3 by firing in air at 00 ° C. for 10 hours
ZrO 2 —Y 2 O synthesized by synthesizing composite oxide
3 The composite oxide and NiO were mixed at a weight ratio of 80:20, and the mixture 80 was wet mixed with distilled water at a ratio of 20 for 50 hours, and then distilled water was evaporated.
A mixture of rO 2 —Y 2 O 3 composite oxide and NiO was added to 100%.
It was synthesized by an oxide mixing method in which it was baked in air at 0 ° C. for 10 hours. A composite oxide having two kinds of particle diameters having an average particle diameter of about 50 μm and 20 μm is synthesized from the synthesized mixture. The weight ratio of these two kinds of complex oxides is 2
Mix at a ratio of 0:80, to 90 parts by weight of the mixture,
5 parts of ethyl alcohol and 5 parts of ethylene glycol are mixed and wet-mixed for 24 hours.

【0013】これら空気電極、燃料電極材料をそれぞれ
固体電解質板1両面に塗布し、空気中1100℃で2時
間焼成を行い電極膜とする。
These air electrode and fuel electrode materials are applied to both surfaces of the solid electrolyte plate 1 and baked in air at 1100 ° C. for 2 hours to form an electrode film.

【0014】インターコネクタ4はLa0.9 Sr0.1
rO3 酸化物を使用する。酢酸ランタン、酢酸ストロン
チウム、酢酸クロムを所定の組成比となるように秤量し
たあと、混合物重量60部と蒸留水40部を混合し、2
00℃で5時間加熱したあと、800℃、空気中10時
間焼成を行い、平均粒子径が約0.5μmのペロブスカ
イト型複合酸化物を得る。得られたペロブスカイト型複
合酸化物重量90部に対して、エチルアルコール5部、
エチレングリコール5部を混合し湿式で24時間混合粉
砕を行う。得られた混合物を図2の外径100mm、内
径105mmの石膏製鋳型7に約50cc流入し、約3
時間後に鋳型から取り外し、空気中200℃で乾燥後、
さらに空気中1600℃で5時間焼成して円盤外周部分
が直角に成型されたインターコネクタ4を得る。
The interconnector 4 is La 0.9 Sr 0.1 C
rO 3 oxide is used. Lanthanum acetate, strontium acetate, and chromium acetate were weighed so as to have a predetermined composition ratio, and then 60 parts by weight of the mixture and 40 parts of distilled water were mixed to obtain 2
After heating at 00 ° C. for 5 hours, firing is performed at 800 ° C. in air for 10 hours to obtain a perovskite type composite oxide having an average particle size of about 0.5 μm. To 90 parts by weight of the obtained perovskite complex oxide, 5 parts of ethyl alcohol,
5 parts of ethylene glycol is mixed and wet-mixed for 24 hours. About 50 cc of the obtained mixture was poured into a plaster mold 7 having an outer diameter of 100 mm and an inner diameter of 105 mm in FIG.
Remove from mold after time, dry in air at 200 ° C,
Further, it is fired in air at 1600 ° C. for 5 hours to obtain an interconnector 4 in which the outer peripheral portion of the disk is molded at a right angle.

【0015】マニホールド5は図4に示したように、単
位電池、インターコネクタを保持するための溝穴を加工
し、燃料、空気通路を成型する。マニホールド5に単位
電池(1,2,3)、インターコネクタ4を組み込み、
それらの接続部分に運転雰囲気で溶融するガスシール材
6、例えばアルミナ−シリカ−酸化カリウム混合物を充
填する。
As shown in FIG. 4, the manifold 5 is formed with grooves for holding the unit cells and the interconnector to form fuel and air passages. Unit batteries (1, 2, 3) and interconnector 4 are installed in the manifold 5,
The connecting parts are filled with a gas sealing material 6 which melts in the operating atmosphere, for example an alumina-silica-potassium oxide mixture.

【0016】[0016]

【発明の効果】上述したように、酸素イオン導電性固体
電解質の両面に空気電極、燃料電極を設けた単位電池
と、単位電池を電気的に接続するインターコネクタをマ
ニホールドに保持した固体電解質型燃料電池において、
単位電池、インターコネクタの端部を直角に成型してマ
ニホールドの溝部分に接続することにより、気密性に優
れた平板固体電解質型燃料電池の製造が可能となる。
As described above, the solid electrolyte fuel in which the unit cell having the air electrode and the fuel electrode on both sides of the oxygen ion conductive solid electrolyte and the interconnector for electrically connecting the unit cell to the manifold are held. In the battery,
By molding the ends of the unit cell and the interconnector at right angles and connecting them to the groove portion of the manifold, it is possible to manufacture a flat plate solid oxide fuel cell having excellent airtightness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の平板固体電解質型燃料電池の一実施例
の説明図。
FIG. 1 is an explanatory view of an embodiment of a flat plate solid oxide fuel cell of the present invention.

【図2】本発明の平板固体電解質型燃料電池の酸化イオ
ン導電性固体電解質及びインターコネクタの成形用鋳型
の説明図。
FIG. 2 is an explanatory view of a mold for molding an oxide ion conductive solid electrolyte and an interconnector of the flat plate solid oxide fuel cell of the present invention.

【図3】図2の鋳型で得られた酸化イオン導電性固体電
解質の説明図。
FIG. 3 is an explanatory view of an oxide ion conductive solid electrolyte obtained by the template of FIG.

【図4】本発明の平板固体電解質型燃料電池のマニホー
ルドの説明図。
FIG. 4 is an explanatory view of a manifold of the flat plate solid oxide fuel cell of the present invention.

【図5】従来の平板固体電解質型燃料電池の一態様の説
明図。
FIG. 5 is an explanatory view of one mode of a conventional flat plate solid oxide fuel cell.

【図6】図5の一部拡大図。6 is a partially enlarged view of FIG.

【図7】固体電解質型燃料電池の作動原理の説明図。FIG. 7 is an explanatory diagram of an operating principle of a solid oxide fuel cell.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平板型酸素イオン導電性固体電解質の一
方の面に陽極を設け、該陽極と相対する位置に陰極を設
け、これに、この平板型酸素イオン導電性固体電解質型
燃料電池を直列に接続するためのインターコネクタと、
燃料及び空気を供給するためのマニホールドを備えた固
体電解質型燃料電池において、それぞれ端部を直角に成
型した酸素イオン導電性固体電解質とインターコネクタ
板の端部を、マニホールドに形成されたガスシール材が
十分充填された凹部に接続してなることを特徴とする平
板固体電解質型燃料電池。
1. A flat plate-type oxygen ion conductive solid electrolyte type fuel cell is provided with an anode on one surface thereof, and a cathode is provided at a position facing the positive electrode, to which the flat plate type oxygen ion conductive solid electrolyte type fuel cell is connected in series. An interconnector for connecting to
In a solid oxide fuel cell provided with a manifold for supplying fuel and air, an oxygen ion conductive solid electrolyte whose ends are formed at right angles and an end of an interconnector plate are formed into a gas sealant on the manifold. A flat plate solid oxide fuel cell, characterized in that it is connected to a recess that is sufficiently filled with.
JP4225433A 1992-08-25 1992-08-25 Flat plate solid electrolyte fuel cell Withdrawn JPH0676840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4225433A JPH0676840A (en) 1992-08-25 1992-08-25 Flat plate solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4225433A JPH0676840A (en) 1992-08-25 1992-08-25 Flat plate solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH0676840A true JPH0676840A (en) 1994-03-18

Family

ID=16829297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4225433A Withdrawn JPH0676840A (en) 1992-08-25 1992-08-25 Flat plate solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH0676840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017914A1 (en) 2007-07-19 2009-01-21 Ngk Insulators, Ltd. Reactor
US7569298B2 (en) 2001-06-08 2009-08-04 Toyota Jidosha Kabushiki Kaisha Separator seal structure for a fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569298B2 (en) 2001-06-08 2009-08-04 Toyota Jidosha Kabushiki Kaisha Separator seal structure for a fuel cell
EP2017914A1 (en) 2007-07-19 2009-01-21 Ngk Insulators, Ltd. Reactor
US8603696B2 (en) 2007-07-19 2013-12-10 Ngk Insulators, Ltd. Reactor

Similar Documents

Publication Publication Date Title
CN111900449B (en) Solid oxide fuel cell, method for producing same and use thereof
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH07153469A (en) Solid electrolyte fuel cell
JP4236298B2 (en) Solid oxide fuel cell with honeycomb integrated structure
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
KR100532203B1 (en) Solid oxide fuel cells having gas channel
JPH1021935A (en) Solid electrolyte fuel cell
JPH03129675A (en) Solid electrolyte fuel cell
JP2000030728A (en) Making method of dense sintered film and manufacture of solid electrolyte-type fuel cell using the method
JPH0676840A (en) Flat plate solid electrolyte fuel cell
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
JPH03116659A (en) Solid electrolyte type fuel battery
JPH0436962A (en) Fuel cell with solid electrolyte
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JPH11297342A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH02168568A (en) Fuel battery with solid electrolyte
JPH06136583A (en) Solid electrolyte type electrolytic cell
JP3740342B2 (en) Solid oxide fuel cell
JPH06176773A (en) Manufacture of flat type solid electrolyte fuel cell
JP2002075410A (en) Collector for solid-oxide fuel cell and solid-oxide fuel cell using same
JP2003036863A (en) Cell for solid electrolyte type fuel cell and fuel cell
JPH11297343A (en) Solid electrolyte type fuel cell of honeycomb integrated structure
JPH0317959A (en) Air electrode material for solid electrolyte fuel cell and solid electrolyte fuel cell
JPH04174973A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102