JPH0436962A - Fuel cell with solid electrolyte - Google Patents

Fuel cell with solid electrolyte

Info

Publication number
JPH0436962A
JPH0436962A JP2143481A JP14348190A JPH0436962A JP H0436962 A JPH0436962 A JP H0436962A JP 2143481 A JP2143481 A JP 2143481A JP 14348190 A JP14348190 A JP 14348190A JP H0436962 A JPH0436962 A JP H0436962A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte layer
zirconia
fuel electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2143481A
Other languages
Japanese (ja)
Inventor
Shinichi Maruyama
晋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2143481A priority Critical patent/JPH0436962A/en
Publication of JPH0436962A publication Critical patent/JPH0436962A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent crack initiation in a nickel-zirconia thermet porous base board by furnishing each unitary cell with a solid electrolyte layer provided over the whole main surface on one side of the porous base board as a fuel electrode, a covering layer provided on the peripheral side faces of the base board, and with an air electrode which is placed on the solid electrolyte layer. CONSTITUTION:A powder of nickel oxide (NiO) is mixed with a powder of zirconia stabilized by 8% yttria (8%Y2O3-ZrO2) in a specified proportion followed by granulating press shaping, and baking processes at 1,400-1,600 deg.C to yield a porous fuel electrode 21. With the fuel electrode 21 as a support, zirconia is plasma fusion sprayed to the peripheral side faces and a main surface free from ribs of fuel electrode 21, and thereby a solid electrolyte layer 22 and a covering layer 25 are formed. Gas is Ar/He mixture gas having a pressure of 100 Torr. Then a paste consisting of La0.9Sr0.1 MnO3 and a solvent is applied by brush on the solid electrolyte layer 22, followed by drying at 1200 deg.C, and thus an air electrode 23 is formed. A gas separator 24 is prepared using lantha num chromite (La0.8Ca0.2CrO3).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解質型燃料電池の単セルに係り、特に
燃料極である二ッケルージルコニアザーメット基板の信
頼性を向上させた燃料電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a single cell of a solid oxide fuel cell, and in particular to a fuel cell in which the reliability of a Nickel zirconia cermet substrate, which is a fuel electrode, is improved. Regarding.

〔従来の技術〕[Conventional technology]

ジルコニア等の酸化物固体電解質を用いる燃料電池は、
その作動温度が800〜1100℃と高温であるため、
発電効率が高い」二に触媒が不要であり、また電解質が
固体であるため取扱いが容易であるなどの特長を有し、
第三世代の燃料電池として期待されている。
Fuel cells using oxide solid electrolytes such as zirconia are
Because its operating temperature is as high as 800-1100℃,
It has features such as high power generation efficiency, no need for a catalyst, and easy handling because the electrolyte is solid.
It is expected to be a third-generation fuel cell.

第2図は従来の固体電解質型燃料電池を示す断面図であ
る。ランタンカルシウムクロマイト(1、aa、e”C
ao、 zcrOs)からなり、反応ガス供給用のリブ
を有するガスセパレータ24と、単セル30とが交互に
積層される。単セル30はニッケルージルコニア(Ni
−ZrOz)サーメット基板である燃料極21と、8%
イツトリアで安定化されたジルコニア (8%Y20゜
Zr0z)からなる固体電解質層22と、ランタンスト
ロンチウムマンガナイl’ (!、ao、eSro、 
zMnoi)からなる空気極23とから構成される。燃
料極21と空気極23ハカスセバレータ24と接する。
FIG. 2 is a sectional view showing a conventional solid oxide fuel cell. Lanthanum calcium chromite (1, aa, e”C
Gas separators 24 made of acetate (ao, zcrOs) and having ribs for supplying reactive gases and single cells 30 are alternately stacked. The single cell 30 is made of nickel-zirconia (Ni
-ZrOz) fuel electrode 21 which is a cermet substrate, and 8%
A solid electrolyte layer 22 made of zirconia stabilized with yttoria (8%Y20°Zr0z) and lanthanum strontium manganese l' (!, ao, eSro,
zMnoi). The fuel electrode 21 and the air electrode 23 are in contact with the separator 24 .

ガスセパレータ24の両生面にはそれぞれ燃料ガスと酸
化剤ガスが分離して流される。ガスセパレータ24は緻
密に形成され再反応ガスが混触しない。またランタンカ
ルシウムクロマイト(La6,1lCao、 zcro
i)等のランタンクロマイト系の材料は導電性であり、
積層された単セル30の間を電気的に接続させる。ラン
タンクロマイト系の材料はその電気抵抗を減するために
、Laの1部がBa、 Ca、 Sr等で置換される。
Fuel gas and oxidant gas are separately flowed onto both sides of the gas separator 24, respectively. The gas separator 24 is formed densely so that the re-reacted gas does not come into contact with it. In addition, lanthanum calcium chromite (La6,1lCao, zcro
Lanthanum chromite materials such as i) are conductive,
The stacked unit cells 30 are electrically connected. In order to reduce the electrical resistance of lanthanum chromite-based materials, part of La is replaced with Ba, Ca, Sr, etc.

この材料を除き燃料電池の運転温度1000℃において
酸化性と還元性のふん囲気で使用できるものはない。
Except for this material, there is no material that can be used in an oxidizing and reducing atmosphere at a fuel cell operating temperature of 1000°C.

空気極23では次の反応がおこる。The following reaction occurs at the air electrode 23.

02 + 4 e −202−−−−−−−fl)燃料
極21では次の反応がおこる。
02 + 4 e -202--------fl) The following reaction occurs at the fuel electrode 21.

20” +2 H2→2 Hz O→−48−一−−(
2+酸素イオン0トは固体電解質層22の内部を空気極
23から燃料極21に向かって流れる。電子48はガス
セパレータ24を含む外部回路を流れる。
20" +2 H2→2 Hz O→-48-1--(
The 2+ oxygen ions flow inside the solid electrolyte layer 22 from the air electrode 23 toward the fuel electrode 21 . Electrons 48 flow through an external circuit that includes gas separator 24 .

ガスセパレータ24は酸化ランタン(LazOi)+酸
化カルシウム(Cab)、酸化クロム(Crz(h)の
粉体を所定割合で混合して1300℃で反応させてラン
タンカルシウムクロマイト(Lao、aCao、 2C
rOs)を生成させ、粉砕、造粒後プレス成型し、14
00°Cで緻密に焼成して製造される。リブを設けるた
めに厚さは2〜3flが必要となる。単セル30は約3
00p厚に固体電解質層22を形成し、酸化ニッケル(
Nip)とジルコニア(ZrO□)を所定の割合で含む
ペーストを固体電解質層22の1主面に塗布してニッケ
ル−ジルコニアサーメット基板に貼着し、さらに他の主
面にはランタンストロンチウムマンガナイト(Lao、
q’Sro、 +MnO:+)を含むペーストを塗布し
乾燥したのち焼成して製造される。燃料極は酸化ニッケ
ルとジルコニアを用いて形成されるが使用に際して燃料
ガスにより酸化ニッケルが還元され、ニッケルジルコニ
アサーメットが形成される。生成したニッケルが触媒と
して機能する。ジルコニアはニッケルの焼結を防止する
とともに電解質体としても機能する。
The gas separator 24 is made of lanthanum calcium chromite (Lao, aCao, 2C) by mixing powders of lanthanum oxide (LazOi), calcium oxide (Cab), and chromium oxide (Crz(h)) at a predetermined ratio and reacting the mixture at 1300°C.
rOs), pulverized, granulated, and press-molded.
Manufactured by dense firing at 00°C. A thickness of 2 to 3 fl is required to provide the ribs. Single cell 30 is about 3
A solid electrolyte layer 22 is formed with a thickness of 00p, and nickel oxide (
A paste containing a predetermined ratio of lanthanum strontium manganite (Nip) and zirconia (ZrO Lao,
It is manufactured by applying a paste containing q'Sro, +MnO:+), drying it, and then firing it. The fuel electrode is formed using nickel oxide and zirconia, but during use, the nickel oxide is reduced by the fuel gas to form nickel zirconia cermet. The nickel produced functions as a catalyst. Zirconia prevents nickel from sintering and also functions as an electrolyte.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述のような従来の固体電解質型燃料電池
においては、燃料極21であるニッケルジルコニアサー
メットの内部は燃料ガスに触れ還元ふん囲気となってい
るが、サーメットの周縁部は空気と接触し、酸化ふん囲
気となっている。そのためにサーメットの周縁部はニッ
ケルが酸化され酸化ニッケルとなっている。ニッケルが
酸化ニッケルとなるときの体積増加は60%であるうえ
に、ニッケル部と酸化ニッケル部の境界領域は燃料電池
運転中のガス圧力のバランスで流動的に変化する。従っ
て境界近傍ではサーメット中のニッケルは内部のガス圧
力の高低により酸化されたり、あるいはまた還元された
りする。この酸化還元の繰り返しによる体積変化で、ニ
ッケル−ジルコニアサーメット基板に亀裂が入り、その
基板に設けられた電解質層にも亀裂が入り、反応ガス同
士の混触が起こって固体電解質型燃料電池の特性が低下
し、さらに運転の続行ができなくなるという問題があっ
た。
However, in the conventional solid oxide fuel cell as described above, the inside of the nickel zirconia cermet that is the fuel electrode 21 comes into contact with the fuel gas and becomes a reducing atmosphere, but the periphery of the cermet comes into contact with air and is oxidized. There is a lot of atmosphere. For this reason, the nickel at the periphery of the cermet is oxidized to become nickel oxide. When nickel becomes nickel oxide, the volume increases by 60%, and the boundary area between the nickel part and the nickel oxide part changes fluidly depending on the gas pressure balance during fuel cell operation. Therefore, near the boundary, the nickel in the cermet is oxidized or reduced depending on the internal gas pressure. Due to the volume change caused by this repeated redox, the nickel-zirconia cermet substrate cracks, and the electrolyte layer provided on the substrate also cracks, causing the reaction gases to come into contact with each other and causing the characteristics of the solid oxide fuel cell to deteriorate. There was a problem in that the vehicle speed deteriorated, making it impossible to continue driving.

この発明は上述の点に鑑みてなされその目的はニッケル
−ジルコニアサーメット多孔質基板の亀裂を防止して信
転性に優れる固体電解質型燃料電池を提供することにあ
る。
The present invention has been made in view of the above-mentioned points, and its object is to provide a solid oxide fuel cell which prevents cracks in a nickel-zirconia cermet porous substrate and has excellent reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば単セルを有し、単セルは
燃料極21であるニッケル−ジルコニアサーメット多孔
質基板と、この多孔質基板の1方の主面の全域に設けら
れた固体電解質層22と、前記多孔質基板の外周側面に
設けられた被覆層25と、前記固体電解質層に積層され
た空気極23とを備えることにより達成される。
The above-mentioned object has a single cell according to the present invention, and the single cell has a nickel-zirconia cermet porous substrate which is the fuel electrode 21, and a solid electrolyte provided over the entire main surface of one of the porous substrates. This is achieved by comprising a layer 22, a covering layer 25 provided on the outer peripheral side of the porous substrate, and an air electrode 23 laminated on the solid electrolyte layer.

被覆層25はガス不透過性であることが要求される。固
体電解質層22と同一材料を用いることもできる。被覆
層としてはアルミナ、ジルコニア、ランタンクロマイト
等が好適に用いられる。
The covering layer 25 is required to be gas impermeable. The same material as the solid electrolyte layer 22 can also be used. Alumina, zirconia, lanthanum chromite, etc. are preferably used as the coating layer.

〔作用〕[Effect]

被覆層25を設けるとニッケル−ジルコニアサーメット
基板に空気が浸入することがなくなり、サーメット中の
ニッケルは還元状態に維持される。
Providing the coating layer 25 prevents air from entering the nickel-zirconia cermet substrate, and the nickel in the cermet is maintained in a reduced state.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図はこの発明の実施例に係る固体電解質型燃料電池
のガスセパレータ24と単セル30^の配置を示す断面
図である。従来の燃料電池とは被覆層25を設けた点が
異なっている。酸化ニッケル(NIO)と8%イツトリ
アで安定化されたジルコニア (8%YzO+−ZrO
□)の各粉体を所定の割合で混合し造粒したのちプレス
成型して温度1400〜1600℃で焼成し多孔質の燃
料極21が得られる。燃料極21を支持体として燃料極
21のリブを有しない主面と、外周側面にジルコニアが
プラズマ溶射され、固体電解質層22と被覆層25が形
成される。ジルコニアの溶射は、直流減圧ブラスマ溶射
法を用いて行われる。
FIG. 1 is a sectional view showing the arrangement of a gas separator 24 and a single cell 30^ of a solid oxide fuel cell according to an embodiment of the present invention. This fuel cell differs from conventional fuel cells in that a covering layer 25 is provided. Zirconia stabilized with nickel oxide (NIO) and 8% yttria (8% YzO+-ZrO
The powders of □) are mixed in a predetermined ratio, granulated, press-molded, and fired at a temperature of 1400 to 1600°C to obtain a porous fuel electrode 21. Using the fuel electrode 21 as a support, zirconia is plasma sprayed onto the rib-free main surface and the outer peripheral side surface of the fuel electrode 21 to form a solid electrolyte layer 22 and a coating layer 25. Thermal spraying of zirconia is performed using a direct current reduced pressure plasma spraying method.

ガスはAr/Heの混合ガスであり圧力はl00Tor
rである。続いてLao、 9Sro、 + Mn0a
と溶剤からなるペーストが固体電解質層22の上に刷毛
塗りされ乾燥後1200℃で焼成して空気極23が形成
される。ガスセパレータ24はランタンクロマイト(L
ao、 BCao、 zcro3)を用い従来技術と同
様にして調製される。
The gas is a mixed gas of Ar/He and the pressure is 100 Torr.
It is r. Followed by Lao, 9Sro, + Mn0a
A paste consisting of a solvent and a solvent is brushed onto the solid electrolyte layer 22, dried, and then fired at 1200° C. to form the air electrode 23. The gas separator 24 is made of lanthanum chromite (L
ao, BCao, zcro3) in the same manner as in the prior art.

〔発明の効果〕〔Effect of the invention〕

この発明によれば単セルを有し、 単セルは燃料極であるニソケルージルコニアザーメット
多孔質基板と、この多孔質基板の1方の主面の全域に設
けられた固体電解質層と、前記多孔質基板の外周側面に
設けられた被覆層と、前記固体電解質層に積層された空
気極とを備えるのでニッケルーシルコニアサ−メソ1〜
多孔質基板は被覆層により空気と遮断され、サーメット
のニッケルは常に還元状態に維持されて酸化と還元の繰
返しを行うことがなくなりサーメット基板に亀裂が入る
ことが防止される。このようにして信幀性に優れる固体
電解質型燃料電池が得られる。
According to the present invention, a single cell is provided, and the single cell includes a porous Nisokeru-zirconia cermet substrate serving as a fuel electrode, a solid electrolyte layer provided over the entire area of one main surface of the porous substrate, Since it includes a coating layer provided on the outer peripheral side surface of the porous substrate and an air electrode laminated on the solid electrolyte layer, the nickel-silconia thermeso 1 to
The porous substrate is isolated from the air by the coating layer, and the nickel in the cermet is always maintained in a reduced state, preventing repeated oxidation and reduction, thereby preventing the cermet substrate from cracking. In this way, a solid oxide fuel cell with excellent reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る燃料電池のガスセパレ
ータと単セルの配置を示す断面図、第2図は従来の燃料
電池のガスセパレータと単セルの配置を示す断面図であ
る。
FIG. 1 is a sectional view showing the arrangement of a gas separator and a single cell of a fuel cell according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the arrangement of a gas separator and a single cell of a conventional fuel cell.

Claims (1)

【特許請求の範囲】 1)単セルを有し、 単セルは燃料極であるニッケル−ジルコニアサーメット
多孔質基板と、この多孔質基板の1方の主面の全域に設
けられた固体電解質層と前記多孔質基板の外周側面に設
けられた被覆層と、前記固体電解質層に積層された空気
極とを備えることを特徴とする固体電解質型燃料電池。
[Claims] 1) It has a single cell, and the single cell includes a nickel-zirconia cermet porous substrate serving as a fuel electrode, and a solid electrolyte layer provided over the entire main surface of one of the porous substrates. A solid oxide fuel cell comprising: a coating layer provided on an outer peripheral side surface of the porous substrate; and an air electrode laminated on the solid electrolyte layer.
JP2143481A 1990-06-01 1990-06-01 Fuel cell with solid electrolyte Pending JPH0436962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143481A JPH0436962A (en) 1990-06-01 1990-06-01 Fuel cell with solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143481A JPH0436962A (en) 1990-06-01 1990-06-01 Fuel cell with solid electrolyte

Publications (1)

Publication Number Publication Date
JPH0436962A true JPH0436962A (en) 1992-02-06

Family

ID=15339708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143481A Pending JPH0436962A (en) 1990-06-01 1990-06-01 Fuel cell with solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0436962A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108006A (en) * 2004-10-08 2006-04-20 Nissan Motor Co Ltd Separator, solid electrolyte fuel cell using this, and its manufacturing method
US7122268B2 (en) 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
KR100736161B1 (en) * 2005-03-31 2007-07-06 고등기술연구원연구조합 Electric cell for high and a method of preparing the same for the high temperature electrolysis
JP2008251246A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Structure for solid oxide fuel cell, and solid oxide fuel cell using this
JP2008251241A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Solid oxide fuel cell and its stack structure
JP2008293843A (en) * 2007-05-25 2008-12-04 Ngk Spark Plug Co Ltd Solid oxide fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122268B2 (en) 2001-04-23 2006-10-17 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
US8323845B2 (en) 2001-04-23 2012-12-04 Nissan Motor Co., Ltd. Solid oxide electrolyte fuel cell plate structure, stack and electrical power generation unit
JP2006108006A (en) * 2004-10-08 2006-04-20 Nissan Motor Co Ltd Separator, solid electrolyte fuel cell using this, and its manufacturing method
KR100736161B1 (en) * 2005-03-31 2007-07-06 고등기술연구원연구조합 Electric cell for high and a method of preparing the same for the high temperature electrolysis
JP2008251246A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Structure for solid oxide fuel cell, and solid oxide fuel cell using this
JP2008251241A (en) * 2007-03-29 2008-10-16 Dainippon Printing Co Ltd Solid oxide fuel cell and its stack structure
JP2008293843A (en) * 2007-05-25 2008-12-04 Ngk Spark Plug Co Ltd Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JP4368850B2 (en) Method for producing solid oxide fuel cell module
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP2004511070A (en) Solid oxide fuel cell component and method of manufacturing solid oxide fuel cell component
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP2000501879A (en) Electrode substrate for fuel cell
JPH07153469A (en) Solid electrolyte fuel cell
JPH06302332A (en) Method for bonding interconnection to electrode
JPH11154525A (en) Solid electrolyte fuel cell and its manufacture
JPH08213029A (en) Fuel electrode of solid electrolyte fuel cell
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
JPH0436962A (en) Fuel cell with solid electrolyte
JPH10172590A (en) Solid electrolyte type fuel cell
JPH0794196A (en) Solid electrolyte fuel cell stack
JPH0562688A (en) Solid electrolyte type fuel cell
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JPH03116659A (en) Solid electrolyte type fuel battery
JPH09306514A (en) Manufacture of solid electrolyte fuel cell
JP4544874B2 (en) Fuel cell and fuel cell
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH09265999A (en) Solid electrolyte type fuel cell and its manufacture
JPH0479163A (en) Solid electrolyte type fuel cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
CA2560769C (en) Electrolyte electrode assembly and method of producing the same
JPH0439866A (en) Solid electrolyte fuel cell