JPH08269568A - Production of steel sheet for can making excellent in flange formability - Google Patents

Production of steel sheet for can making excellent in flange formability

Info

Publication number
JPH08269568A
JPH08269568A JP7387195A JP7387195A JPH08269568A JP H08269568 A JPH08269568 A JP H08269568A JP 7387195 A JP7387195 A JP 7387195A JP 7387195 A JP7387195 A JP 7387195A JP H08269568 A JPH08269568 A JP H08269568A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7387195A
Other languages
Japanese (ja)
Inventor
Kaneharu Okuda
金晴 奥田
Akio Tosaka
章男 登坂
Toshiyuki Kato
俊之 加藤
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7387195A priority Critical patent/JPH08269568A/en
Publication of JPH08269568A publication Critical patent/JPH08269568A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To produce a steel sheet for can making excellent in flange formability by subjecting a steel slab contg. specified amounts of C, Si, Mn, P, S, Al, Nb, N, Ca, Y and rare earth metals to specified hot and cold rolling and executing heat treatment. CONSTITUTION: A steel having a compsn. contg., by weight, <=0.003% C, <=0.02% Si, 0.05 to 3% Mn, <=0.02% P, <=0.005% S, <=0.08% solAl, 0.002 to 0.02% Nb and <=0.003% N, furthermore contg. <=0.2% of one or more kinds among Ca, Y and rare earth metals (La, Ce, Pr, Nd and Sm), furthermore contg., at need, 0.005 to 0.020% Ti and 0.0005 to 0.0020% B, and the balance Fe with inevitable impurities is melted to form into a slab. This slab is heated to <=1150 deg.C and is rolled. The hot rolling is finished at the finishing temp. of 600 deg.C to the Ar3 transformation point, and it is coiled at 640 to 750 deg.C. This hot rolled sheet is subjected to cold rolling at 40 to 85% draft after the removal of scales and is thereafter subjected to heat treatment at 200 to 500 deg.C for >=10min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐ストレッチャースト
レイン性に優れ、かつ強度特性に優れた極薄ぶりき厚板
やティンフリースチルなどの製缶用鋼板の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a steel sheet for can making such as an ultra-thin tin plate and a tin-free still having excellent stretcher strain resistance and strength characteristics.

【0002】[0002]

【従来の技術】飲料缶および、18リットル缶、ベール缶
などの容器缶は、その製法(工程)から2ピース缶、と
3ピース缶に大別できる。2ピース缶は錫めっき、クロ
ムめっき、化成処理、塗油などの処理を施した表面処理
鋼板に、浅絞り缶、DWI加工、DRD加工などの加工
を施して、缶底と缶胴を一体成形し、これに蓋を取り付
けた2部品からなる缶である。3ピース缶は表面処理鋼
板を円筒状、または角筒状に曲げて端部同士を接合して
缶胴を接合したのち、これに天蓋と底蓋を取り付けた3
部品からなる缶である。
2. Description of the Related Art Beverage cans and container cans such as 18 liter cans and bale cans can be roughly classified into two-piece cans and three-piece cans according to their manufacturing process. Two-piece cans are tin-plated, chrome-plated, chemical-treated, oil-coated, and other surface-treated steel sheets are subjected to processing such as shallow-drawing cans, DWI processing, and DRD processing to integrally form the can bottom and can body. It is a two-part can with a lid attached to it. For a 3-piece can, the surface-treated steel plate is bent into a cylindrical shape or a rectangular tube shape, the ends are joined to each other to join the body of the can, and then the canopy and the bottom lid are attached.
It is a can made of parts.

【0003】これらの缶は、いずれも缶コストに占める
素材コストの割合が高いため鋼板のコスト低減への要求
は強い。そのため、製缶用鋼板の製造を非効率的で材料
の歩留まりや表面品質の劣る箱焼鈍で行うのではなく、
生産効率が高く歩留まりや表面品質に優れた連続焼鈍で
行うことが望まれる。このため例えば、特公昭63− 102
13号公報に開示されているように再結晶後、目的とする
調質度となるように二次圧延を行う従来技術があり、さ
らにそれらに改善を加えた技術が開発され、ロックウェ
ル硬さ(HR30T)の値をもって表される調質度でT2
(50−56)程度の軟質な缶用鋼板の製造が行われてい
た。
[0003] In each of these cans, the material cost occupies a large proportion of the can cost, so that there is a strong demand for cost reduction of the steel sheet. Therefore, rather than inefficiently manufacturing a steel sheet for can manufacturing by box annealing with poor material yield and surface quality,
It is desirable to carry out continuous annealing with high production efficiency and excellent yield and surface quality. Therefore, for example, Japanese Patent Publication No. 63-102
After the recrystallization as disclosed in Japanese Patent Publication No. 13, there is a conventional technique of performing secondary rolling so as to obtain a target temper, and a technique in which improvements are further made is developed, and Rockwell hardness The tempering degree expressed by the value of (HR30T) is T2.
The production of steel plates for cans as soft as (50-56) was carried out.

【0004】さらに軟質な鋼板を連続焼鈍で製造するた
めの開発も行われ、例えば、特公平1− 52452号公報の
ごとく極低炭素鋼板を適用するとともに、焼鈍後の加工
硬化の組合せで種々の硬さの製缶用鋼板を作りわける技
術が開発されている。
Further developments have been made for producing soft steel sheets by continuous annealing. For example, ultra low carbon steel sheets are applied as in Japanese Patent Publication No. 52452/1989, and various combinations of work hardening after annealing are applied. Techniques for making hard steel plates for can manufacturing have been developed.

【0005】[0005]

【発明が解決しようとする課題】しかしこの種の製缶用
鋼板においても、より一層のコストダウンが要求されて
おり、これに応えるためには新たな製造プロセスならび
に新たな素材を開発する必要があった。また、コストダ
ウンの1手法として使用する鋼板の板厚の減少と上蓋の
縮径(ネックイン)成形の強化の動きもあり、これらの
手法は要求する材料特性をさらに厳しいものとしている
が、上記の従来プロセス以外の方法では、厳しい条件下
での加工に対して、良好な加工性を有する製缶用鋼板を
製造する方法が存在しなかった。
However, even in this type of steel sheet for can making, further cost reduction is required, and in order to meet this, it is necessary to develop a new manufacturing process and a new material. there were. In addition, there is a movement to reduce the plate thickness of the steel sheet used as one method of cost reduction and to strengthen the diameter reduction (neck-in) forming of the upper lid, and these methods make the required material properties more severe. There has been no method other than the conventional process for producing a can-making steel sheet having good workability even under severe conditions.

【0006】本発明の目的は、厳しい条件下での加工を
行っても良好な加工性を有し、製缶用鋼板としての使用
特性を維持しつつ、従来とは異なる鋼組成およびより合
理的な製造方法によって、より一層のコストダウンを図
ることを可能にするものである。
The object of the present invention is to have good workability even when processed under severe conditions, maintain the usage characteristics as a steel sheet for can making, and to obtain a steel composition different from the conventional one and a more rational ratio. It is possible to further reduce the cost by various manufacturing methods.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するために、鋼組成および製造条件を検討しつ
つ、さらに製缶用鋼板の使用特性についてそれを支配す
る冶金的な検討を行い以下の知見を得た。製缶用鋼板と
して要求される重要な特性は次の通りである。(2ピー
ス缶と3ピース缶の双方に適用可能) 1)自動車などに用いられる深絞り用鋼板と異なり、高
いr値は必須条件ではない。 2)r値の面内異方性(Δr)はいずれも小さい方が望
ましい。 3)リジングのような変形の不均一性が生じないことが
望ましい。 4)微細な組織が変形の均一面で望ましい。 5)製造された鋼板は、必ずしも箱焼鈍材(低炭素アル
ミキルド鋼)のような完全非時効である必要はないが、
通常の連続焼鈍材(低炭素アルミキルド鋼)では製缶工
程およびその後の2次、3次の工程で不具合を生じるの
で時効しないのが望ましい。 6)通常の引張試験で得られるような延性でなく、それ
らより1桁から2桁程度速い速度で局部延性を有するこ
とが望ましい。
In order to achieve the above-mentioned object, the inventors of the present invention have studied the composition of steel and the manufacturing conditions, and have a metallurgical approach that governs the usage characteristics of the steel sheet for can making. We conducted a study and obtained the following findings. The important characteristics required for a steel sheet for can making are as follows. (Applicable to both 2-piece can and 3-piece can) 1) Unlike deep drawn steel sheets used for automobiles, a high r value is not an essential condition. 2) It is desirable that the in-plane anisotropy (Δr) of the r value is small. 3) It is desirable that non-uniformity of deformation such as ridging does not occur. 4) A fine structure is desirable in terms of uniform deformation. 5) The manufactured steel sheet does not necessarily have to be completely non-aged like a box annealed material (low carbon aluminum killed steel),
It is desirable not to age the normal continuous annealed material (low carbon aluminum killed steel) because it causes problems in the can making process and subsequent secondary and tertiary processes. 6) It is desirable to have local ductility at a speed that is about one to two orders of magnitude faster than those, which is not the ductility obtained by a normal tensile test.

【0008】これらの特性を満足すべく、低コストであ
る合理的な製造工程として、従来冷間工程の後に行って
いる焼鈍工程を省略する製造方法について種々の検討を
行い以下の知見を得た。すなわち本発明は、重量%(以
下単に%で示す)で、C : 0.003%以下、Si : 0.0
2 %以下、Mn : 0.05 〜 0.3%、P : 0.02 %以
下、S : 0.005%以下、sol Al:0.08%以下、Nb :
0.002〜0.02%、N : 0.0030 %以下、を含み、さら
にCa、Y、希土類金属(La、Ce、Pr、Nd、Sm)のうち1
種または2種を全部で 0.2%以下を含み、残部はFeおよ
び不可避的不純物よりなる組成の鋼を溶製し、スラブと
なし、スラブ加熱温度を1150℃以下として、仕上げ温度
が 600℃以上、 Ar3変態点以下となるように熱間圧延を
終了し、640 〜 750℃の温度で巻とり、スケール除去
後、40〜85%の圧下率で冷間圧延を行い、その後温度20
0 〜 500℃で10分間以上熱処理することを特徴とするフ
ランジ成形性に優れた製缶用鋼板の製造方法であり、さ
らに鋼成分として、Ti : 0.005〜0.020 %、B: 0.0
005 〜 0.0020 %を含有せせることが望ましい。
In order to satisfy these characteristics, various studies were conducted on a manufacturing method in which the annealing step which is conventionally performed after the cold step is omitted as a reasonable manufacturing step at a low cost, and the following findings were obtained. . That is, in the present invention, C: 0.003% or less, Si: 0.0 by weight% (hereinafter simply indicated by%).
2% or less, Mn: 0.05 to 0.3%, P: 0.02% or less, S: 0.005% or less, sol Al: 0.08% or less, Nb:
0.002 to 0.02%, N: 0.0030% or less, and 1 of Ca, Y and rare earth metals (La, Ce, Pr, Nd, Sm)
Steel or steel containing at least 0.2% in total, the balance being Fe and unavoidable impurities, and slabs are made into slabs, the slab heating temperature is 1150 ° C or less, and the finishing temperature is 600 ° C or more, Finish the hot rolling so that the temperature is below the Ar 3 transformation point, wind at a temperature of 640 to 750 ℃, remove the scale, cold roll at a reduction rate of 40 to 85%, and then set the temperature to 20
This is a method for producing a steel sheet for can manufacturing having excellent flange formability, which is characterized by performing heat treatment at 0 to 500 ° C for 10 minutes or more. Further, as steel components, Ti: 0.005 to 0.020%, B: 0.0
It is desirable to contain 005 to 0.0020%.

【0009】[0009]

【作用】r値を向上させるためには、冷間圧延を行いそ
の後に再結晶焼鈍を行うことが必要であるが、r値を大
きくする必要がなければ、再結晶焼鈍工程を省くことが
可能である。しかし、従来法で製造した冷間圧延のまま
の材料は、延性が缶用鋼板としては不充分なため、とく
にある程度の絞り性が要求される用途に対してはその要
求を満足させることができなかった。
In order to improve the r value, it is necessary to perform cold rolling and then recrystallization annealing, but if it is not necessary to increase the r value, the recrystallization annealing step can be omitted. Is. However, the as-cold-rolled material produced by the conventional method has insufficient ductility as a steel sheet for cans, so that it is possible to satisfy the requirement especially for applications requiring a certain drawability. There wasn't.

【0010】本発明は、前述のように成分を適正に抑制
した鋼を用いること、および熱間圧延工程の加工熱処理
条件を最適にすることにより、冷間圧延後の焼鈍工程を
省略するものである。ここに、本発明において鋼組成お
よび製造条件を限定する理由についてさらに説明する。
The present invention omits the annealing step after cold rolling by using steel in which the components are appropriately suppressed as described above and optimizing the thermomechanical treatment conditions in the hot rolling step. is there. Here, the reason for limiting the steel composition and manufacturing conditions in the present invention will be further described.

【0011】C : 0.003%以下 C含有量が 0.003%を超えると、缶成形時に必要な局部
延性は十分に得ることができず、例えば、製缶の最終工
程である巻き締め部の伸びフランジ成形時の割れを生じ
るため好ましくない。これは、残存する固溶炭素量が増
加することによる。また、これ以上炭素量が多くなると
加工硬化量が大きくなり、材料が高強度化し、口絞り加
工時にしわの要因となり溶接時に問題となる。さらに、
時効劣化の面からもC量を制限する必要がある。なお、
特に成形性に優れた鋼板を得るためにはC量を0.0020%
以下にすることが望ましい。
C: 0.003% or less If the C content exceeds 0.003%, the local ductility required for can forming cannot be sufficiently obtained. For example, stretch flange forming of the winding tightening part which is the final step of can making. It is not preferable because it causes cracks. This is because the amount of residual solid solution carbon increases. Further, if the carbon content is larger than this, the work hardening amount becomes large, the material becomes high in strength, and it becomes a cause of wrinkles at the time of the mouth-drawing process, which becomes a problem at the time of welding. further,
It is necessary to limit the amount of C also in terms of aging deterioration. In addition,
In order to obtain a steel sheet with excellent formability, the C content is 0.0020%.
The following is desirable.

【0012】Si : 0.02%以下 Siは鋼板の表面性状を劣化させる元素であり、添加量が
多いと表面処理鋼板として望ましくないばかりでなく、
鋼を硬化させ熱間圧延工程を困難にし最終製品としての
鋼を硬化させる。以上の観点よりSiは0.02%以下とする
ことが望ましい。特に表面性状の要求が厳格な用途では
0.010%とすることが望ましい。
Si: 0.02% or less Si is an element that deteriorates the surface properties of the steel sheet, and if added in a large amount, not only is it undesirable as a surface-treated steel sheet,
Hardens the steel, making the hot rolling process difficult and hardening the steel as the final product. From the above viewpoints, Si is preferably 0.02% or less. Especially for applications with strict surface quality requirements
It is desirable to set it to 0.010%.

【0013】Mn : 0.05 〜 0.3% Mn含有量を0.05%以上にしないと、S含有量を低下させ
た場合でも、いわゆる熱間脆性を回避することが困難
で、表面割れなどの問題を生じることがある。また、0.
30%を超えると変態点が低下し過ぎて好ましい熱延板を
得ることが困難である。したがってMn含有量を 0.05 〜
0.3%とした。なお、軟質な缶用素材を得るためには0.
20%以下にするのが好ましく、より好ましくは0.10%以
下にする。
Mn: 0.05 to 0.3% Unless the Mn content is set to 0.05% or more, it is difficult to avoid so-called hot embrittlement even when the S content is decreased, and problems such as surface cracking occur. There is. Also, 0.
If it exceeds 30%, the transformation point becomes too low, and it is difficult to obtain a preferable hot-rolled sheet. Therefore, the Mn content should be 0.05-
0.3%. In order to obtain a soft material for cans, 0.
It is preferably 20% or less, more preferably 0.10% or less.

【0014】P : 0.02%以下 P含有量の低減により、耐食性の改善効果が狙えるが、
過度の低減は製造コストの増加につながるため、これら
の兼ね合から、P含有量を0.02%以下とした。なお、加
工性を顕著に改善するためには、 0.010%以下がより好
ましい。S : 0.005%以下 S含有量が多くなると MnS等の介在物が増加し、伸びフ
ランジ性に代表される局部延性を低下させる原因となる
こと、さらに従来の鋼板よりもさらに低減することによ
り全伸びが著しく向上する。そのためS含有量は 0.005
%以下に制限する必要がある。なお、加工性を顕著に改
善するためには、 0.003%以下にすることが好ましい。
P: 0.02% or less By reducing the P content, the effect of improving corrosion resistance can be aimed at.
Since excessive reduction leads to an increase in manufacturing cost, the P content is set to 0.02% or less in consideration of these factors. In addition, 0.010% or less is more preferable in order to remarkably improve the workability. S: 0.005% or less When the S content increases, inclusions such as MnS increase, causing local ductility, which is represented by stretch flangeability, to decrease, and by further reducing it compared to conventional steel sheets, total elongation Is significantly improved. Therefore, the S content is 0.005
It is necessary to limit it to% or less. In addition, in order to remarkably improve the workability, it is preferably 0.003% or less.

【0015】sol Al:0.08%以下 sol Alは脱酸に必要な元素であるが、0.08%を超えると
脱酸効果が飽和するだけでなく、介在物が発生し成形性
に悪影響を及ぼす。このためsol Alの含有量は0.08%以
下とする。なお、安定した製造条件を確保するために
は、0.02〜0.06%の範囲にすることが好ましい。
Sol Al: 0.08% or less sol Al is an element necessary for deoxidation, but if it exceeds 0.08%, not only the deoxidation effect is saturated, but also inclusions are generated to adversely affect the formability. Therefore, the content of sol Al is 0.08% or less. In order to secure stable manufacturing conditions, the range is preferably 0.02 to 0.06%.

【0016】Nb : 0.002〜0.02% Nbは炭素の固着により、時効性の低減、鋼の軟質に有用
な元素である。しかし0.02 %を超えて添加すると、熱
延板に不均一な組織をもたらすばかりでなく、熱延時の
負荷を大きくする。このためNbの含有量を 0.002〜0.02
%とする。なお、加工性を重視する場合には、0.005 〜
0.015%の範囲にすることが望ましい。
Nb: 0.002 to 0.02% Nb is an element useful for reducing aging and softening steel due to carbon sticking. However, if it is added in excess of 0.02%, not only a non-uniform structure is brought about in the hot rolled sheet, but also the load during hot rolling is increased. Therefore, the Nb content should be 0.002 to 0.02.
%. If processability is important, 0.005-
It is desirable to set it in the range of 0.015%.

【0017】Ti : 0.005 〜 0.020% TiはNbと同様の効果をもたらし、Nbとの複合添加によ
り、成形性を向上させる元素である。しかし、 0.020%
を超えて添加するとその効果は飽和し、コスト増加とな
るだけである。このためTiの含有量を0.005 〜 0.020%
とする。 N : 0.0030%以下 Nは不可避的に鋼中に浸入する不純物元素であり析出物
を形成し伸びを低下させる原因となる。また、固溶状態
で残存した場合鋼を非常に硬質化させる。本発明の鋼板
の用途には、本製造工程では強度は十分であり、むしろ
より軟質なものが望まれる。そのため上限を 0.0030 %
とした。なお加工性の面から0.0020%以下にすることが
より好ましい。
Ti: 0.005 to 0.020% Ti has the same effect as Nb, and is an element that improves the formability by the combined addition of Nb. However, 0.020%
If it is added in excess, the effect will be saturated and the cost will only increase. Therefore, the Ti content is 0.005 to 0.020%.
And N: 0.0030% or less N is an impurity element that inevitably penetrates into the steel and forms a precipitate to reduce elongation. Further, when it remains in a solid solution state, it makes the steel extremely hard. For the use of the steel sheet according to the present invention, it is desired that the steel sheet has sufficient strength in the present manufacturing process and is rather soft. Therefore, the upper limit is 0.0030%
And From the viewpoint of workability, it is more preferably 0.0020% or less.

【0018】B : 0.0005〜0.0020% Bは、二次加工脆性の防止、熱延条件と併せて熱延板の
組織の軟質化に有用な元素である。しかし過剰に添加し
ていくと、熱間圧延時にオーステナイトの再結晶を遅ら
せ、圧延時の負荷が大きくなり、しかも焼鈍材の材質を
劣化させるためにB添加量は0.0005〜0.0020%とする。
B: 0.0005 to 0.0020% B is an element useful for preventing secondary work embrittlement and softening the structure of the hot rolled sheet together with hot rolling conditions. However, excessive addition delays recrystallization of austenite during hot rolling, increases the load during rolling, and further deteriorates the material of the annealed material, so the amount of B added is set to 0.0005 to 0.0020%.

【0019】Ca、Y、希土類金属(La、Ce、Pr、Nd、S
m) Ca、Y、希土類金属(La、Ce、Pr、Nd、Sm)は本発明で
重要な元素となる。本製造工程では、最近の缶用素材を
取り巻く環境、つまり、ゲージダウンにマッチした高強
度鋼板を安価に製造できるメリットがある。しかし、缶
成形時には延性特にフランジ成形に代表される局部伸び
が要求され、従来より本製造工程の1つの問題点となっ
ていた。局部延性は介在物の制御が重量であり、1つは
介在物の量自体を低減すること。もう1つは介在物が存
在しても局部延性に影響の小さい形状、状態に存在させ
ることが重要である。その点Ca、Y、希土類金属(La、
Ce、Pr、Nd、Sm)は介在物の中でも、重要な MnSなどの
硬化物について熱間圧延後の形態を制御し、その後の冷
延工程においても望ましい状態にする元素として有用で
ある。しかし、過剰の添加は逆に加工性の低下につなが
るため、Ca、Y、希土類金属(La、Ce、Pr、Nd、Sm)の
うち1種または2種の含有量を全部で 0.2%以下とす
る。
Ca, Y, rare earth metals (La, Ce, Pr, Nd, S
m) Ca, Y, and rare earth metals (La, Ce, Pr, Nd, Sm) are important elements in the present invention. This manufacturing process has an advantage that it is possible to inexpensively manufacture a high-strength steel plate that matches the environment surrounding recent can materials, that is, gauge down. However, ductility, especially local elongation represented by flange forming, is required during can forming, which has been one of the problems in the present manufacturing process. Local ductility is the control of inclusions by weight, and one is the reduction of the amount of inclusions themselves. Secondly, it is important that the inclusions are present in a shape and state that have little influence on the local ductility even if inclusions are present. That point Ca, Y, rare earth metal (La,
Among the inclusions, Ce, Pr, Nd, and Sm) are useful as elements that control the morphology of the important hardened materials such as MnS after hot rolling and make them desirable in the subsequent cold rolling process. However, excessive addition leads to a decrease in workability, so the total content of one or two of Ca, Y, and rare earth metals (La, Ce, Pr, Nd, Sm) should be 0.2% or less. To do.

【0020】次に、製造法における条件限定の理由につ
いて述べる。 (1)熱間圧延条件 スラブ加熱温度 スラブ加熱温度は高すぎると析出物が細かくなり、熱延
板の粒径を細かくするため、硬質化しやすく局部変形能
を低下させるので好ましくない。そのため1150℃以下と
し、析出物を粗大化させ成形性と軟質化を両立させるこ
とが望ましい。 仕上げ温度 熱延の仕上げ温度は Ar3変態点以下となるように終了す
る必要がある。これは熱延板の組織、粒径を粗大にさせ
るためである。その点では、変態点より十分高い温度で
終了させる手法もあるが、本成分では変態点が高いこ
と、スラブ加熱温度が低いことから製造上不可能であ
る。また、より好ましくは変態点より十分低い温度、フ
ェライト単相域で熱延を終了させることが好ましいが、
その場合は圧延の負荷が大きくなるので油潤滑圧延を行
うことが望ましい。一方、600 ℃未満になると熱延時の
ひずみが容易に解放されなくなるので 600℃以上の仕上
げ温度とする。仕上げ温度を変態点以下としたため、熱
延後の材料にはかなりの歪が蓄積されている。もし、そ
のまま冷延した場合非常に硬質でしかも延性の低いもの
となってしまう。このため巻き取り温度は、高いことが
望ましいが 750℃以上になるとスケール厚みが顕著に増
大し、酸洗時の脱スケール性が圧下する。また仕上げ温
度が低いため、実操業上 750℃以上で巻き取ることは困
難である。このため、巻き取り温度を640 〜 750℃とす
る。 (2)酸洗後の冷間圧延条件 40〜85%の圧下率で冷間圧延を行う必要がある。本発明
鋼は、熱延板がかなり粒径が大きいため40%以上冷間圧
延を行わないと材質の不均一を生じる恐れがある。また
上限は、用途から考えて強度は十分であり局部延性の面
から85%とした。 (3)冷間圧延後の熱処理条件 通常、自動車用鋼板においては焼付け硬化により耐デン
ト性を向上させることを行っているが、本発明において
はその逆で冷間圧延後、熱処理を施すことにより軟質
化、局部変形能の増加が可能となり、その後の製缶工程
でフランジ成形などの成形がしやすくなる。その場合、
熱処理条件としては温度が 200℃以上、時間を10分以上
の工程とする必要がある。温度や時間がこれ以下である
と、冷間圧延より蓄積された歪が回復せず軟化しない。
そればかりか、鋼中に残存している炭素、窒素によりむ
しろ硬化が生じる恐れがあるので好ましくない。逆に 5
00℃を超えると再結晶して目的の調質度よりもさらに軟
化してしまうので、 500℃以下とする。
Next, the reason for limiting the conditions in the manufacturing method will be described. (1) Hot rolling conditions Slab heating temperature If the slab heating temperature is too high, precipitates become finer and the grain size of the hot rolled sheet becomes finer, so that it is easily hardened and local deformability is lowered, which is not preferable. Therefore, it is desirable to set the temperature to 1150 ° C. or lower to coarsen the precipitates and achieve both moldability and softening. Finishing temperature It is necessary to finish the hot rolling so that the finishing temperature is below the Ar 3 transformation point. This is to make the structure and grain size of the hot rolled sheet coarse. In this respect, there is a method of finishing at a temperature sufficiently higher than the transformation point, but this component is impossible in production because of the high transformation point and the low slab heating temperature. Further, more preferably, a temperature sufficiently lower than the transformation point, it is preferable to finish the hot rolling in the ferrite single phase region,
In that case, the rolling load becomes large, so it is desirable to perform oil lubrication rolling. On the other hand, if the temperature is less than 600 ° C, the strain during hot rolling cannot be released easily, so the finishing temperature should be 600 ° C or higher. Since the finishing temperature is below the transformation point, a considerable amount of strain is accumulated in the material after hot rolling. If it is cold rolled as it is, it becomes very hard and has low ductility. For this reason, it is desirable that the winding temperature is high, but if it is 750 ° C or higher, the scale thickness remarkably increases, and the descaling property during pickling is reduced. In addition, since the finishing temperature is low, it is difficult to wind it above 750 ℃ in actual operation. For this reason, the winding temperature is set to 640 to 750 ° C. (2) Cold rolling condition after pickling It is necessary to perform cold rolling at a reduction rate of 40 to 85%. Since the hot-rolled steel sheet of the present invention has a considerably large grain size, the material may be non-uniform unless cold rolling is performed by 40% or more. The upper limit was set to 85% from the viewpoint of local ductility because the strength is sufficient considering the application. (3) Heat Treatment Conditions after Cold Rolling Normally, in steel sheets for automobiles, dent resistance is improved by bake hardening, but in the present invention, conversely, by performing heat treatment after cold rolling. It becomes possible to soften and increase the local deformability, and it becomes easier to perform molding such as flange molding in the subsequent can manufacturing process. In that case,
As the heat treatment conditions, it is necessary that the temperature is 200 ° C. or higher and the time is 10 minutes or longer. If the temperature or time is below this range, the strain accumulated by cold rolling will not be recovered and softening will not occur.
Moreover, carbon and nitrogen remaining in the steel may rather cause hardening, which is not preferable. Conversely 5
If the temperature exceeds 00 ° C, it will recrystallize and become softer than the intended temper, so the temperature should be below 500 ° C.

【0021】[0021]

【実施例】以下、本発明に係る製缶用鋼板の実施例を説
明する。表1に示す化学成分の鋼を溶製した後、これを
表2に示す条件で熱間圧延を行い、巻取り、酸洗を行
い、同表2に示す圧下率CR%にて冷間圧延を行い、 210
℃−20分の熱処理を施したのち引張特性およびロックウ
ェル硬さを調査した。表2には併せて各製造条件におけ
る引張特性、平均r値およびフランジ成形性も示した。
EXAMPLES Examples of the steel sheet for can making according to the present invention will be described below. After the steel having the chemical composition shown in Table 1 was melted, it was hot-rolled under the conditions shown in Table 2, wound, pickled, and cold-rolled at the rolling reduction CR% shown in Table 2. Do 210
Tensile properties and Rockwell hardness were investigated after heat treatment at -20 ° C. Table 2 also shows the tensile properties, average r values and flange formability under each manufacturing condition.

【0022】引張試験は、 JIS5号試験片により行い、
r値はJIS に定める弾性率の異方性より評価する方法に
より行った。またフランジ成形性は、通常の条件で#25
相当の錫めっきを行い、これをロールフォーミング、高
速シーム溶接で3P缶の缶胴部相当に成形し、これに伸
びフランジ加工を施し割れ発生の有無で判断を行った。
なお、表2において、 SRT:加熱温度、 FET:仕上げ温
度、CT:巻取り温度、CR:圧下率、t:板厚、YS/MP:
降伏点、r:ランクフォード値(鋼板の成形性を評価す
る材料特性値)を示す。
The tensile test is performed using JIS No. 5 test pieces.
The r value was determined by the method of evaluating from the anisotropy of elastic modulus specified in JIS. Flange formability is # 25 under normal conditions.
Corresponding tin plating was performed, and this was formed by roll forming and high-speed seam welding into a can body part of a 3P can, and stretch flange processing was applied to this to determine whether cracking occurred.
In Table 2, SRT: heating temperature, FET: finishing temperature, CT: winding temperature, CR: rolling reduction, t: plate thickness, YS / MP:
Yield point, r: Rankford value (material characteristic value for evaluating the formability of a steel sheet) is shown.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表2からもわかるように、スラブ加熱温度
を1150℃以下として、仕上げ温度がAr3 変態点以下とな
るように熱間圧延を終了し、640 〜 750℃の温度で巻き
取ることにより、軟質で延性の高い鋼板が得られてい
る。さらにCa、Y、希土類金属を添加することによりフ
ランジ成形性が向上している。図1には熱処理温度に対
する(a)伸びEl%と(b)降伏点YS/MPa の関係を、
また図2には熱処理時間に対する(a)伸びEl%と
(b)降伏点YS/MPa の関係を示したが、図1および図
2に示すように、熱処理温度が 200℃以上で、また熱処
理時間を10分以上とすることにより、伸びEl%の上昇に
よる軟質化および降伏点YS/MPa の下降による延性の増
加が図られることがわかる。
As can be seen from Table 2, the slab heating temperature is set to 1150 ° C. or lower, the hot rolling is finished so that the finishing temperature is set to the Ar 3 transformation point or lower, and the coil is wound at a temperature of 640 to 750 ° C. A steel sheet that is soft and has high ductility is obtained. Further, the flange formability is improved by adding Ca, Y, and a rare earth metal. Figure 1 shows the relationship between (a) elongation El% and (b) yield point YS / MPa versus heat treatment temperature.
In addition, Fig. 2 shows the relationship between (a) elongation El% and (b) yield point YS / MPa with respect to heat treatment time. It can be seen that by setting the time to 10 minutes or more, softening is caused by an increase in elongation El% and ductility is increased by a decrease in yield point YS / MPa.

【0026】[0026]

【発明の効果】本発明では前述のような成分に適正に限
定した鋼を用いること、および熱間圧延工程の加工熱処
理条件を最適にすることにより、冷間圧延後の焼鈍工程
を省略しても耐ストレッチャーストレイン性に優れ、か
つ強度特性に優れた製缶用鋼板を製造することができ、
その効果には多大なものがある。
EFFECTS OF THE INVENTION In the present invention, the use of a steel properly limited to the above-mentioned components and the optimization of the thermomechanical treatment conditions in the hot rolling process can eliminate the annealing process after cold rolling. It is also possible to manufacture steel sheets for cans that have excellent stretcher strain resistance and strength characteristics.
The effect is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱処理温度に対する伸びEl%および降伏点YS/
MPa の関係を示す特性図である。
[Fig. 1] Elongation El% and yield point YS /
It is a characteristic view which shows the relationship of MPa.

【図2】熱処理時間に対する伸びEl%および降伏点YS/
MPa の関係を示す特性図である。
[Fig. 2] Elongation El% and yield point YS /
It is a characteristic view which shows the relationship of MPa.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 俊之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Kato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefectural Institute of Technology, Kawasaki Steel Co., Ltd. (72) Hideo Kuminato 1 Kawasaki-cho, Chuo-ku, Chiba Chiba Chiba Steel Works, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C : 0.003%以下、 Si : 0.02 %以下、 Mn : 0.05 〜 0.3%、 P : 0.02 %以下、 S : 0.005%以下、 sol Al:0.08%以下、 Nb : 0.002〜0.02%、 N : 0.0030 %以下、を含み、さらにCa、Y、希土類
金属(La、Ce、Pr、Nd、Sm)のうち1種または2種を全
部で 0.2%以下を含み、残部はFeおよび不可避的不純物
よりなる組成の鋼を溶製し、スラブとなし、スラブ加熱
温度を1150℃以下として、仕上げ温度が 600℃以上、 A
r3変態点以下となるように熱間圧延を終了し、640 〜 7
50℃の温度で巻とり、スケール除去後、40〜85%の圧下
率で冷間圧延を行い、その後温度200 〜 500℃で10分間
以上熱処理することを特徴とするフランジ成形性に優れ
た製缶用鋼板の製造方法。
1. By weight%, C: 0.003% or less, Si: 0.02% or less, Mn: 0.05 to 0.3%, P: 0.02% or less, S: 0.005% or less, sol Al: 0.08% or less, Nb: 0.002. ~ 0.02%, N: 0.0030% or less, and further contains one or two of Ca, Y and rare earth metals (La, Ce, Pr, Nd, Sm) in a total of 0.2% or less, and the balance Fe. And slabs made of steel composed of unavoidable impurities and made into slabs, the slab heating temperature is 1150 ° C or less, and the finishing temperature is 600 ° C or more
r3 Hot rolling is completed so that the temperature is below the 3 transformation point, and 640 to 7
Winding at a temperature of 50 ° C, removal of scale, cold rolling at a reduction rate of 40 to 85%, and subsequent heat treatment at a temperature of 200 to 500 ° C for 10 minutes or more. Manufacturing method of steel plate for can.
【請求項2】 さらに鋼成分として、 Ti : 0.005〜0.020 % B : 0.0005 〜 0.0020 % を含むことを特徴とする請求項1記載のフランジ成形性
に優れた製缶用鋼板の製造方法。
2. The method for producing a steel sheet for can making excellent in flange formability according to claim 1, further comprising Ti: 0.005 to 0.020% B: 0.0005 to 0.0020% as a steel component.
JP7387195A 1995-03-30 1995-03-30 Production of steel sheet for can making excellent in flange formability Pending JPH08269568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7387195A JPH08269568A (en) 1995-03-30 1995-03-30 Production of steel sheet for can making excellent in flange formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7387195A JPH08269568A (en) 1995-03-30 1995-03-30 Production of steel sheet for can making excellent in flange formability

Publications (1)

Publication Number Publication Date
JPH08269568A true JPH08269568A (en) 1996-10-15

Family

ID=13530697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7387195A Pending JPH08269568A (en) 1995-03-30 1995-03-30 Production of steel sheet for can making excellent in flange formability

Country Status (1)

Country Link
JP (1) JPH08269568A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041421A1 (en) * 1998-02-17 1999-08-19 Nippon Steel Corporation Steel for thin sheet excellent in workability and method for deoxidation thereof
WO2008102899A1 (en) 2007-02-21 2008-08-28 Jfe Steel Corporation Processes for production of steel sheets for cans
WO2009123294A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Method for producing can manufacturing steel sheet
KR101676194B1 (en) 2015-11-13 2016-11-15 주식회사 포스코 High Strength Blackplate Having Excellent Flangeability And Method For Manufacturing The Same
KR20160146905A (en) 2014-05-30 2016-12-21 제이에프이 스틸 가부시키가이샤 Steel sheet for cans and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999041421A1 (en) * 1998-02-17 1999-08-19 Nippon Steel Corporation Steel for thin sheet excellent in workability and method for deoxidation thereof
KR100361846B1 (en) * 1998-02-17 2002-11-22 신닛뽄세이테쯔 카부시키카이샤 Steel for thin sheet excellent in workability and method for deoxidation thereof
US6511553B1 (en) 1998-02-17 2003-01-28 Nippon Steel Corporation Steel for steel excellent in workability and method of deoxidizing same
WO2008102899A1 (en) 2007-02-21 2008-08-28 Jfe Steel Corporation Processes for production of steel sheets for cans
WO2009123294A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 Method for producing can manufacturing steel sheet
JP2009242857A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Method for producing steel sheet for can-making
CN101983246A (en) * 2008-03-31 2011-03-02 杰富意钢铁株式会社 Method for producing can manufacturing steel sheet
KR20160146905A (en) 2014-05-30 2016-12-21 제이에프이 스틸 가부시키가이샤 Steel sheet for cans and manufacturing method thereof
US10301702B2 (en) 2014-05-30 2019-05-28 Jfe Steel Corporation Steel sheet for cans and manufacturing method thereof
KR101676194B1 (en) 2015-11-13 2016-11-15 주식회사 포스코 High Strength Blackplate Having Excellent Flangeability And Method For Manufacturing The Same

Similar Documents

Publication Publication Date Title
JPH08246060A (en) Production of steel sheet for can
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP2005350737A (en) Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JPH0676618B2 (en) Manufacturing method of steel plate for DI can with excellent stretch flange formability
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JPH093547A (en) Production of high strength steel sheet for can
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP4081823B2 (en) Manufacturing method of steel plate for cans by annealing skipping process
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
JPH0718372A (en) Thin steel sheet for automotive use excellent in impact resistance and its production
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP2733423B2 (en) Plated sheet excellent in secondary workability and weldability and method for producing the same
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JP2002080933A (en) Steel sheet having excellent shape fixability and its production method
JP3324074B2 (en) High strength and high ductility steel plate for container and method of manufacturing the same
JPH08176673A (en) Production of steel sheet for can
JP3028969B2 (en) Manufacturing method of raw sheet for surface treated steel sheet