JPH03285044A - Manufacture of steel sheet for three-piece can and three-piece can - Google Patents

Manufacture of steel sheet for three-piece can and three-piece can

Info

Publication number
JPH03285044A
JPH03285044A JP8339290A JP8339290A JPH03285044A JP H03285044 A JPH03285044 A JP H03285044A JP 8339290 A JP8339290 A JP 8339290A JP 8339290 A JP8339290 A JP 8339290A JP H03285044 A JPH03285044 A JP H03285044A
Authority
JP
Japan
Prior art keywords
less
piece
rolling
crystal grains
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8339290A
Other languages
Japanese (ja)
Inventor
Hideo Kukuminato
久々湊 英雄
Toshiaki Shiraishi
白石 利明
Takashi Ono
小野 高司
Hisakatsu Kato
寿勝 加藤
Chikako Fujinaga
千香子 藤長
Toshihiro Sekine
稔弘 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8339290A priority Critical patent/JPH03285044A/en
Publication of JPH03285044A publication Critical patent/JPH03285044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture a steel sheet efficiently manufacturable a three-piece can by preparing a steel sheet contg. specified ratios of C, Si, Mn, P, S, N and Al and in which the constitution and areal ratio of crystalline grains are specified. CONSTITUTION:A steel sheet contg., by weight, 0.01 to 0.05% C, <=0.02% Si, 0.15 to 0.30% Mn, <=0.020% P, <=0.020% S, <=0.005% N, 0.02 to 0.20% Al and the balance Fe with inevitable impurities, constituted of crystalline grains with >=8mum length and those with 4 to <8mum length and in which the areal ratio of the crystalline grains with >=8mum length is regulated to >=50% as well as the ratio of the breadth to the length of the crystalline grains is regulated to 1/1.5 to 1 is prepd. In this way, the steel sheet efficiently manufacturable a three-piece can is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、3ピース缶用鋼板の発明と3ピース缶の製
造方法の発明に関し、特に、3ピース缶を効率よく製造
することを可能とする3ピース缶用鋼板及び3ピース缶
の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to the invention of a steel plate for three-piece cans and the invention of a method for manufacturing three-piece cans, and in particular, to an invention that makes it possible to efficiently manufacture three-piece cans. The present invention relates to a steel plate for a three-piece can and a method for manufacturing a three-piece can.

〔従来の技術〕[Conventional technology]

第3図(alに示す飲料缶、同図(blに示す18f缶
(例えば灯油缶)、同図(C1に示すベール缶などの缶
は、構成上から、2ピース缶と3ピース缶に分類できる
。2ピース缶は錫めっき、クロムめっき。
Cans such as beverage cans shown in Figure 3 (al), 18F cans (e.g. kerosene cans) shown in figure 3 (bl), and bale cans shown in Figure 3 (C1) are classified into 2-piece cans and 3-piece cans based on their composition. Yes. Two-piece cans are tin-plated and chrome-plated.

化成処理、塗油、などの処理を施した表面処理鋼板に、
プレス加工、  DW I (draning and
 wall ir。
Surface-treated steel sheets that have undergone chemical conversion treatment, oil coating, etc.
Press processing, DWI (druning and
Wall ir.

ning)加工、 D RD (drawing an
d redrawing)加工などの加工を施し、これ
に蓋を取り付けた2部品からなる缶である。3ピース缶
は表面処理鋼板を円筒状もしくは角筒状に曲げて端部を
接合(11が接合部)して缶胴12を成形した後、天蓋
13と底1114を取り付けた3部品からなる缶である
。天蓋13を取り外して装着開閉できる缶も、2ピース
缶、3ピース缶の範嗜に含まれる。同図中)の15は把
手、16は注入口を示す。
ning) processing, D RD (drawing an
It is a can made of two parts, which has undergone processing such as d redrawing, and a lid attached to it. A three-piece can is a can made of three parts: a surface-treated steel plate is bent into a cylindrical or rectangular shape and the ends are joined (11 is the joint) to form a can body 12, and then a canopy 13 and a bottom 1114 are attached. It is. Cans whose canopies 13 can be opened and closed by removing them are also included in the category of two-piece cans and three-piece cans. 15 indicates a handle, and 16 indicates an injection port.

3ピース缶は2ピース缶と比べて製造工程数が多く製造
コストが高くなるものの、プレス加工。
Although 3-piece cans require more manufacturing steps and are more expensive to manufacture than 2-piece cans, they are pressed.

DW!加工などの強加工は行わないため、缶胴12への
美術的印刷が可能となり、ファツション性の点から多用
されている。
DW! Since no strong processing such as processing is performed, it is possible to perform artistic printing on the can body 12, and it is often used from the point of view of fashion.

第4図に3ピース缶の製造工程を示す。すなわち、厚さ
200〜300■■程度のスラブを熱間圧延により厚、
さ2〜4鶴の熱延鋼帯とした後、高温で巻き取って自己
焼鈍させる。次に酸洗して表面の酸化スケールを除去し
てから冷間圧延して厚さ0.1〜0.6u+の冷延鋼帯
とする。ついで箱焼鈍又は連続焼鈍を行うことにより、
冷間圧延で形成された圧延組織(繊維状組織)を回復、
再結晶、結晶粒成長へと進め所定の機械的性質を得る。
Figure 4 shows the manufacturing process for a three-piece can. In other words, a slab with a thickness of about 200 to 300 mm is heated by hot rolling.
After forming a hot-rolled steel strip with a diameter of 2 to 4 mm, it is wound up at a high temperature and self-annealed. Next, the oxide scale on the surface is removed by pickling, and then cold rolled to form a cold rolled steel strip having a thickness of 0.1 to 0.6 U+. Then, by performing box annealing or continuous annealing,
Restores the rolled structure (fibrous structure) formed by cold rolling,
Proceed to recrystallization and grain growth to obtain desired mechanical properties.

その後、所定の調質度(Tl−T6.DR8〜10)を
得るために調質圧延して、表面処理用原板とする。つい
で表面処理されて表面処理鋼帯となった帯板をシャーラ
インにて所定の長さに剪断する。
Thereafter, it is subjected to temper rolling to obtain a predetermined degree of temper (Tl-T6.DR8 to 10) to obtain an original plate for surface treatment. Then, the surface-treated steel strip is sheared into a predetermined length using a shear line.

第5図にその様子を示す。帯板Sは、その長手方向即ち
圧延方向が缶胴の曲げ方向となるように切断されて切板
lを得る。図中2はこの時の切断線であり、Lが切断長
さである。
Figure 5 shows the situation. The strip S is cut so that its longitudinal direction, that is, the rolling direction, corresponds to the bending direction of the can body to obtain a cut plate L. In the figure, 2 is the cutting line at this time, and L is the cutting length.

このようにして得られた切板1に、塗装ラインにおいて
、缶内面に相当する面に塗装と焼付けを施し、次にもう
一面にも塗装と焼付けを施す。なお、缶外面に相当する
塗装は次の印刷を考慮して白色塗料を塗るのが一般的で
ある。次の多色印刷は、以前には色の種類毎に印刷焼付
けを繰り返していたが、最近では複数の印刷機を連設し
て1パスで印刷と焼付けが行われるようになっている。
The cut plate 1 thus obtained is coated and baked on the surface corresponding to the inner surface of the can, and then the other side is also painted and baked on the coating line. Note that the exterior of the can is generally painted with white paint in consideration of the subsequent printing. Previously, multicolor printing involved repeating printing and baking for each type of color, but recently, multiple printing machines have been installed in series to perform printing and baking in one pass.

なお、これら塗装印刷は第5図の斜線で示した接合部5
を外して行う。これは後述の接合強度が塗料により低下
するためである。
Note that these paint prints are applied to the joint portion 5 indicated by diagonal lines in Figure 5.
Remove the . This is because the bonding strength, which will be described later, is reduced by the paint.

次に切板1は、スリットカットにより、1缶当りの大き
さのブランクシート6.6にされ、このブランクシート
6を円筒状もしくは角筒状に曲げる。図中3はスリット
線であり、角筒状に曲げ加工する場合の曲げ線を4で示
した。そして、ブランクシート6の長手方向両端部の接
合部5,5を溶接もしくは接着剤により重ね接合した後
、フランジ加工、必要に応じてネンキング加工、ビーデ
ィング加工を施して天蓋と底蓋を取り付けて仕上げる。
Next, the cut plate 1 is cut into a blank sheet 6.6 having the size of one can by slit cutting, and this blank sheet 6 is bent into a cylindrical shape or a rectangular tube shape. In the figure, 3 is a slit line, and 4 is a bending line for bending into a rectangular tube shape. After the joints 5, 5 at both ends of the blank sheet 6 in the longitudinal direction are overlapped and joined by welding or adhesive, the top cover and the bottom cover are attached by performing flange processing, necking processing, and beading processing as necessary. Finish.

ここで上記フランジ加工は天蓋13.底蓋14を巻き締
めにより取付けるために行うもので、その様子を第6図
に示す。同図において17がフランジ部、18が巻締め
部である。また、ネッキング加工、ビーディング加工は
缶強度を上げる場合に行うものである。
Here, the above flange processing is performed on the canopy 13. This is done to attach the bottom cover 14 by tightening it, and the process is shown in FIG. In the figure, 17 is a flange portion, and 18 is a seaming portion. Additionally, necking and beading are performed to increase the strength of the can.

C発明が解決しようとする課題〕 前述のように3ピース缶の製造工程は複雑でコストアン
プの要因となっていることから、製造工程の連続化、簡
略化が叫ばれている。
C Problems to be Solved by the Invention] As mentioned above, the manufacturing process for three-piece cans is complicated and increases the cost, so there is a demand for continuous and simplified manufacturing processes.

その対応策の1つとして、従来の切板状態での塗装を帯
板の状態で塗装してその後切板にする方法が考えられる
。即ち、切板塗装においては、各切板毎かつ表裏2回分
を塗装ラインに通して塗装と焼付けを行う必要がある(
2コート2ベーク・2回塗装2回焼付け)が、帯板の場
合には缶内面に相当する塗装と缶外面に相当する塗装を
連続して施し、次の焼付けは表裏同時に行う (2コー
ト1ベーク)ことが可能となる。そして、この塗装ライ
ンで、塗装焼付は後の切板切断を行うことにより、工程
の簡略化と連続化が実現できることになる。
One possible solution to this problem is to apply the conventional method of painting a cut plate to a strip and then make it into a cut plate. In other words, when painting cut boards, it is necessary to paint and bake each cut board twice, on the front and back sides, through the coating line (
(2 coats, 2 bakes, 2 coats, 2 bakes), but in the case of strips, the coating corresponding to the inner surface of the can and the coating corresponding to the outer surface of the can are applied consecutively, and the next baking is done at the same time on both sides (2 coats 1 baking) becomes possible. Then, in this painting line, by performing the painting baking and later cutting the plates, the process can be simplified and made continuous.

しかしながら、上記帯板塗装には次のような問題がある
。即ち、第5図に示したように接合部5゜5を外して塗
装しなければならず、この塗装切りの巾は通常611程
度であり、塗装範囲の制御が非常に困難である。また塗
装が可能としても塗装切り部の中心位置(すなわち前記
61mの幅の中心である3鴎の位置)で、高速移動中の
帯板を切断する゛ことは困難である。
However, the above strip coating has the following problems. That is, as shown in FIG. 5, it is necessary to remove the joint 5.5 before painting, and the width of this painting cut is usually about 611 mm, making it very difficult to control the painting area. Further, even if painting is possible, it is difficult to cut the strip while it is moving at high speed at the center position of the painted cut portion (that is, at the 3-point position, which is the center of the 61 m width).

このように塗装範囲、切断位置の制御精度が悪いと次の
ようなトラブルにつながる0例えば接合部に塗料が存在
する場合は、これをそのまま溶接すると塗料が燃焼し、
爆飛現象が生してナゲツトが正常に形成されないばかり
か穴があくことがある。また接着剤を用いて接合しても
充分な接着力が得られない。逆に本来塗装すべきところ
に塗装されない場合には、接合は問題ないが耐錆性、耐
食性等の点で問題となる。
In this way, poor control precision of the coating range and cutting position can lead to the following problems: For example, if there is paint at the joint, if we weld it as it is, the paint will burn,
Due to the explosion phenomenon, not only the nuggets are not formed properly, but also holes may be formed. Furthermore, even if adhesive is used for bonding, sufficient adhesive strength cannot be obtained. On the other hand, if the area that should be coated is not coated, there will be no problem with joining, but there will be problems with rust resistance, corrosion resistance, etc.

この発明は上述した従来技術の課題を解決することを目
的とする。
This invention aims to solve the problems of the prior art described above.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る3ピース缶用鋼板は、重量比で、C: 
0.01〜0.05%、  S i :0.02%以下
、Mn=0.15〜0.30%、 P:0.020%以
下、 S:0.020%以下。
The three-piece steel plate for cans according to the present invention has a weight ratio of C:
0.01-0.05%, Si: 0.02% or less, Mn=0.15-0.30%, P: 0.020% or less, S: 0.020% or less.

N :0.005%以下、AlO,02〜0.20  
%を含むとともに、残部がFe及び不可避的不純物より
成り、かつ、8μm以上の長径を有する結晶粒と4μm
以上8μm未満の長径を有する結晶粒とから構成される
とともに前記8μm以上の長径を有する結晶粒が面積比
で50%以上であることを特徴としている。
N: 0.005% or less, AlO, 02-0.20
%, the balance consists of Fe and unavoidable impurities, and crystal grains having a long diameter of 8 μm or more and 4 μm
It is characterized in that it is composed of crystal grains having a longer diameter of 8 μm or more, and that the crystal grains having a longer diameter of 8 μm or more account for 50% or more in terms of area ratio.

この3ピース缶用鋼板における、前記結晶粒の長径に対
する短径の比を1/1.5〜1とすると好適である。
In this three-piece steel sheet for cans, the ratio of the short axis to the long axis of the crystal grains is preferably 1/1.5 to 1.

また、3ピース缶の製造方法の発明は、重量比で、C:
 0.014〜0.05%、S最: 0.02%以下1
Mn : 0.15〜0.30%、  P:0.020
%以下、  S:0.020%以下、 N:0.005
%以下、Al0.02〜0.20%を含むとともに、残
部がFe及び不可避的不純物より成る連続鋳造スラブに
、常法により熱間圧延、酸洗、冷間圧延1箱焼鈍および
調質圧延を施し、これにメッキ、化成処理などの表面処
理を施して帯板を得、この帯板に、その中方向両端部の
所定巾を外して、・帯板の表裏に塗装を施して焼付し、
次いで必要に応じて印刷・焼付した後、所定の長さに切
断し、さらにブランキングしてブランキングシートとし
、該ブランキングシートを圧延方向とは直角方向に曲げ
て前記非塗装部を重ね接合してから、フランジ加工によ
り天蓋と底蓋を取り付けて仕上げることを特徴とする。
In addition, the invention of a method for manufacturing a three-piece can has a weight ratio of C:
0.014-0.05%, S maximum: 0.02% or less 1
Mn: 0.15-0.30%, P: 0.020
% or less, S: 0.020% or less, N: 0.005
% or less, containing 0.02 to 0.20% Al, with the balance consisting of Fe and unavoidable impurities, is hot rolled, pickled, cold rolled, one box annealed, and temper rolled by conventional methods. This is then subjected to surface treatments such as plating and chemical conversion treatment to obtain a strip, and a predetermined width of both ends in the middle direction is removed from the strip, and the front and back sides of the strip are painted and baked.
Next, after printing and baking as necessary, the sheet is cut into a predetermined length, further blanked to form a blanking sheet, and the blanking sheet is bent in a direction perpendicular to the rolling direction to overlap and join the non-painted portions. After that, the canopy and bottom cover are attached and finished using flange processing.

〔作用〕[Effect]

まず、本発明に至る経緯について述べる。前述した接合
部に関する問題は、曲げ方向を従来の圧延方向と同一の
方向から、圧延方向に対して直角方向に変更することに
より解決できることに想到した。これを第1図に示す。
First, the circumstances leading to the present invention will be described. The inventors have come up with the idea that the above-mentioned problems regarding the joints can be solved by changing the bending direction from the same direction as the conventional rolling direction to a direction perpendicular to the rolling direction. This is shown in FIG.

従来例を示した前掲第5図と同一の部位には同一記号を
付しである。
The same parts as in FIG. 5 above showing the conventional example are given the same symbols.

これにより塗装は帯板1の両端部に位置する接合部5.
5を外して、帯板lの長平方向に連続して施せばよいの
で、前述した塗装に起因する問題は一挙に解決できる。
As a result, the coating is applied to the joints 5 located at both ends of the strip 1.
5 can be removed and the coating can be applied continuously in the longitudinal direction of the strip plate l, so the problems caused by the above-mentioned coating can be solved at once.

ところが、このようにして得られたブランクシート6を
曲げ加工後、シーム溶接で接合してフランジ加工を施し
たところ、熱影響部(HAZ)で割れる頻度が非常に高
くなることがわかった。そこでこのHA Z割れを無く
すための検討を行った。
However, when the blank sheet 6 thus obtained was bent and then joined by seam welding and flanged, it was found that the frequency of cracking in the heat affected zone (HAZ) increased significantly. Therefore, we conducted a study to eliminate this HAZ cracking.

缶胴の溶接は通常、中間電極に胴ワイヤーを用いる型式
の、所謂ワイヤーシーム溶接機を用いて前述のように接
合部を重ね溶接する。これにより重ね部は鋼板抵抗によ
り発熱、溶解し、電極輪の加圧力によって接着する。こ
の溶接中の鋼板温度は約900〜1500℃程度の範囲
となるように電流、電圧が制御される。900℃程度未
満では溶接強度が不充分となり、1500℃程度超では
、スプラッシュが発生するためである。このような溶接
法により接合した缶胴のHAZ割れを調査した結果、重
ね合わせ部の厚さが大きい程、HAZ割れの発生頻度が
高くなることがわかった。
Can bodies are usually welded using a so-called wire seam welding machine, which uses a body wire as an intermediate electrode, and the joints are overlap welded as described above. As a result, the overlapped portion generates heat and melts due to the steel plate resistance, and is bonded by the pressing force of the electrode ring. The current and voltage are controlled so that the temperature of the steel plate during this welding is in the range of approximately 900 to 1500°C. This is because if the temperature is less than about 900°C, the welding strength will be insufficient, and if it exceeds about 1500°C, splash will occur. As a result of investigating HAZ cracks in can bodies joined by such a welding method, it was found that the greater the thickness of the overlapped portion, the higher the frequency of HAZ cracks occurring.

これは定性的には、第2゛図のように説明できる。Qualitatively, this can be explained as shown in Figure 2.

同図(alは重ね部が厚い場合、同図(b)は薄い場合
を夫々示したもので、ここで7は缶胴、8はナゲツト、
9はフランジ加工用ダイスであり、円筒状の缶の製造を
例にした。フランジ加工の時、重ね合わせ部には引張力
F、F’が生じるが、重ね合わせ部の厚みが大きい程、
引張力は大きくなる(F〉F′)。このため、重ね合わ
せ部の厚みが大きい程、HAZ割れが発生しやすくなる
と考えられる。
The same figure (al shows the case where the overlapping part is thick, and the same figure (b) shows the case where it is thin, respectively, where 7 is the can body, 8 is the nugget,
9 is a die for flange processing, and the production of a cylindrical can is taken as an example. During flange processing, tensile forces F and F' are generated in the overlapping part, but the thicker the overlapping part, the more
The tensile force increases (F>F'). For this reason, it is considered that the greater the thickness of the overlapped portion, the more likely HAZ cracking will occur.

そこで、電極輪の加圧力を大きくすることにより押しつ
ぶして薄くする方法が考えられるが、これにも限界があ
った。即ち、加圧力が過大であると、溶接が進行し終わ
りに近づくに従って、重ね合わせ部の板が互いに逃げて
、必要な重ね幅が得られなくなったり、銅ワイヤーの形
状が悪くなって、正常なナゲツトが連続して得られなく
なるという問題が発生した。なお、電流値を高くして鋼
板温度を上げることも考えられるが、この場合には前述
のようにスプラッシュが発生して、これが缶の内外面に
飛散・付着し、塗装膜や印刷膜を破壊し、耐食性、耐錆
性、美観等を損なうので実用に供し得ない。
Therefore, a method of crushing and thinning the electrode ring by increasing the pressure applied thereto has been considered, but this method also had its limitations. In other words, if the welding force is too high, as welding progresses and approaches the end, the overlapping plates may escape from each other, making it impossible to obtain the necessary overlapping width, or the shape of the copper wire may deteriorate, resulting in abnormality. A problem occurred where nuggets could not be obtained continuously. It is also possible to raise the temperature of the steel plate by increasing the current value, but in this case, as mentioned above, splash will occur, which will scatter and adhere to the inside and outside surfaces of the can, destroying the paint film and printing film. However, it cannot be put to practical use because it impairs corrosion resistance, rust resistance, aesthetics, etc.

以上圧延方向に曲げて缶を製造する方法では問題はなか
ったのに対し、圧延方向と直角の方向に曲げて製缶する
方法ではHAZ割れの発生頻度が高くなる点について溶
接方法の改善により解決することを検討したが、非常に
難しく結局解決できなかった。
As mentioned above, there was no problem with the method of manufacturing cans by bending in the rolling direction, but with the method of manufacturing cans by bending in a direction perpendicular to the rolling direction, HAZ cracking occurs more frequently, which was resolved by improving the welding method. I considered doing this, but it was very difficult and I couldn't solve it in the end.

そこで、次に本発明者らは缶用鋼板の製造工程に対して
検証を加えた。その結果、上記HAZ割れは圧延による
結晶組織の異方性にあることをつきとめた。例えば、低
炭素鋼を用いて調質度T4゜板厚0.32mmに仕上げ
たぶりき厚板を引張試験した結果の例を下表に示す。
Therefore, the present inventors next verified the manufacturing process of steel sheets for cans. As a result, it was found that the above-mentioned HAZ cracking was caused by the anisotropy of the crystal structure due to rolling. For example, the table below shows an example of the results of a tensile test on a thick tin plate made of low carbon steel with a heat treatment degree of T4° and a plate thickness of 0.32 mm.

第1表 次のこの異方性について実験室的に研究したところ、次
のことが判明した。即ち、 ■ 異方性は調質圧延の影響により表れる。
A laboratory study of this anisotropy shown in Table 1 revealed the following. That is, (1) Anisotropy appears due to the influence of temper rolling.

■ 焼鈍後の結晶粒径が大きい場合、次工程の調質圧延
の影響をそれほど受けない。
■ If the grain size after annealing is large, it will not be affected as much by the next process of temper rolling.

■ 焼鈍後の結晶粒径が小さい場合には次工程の調質圧
延の影響を受け、異方性が表れる。
■ If the grain size after annealing is small, it will be affected by the next step of temper rolling, and anisotropy will appear.

■ UR質圧延後の結晶粒は、その長径(圧延方向)と
短径(圧延方向と直角の方向)との比が1.5以内であ
れば、異方性はそれほど表れない。
(2) If the ratio of the major axis (in the rolling direction) to the minor axis (in the direction perpendicular to the rolling direction) of the UR quality rolled crystal grains is within 1.5, anisotropy will not appear much.

■ 調質圧延での圧下率を高くしてDRIOクラスの硬
度に仕上げても、軸径比が1.5以下に仕上がっていれ
ば等方向は維持される。
■ Even if the reduction rate in temper rolling is increased to achieve DRIO class hardness, the isodirection will be maintained as long as the shaft diameter ratio is 1.5 or less.

尚、上記■、■の理由は定かではないが、次のように推
察される。即ち、結晶粒が小さいと硬質となり、調質圧
延時の塑性変形は殆ど圧延方向に限定されるが、結晶粒
が大きい場合には軟質となり、圧延方向と直角の方向に
も塑性変形が生じるためであると考えられる。
The reasons for the above (■) and (2) are not clear, but are presumed to be as follows. In other words, if the grains are small, the material will be hard and the plastic deformation during skin pass rolling will be mostly limited to the rolling direction, but if the grains are large, the material will be soft and plastic deformation will also occur in the direction perpendicular to the rolling direction. It is thought that.

そこで本発明者らは結晶粒を大きくするためには、現在
主流となっている連続焼鈍ではなく、高温長時間での熱
処理ができる箱焼鈍法を採用することに上列したのであ
る。
Therefore, in order to increase the size of crystal grains, the present inventors decided to adopt a box annealing method that allows heat treatment at high temperatures and for a long time, rather than the currently mainstream continuous annealing.

ところで、工業的に製造される缶用鋼板の場合には同一
製造条件であっても結晶粒組織を同一水準に合わせるこ
とは非常に困難であり、また従来はその必要性も殆どな
かった。製造条件が同じでもMi織がばらつくのは、綱
の精錬工程での鋼中成分比率の変動、加熱炉、焼鈍炉等
において生成する炭化物、酸化物、窒化物、硫化物等の
析出物の大きさ、Nおよび分布状態の変動によるものと
考えられる。
By the way, in the case of industrially manufactured steel sheets for cans, it is very difficult to adjust the grain structure to the same level even under the same manufacturing conditions, and there has been little need to do so in the past. The reason why the Mi weave varies even under the same manufacturing conditions is due to variations in the component ratio in the steel during the steel refining process, and the size of precipitates such as carbides, oxides, nitrides, and sulfides that are generated in heating furnaces, annealing furnaces, etc. This is thought to be due to variations in size, N, and distribution state.

これらの中で、炭化物は結晶の核となるため、炭化物が
多く存在すると結晶粒径は小さくなる。
Among these, carbides serve as crystal nuclei, so the presence of a large amount of carbides reduces the crystal grain size.

一般にC量の少ない領域では鋼中C量によって結晶粒径
が一義的に決まることが知られている。しかしながら、
C量が同じであっても大きな結晶粒の横に小さな結晶粒
が存在する、所謂混粒組織になることがあり、前述のよ
うに小径の結晶粒が存在すると異方性が表れる。混粒組
織になったりならなかったりすることが工業的製造を困
難にするのである。ところが、箱焼鈍法であればC量を
適切に調整することにより、混粒組織をなくせることを
知見した。
Generally, it is known that in a region where the amount of C is small, the grain size is uniquely determined by the amount of C in the steel. however,
Even if the amount of C is the same, a so-called mixed grain structure may be formed in which small crystal grains are present next to large crystal grains, and as described above, anisotropy appears when small diameter crystal grains are present. The presence or absence of a mixed grain structure makes industrial production difficult. However, it has been found that the mixed grain structure can be eliminated by appropriately adjusting the amount of C using the box annealing method.

しかしながら、これだけではまだ不充分である。However, this alone is still insufficient.

即ち炭化物以外の析出物(A I N、MnO,MnS
等)は結晶粒の成長を阻止したり、その成長方向を規制
したりする作用を有するから、本発明の目的に対しては
有害となる。これの対策としては、熱処理温度の調整に
より析出物を微細化して分散させることも考えられるが
、この方法では安定して製造することは困難であること
から、この発明は製造コスト上からも有利となるMn、
S、N等の量を少なくする方法を採った。
That is, precipitates other than carbides (A I N, MnO, MnS
etc.) have the effect of inhibiting the growth of crystal grains or regulating the direction of their growth, and therefore are harmful to the purpose of the present invention. As a countermeasure to this problem, it may be possible to make the precipitates finer and disperse them by adjusting the heat treatment temperature, but since it is difficult to produce stably with this method, this invention is advantageous in terms of production costs. Mn,
A method was adopted to reduce the amount of S, N, etc.

以上に述べた知見からこの発明に至ったものである。The above-mentioned knowledge led to this invention.

この発明によれば、結晶粒を大きくしてかつ小さな結晶
粒の混入率も大巾に低減できるため、圧延に起因する異
方性は生じない。従って、3ピース缶の缶胴を製造する
にあたって圧延方向に対して直角の方向に曲げて重ね溶
接し、フランジ加工を施しても熱影響部(HAZ)が割
れることはなく、またこれにより帯板塗装が可能となる
から、製造工程の短縮やコストダウン等を達成できる。
According to this invention, since the crystal grains can be made larger and the mixing ratio of small crystal grains can be greatly reduced, anisotropy due to rolling does not occur. Therefore, when manufacturing the can body of a three-piece can, the heat-affected zone (HAZ) will not crack even if the can body is bent perpendicular to the rolling direction, overlap welded, and flanged. Since painting is possible, it is possible to shorten the manufacturing process and reduce costs.

そして、これが可能になるのは次の作用の相乗効果であ
ると考えられる。
This is thought to be possible due to the synergistic effect of the following actions.

■ 溶接時に熱影響部の結晶粒が粗大化するが、その際
、析出物が粒界に再析出して粒界の強度を低下させてH
AZ割れを誘起させるものの、この発明ではMn、S、
N等を少なくしているので再析出によるHAZ割れを低
減できる。またMn、S等を少なくすることは製造コス
トを安価にするという副次的効果もある。
■ During welding, the grains in the heat-affected zone become coarse, but at that time, precipitates re-precipitate at the grain boundaries, reducing the strength of the grain boundaries and increasing H
Although it induces AZ cracking, in this invention Mn, S,
Since N and the like are reduced, HAZ cracking due to redeposition can be reduced. Furthermore, reducing Mn, S, etc. also has the secondary effect of reducing manufacturing costs.

■ 低炭素鋼領域の少ない側にC量を減らし、且つ箱焼
鈍法により焼鈍するとともに析出物も少なくすることに
より、均一で大きな結晶粒組織が得られ、フランジ加工
での塑性変形もしやすくなり、HAZ割れの頻度が少な
くなる。
■ By reducing the amount of C in the low-carbon steel region, annealing using the box annealing method, and reducing the amount of precipitates, a uniform and large grain structure can be obtained, making it easier to plastically deform during flange processing. The frequency of HAZ cracking is reduced.

■ HAZ割れを防止するには板厚そのものを薄くして
、溶接時の重ね合わせ部の総板厚を薄くすることが考え
られる。これに対してこの発明の鋼板は均一で大きな結
晶粒組織を有するので、降伏点が低く、調質圧延での圧
下率を高くして板厚を薄<シても何等問題はない。
■ To prevent HAZ cracking, it is possible to reduce the plate thickness itself and reduce the total plate thickness at the overlapping part during welding. On the other hand, since the steel sheet of the present invention has a uniform and large grain structure, the yield point is low, and there is no problem even if the sheet thickness is reduced by increasing the rolling reduction in skin pass rolling.

次に、成分の限定理由について述べる。Next, we will discuss the reasons for limiting the ingredients.

まずC量の上限を0.05%とした理由は次の通りであ
る。すなわち、箱型焼鈍法において焼鈍後に鋼板表面に
鋼中成分が富化濃縮して層をなすことはよく知られてい
る。この層は耐食性及び耐錆性を著しく劣化させるもの
であるから、その対策としては、箱型焼鈍といえどもで
きるだけ短時間で焼鈍を終わることが必要であり、粗大
粒径を均一に仕上げるためにはC量を少なくすることが
必要である。そのためにその上限を重量0.05%とし
たのである。一方、C量の下限を0.01%としたのは
、粒径があまりにも粗大化すると所謂オレンジピールに
なって、肌荒れ現象が生じ、製品価値を著しく損なうこ
とになるから、これを防止するためである。
First, the reason why the upper limit of the amount of C was set to 0.05% is as follows. That is, it is well known that in the box annealing method, the components in the steel become enriched and concentrated to form a layer on the surface of the steel sheet after annealing. This layer significantly deteriorates corrosion resistance and rust resistance, so as a countermeasure, it is necessary to finish the annealing in as short a time as possible, even in box-type annealing, and to finish the coarse grain size uniformly. It is necessary to reduce the amount of C. Therefore, the upper limit was set at 0.05% by weight. On the other hand, the lower limit of the C content was set at 0.01% to prevent this, because if the particle size becomes too coarse, it will become so-called orange peel, which will cause rough skin and significantly reduce the value of the product. It's for a reason.

Siはめっき後の耐食性等を低下させるので、0.02
重量%以下とした。
Si reduces corrosion resistance after plating, so 0.02
% by weight or less.

Mnは、熱間圧延脆性化と箱型焼鈍時に発生しやすいグ
ラファイトの析出を防ぐために0.15重量%以上とし
、0.30重量%を越えると冷間圧延性が悪くなりまた
析出物も多くなるので0.30重量%以下とする。
Mn is set to 0.15% by weight or more in order to prevent hot rolling embrittlement and precipitation of graphite that tends to occur during box annealing, and if it exceeds 0.30% by weight, cold rollability deteriorates and there are many precipitates. Therefore, the content should be 0.30% by weight or less.

Pは多く含まれるとめっき後の耐食性等を劣化させるの
で0.020重量%以下とし、Sも同様にめっき後の耐
食性等を劣化させるとともに、熱間圧延脆性を悪くし析
出物も多くなるので0.020重量%以下とした。
If too much P is included, it will deteriorate the corrosion resistance after plating, so keep it at 0.020% by weight or less, and S will similarly deteriorate the corrosion resistance after plating, worsen hot rolling brittleness, and increase the amount of precipitates. The content was set to 0.020% by weight or less.

Nは多く含まれると延性が悪くなるとともに析出物も多
くなるので0 、0050重量%以下とする。
If a large amount of N is contained, the ductility will deteriorate and the number of precipitates will increase, so the content should be 0.050% by weight or less.

Alキルド鋼を得るために製鋼段階でAlを添加してい
るが、高価なAIを多く添加することは不経済であり、
また、これが少ないと十分脱酸されないので、0.02
〜0.2重量%とする。
Al is added at the steel manufacturing stage to obtain Al-killed steel, but it is uneconomical to add a large amount of expensive AI.
Also, if this amount is small, deoxidation will not be sufficient, so 0.02
~0.2% by weight.

また、上記組成とすることにより、前述した結晶粒組織
が得られる。
Moreover, by setting it as the said composition, the crystal grain structure mentioned above is obtained.

〔実施例〕〔Example〕

第2表に示す製造条件で製造した18種類のぶりき鋼板
を用いて、圧延方向に対して直角方向の曲げになるよう
に、塗装、印刷焼付けを施した後、切仮に剪断し、外面
部にはさらに印刷及びクリヤー塗装を施した後、中間電
極に銅ワイヤーを使用するワイヤーシーム溶接機を用い
て溶接して181缶の胴に成形し、さらに引き続きダイ
フランシャーでフランジ加工を行い、フランジ割れ評価
を行った。また、それらフランジ部の溶接板厚も実測し
た。それぞれの結果を第2表に示す。
Using 18 types of tin steel sheets manufactured under the manufacturing conditions shown in Table 2, they were painted, printed and baked so that they were bent perpendicular to the rolling direction, and then cut and sheared to remove the outer surface. After further printing and clear coating, welding is performed using a wire seam welding machine that uses copper wire for the intermediate electrode to form the body of a 181 can. A crack evaluation was performed. We also measured the weld plate thickness of these flanges. The results are shown in Table 2.

これらの結果から、この発明にかかる鋼板は比較鋼板に
比して、圧延方向に対する直角方向の曲げを行ってもH
AZ割れが発生せず、帯板塗装化が可能になる優れた鋼
板であることが明らかである。
From these results, the steel plate according to the present invention has a higher H
It is clear that this is an excellent steel sheet that does not cause AZ cracking and can be painted as a strip.

尚、低炭素鋼を箱焼鈍するとT1相当に仕上がるので、
調質圧延の圧下率を高めに調整すればTl〜T6.DR
8〜DRIQまでの調質度のものが得られるという特長
を有している。
Furthermore, box annealing low carbon steel produces a finish equivalent to T1, so
If the reduction rate of temper rolling is adjusted to a higher value, Tl~T6. D.R.
It has the advantage of being able to obtain heat quality grades of 8 to DRIQ.

なお、前記は181缶で説明しているが、缶径の小さい
飲料缶においても同じ性能を発揮できることは言うまで
もない。
It should be noted that, although the above description has been made using a 181 can, it goes without saying that the same performance can be exhibited in a beverage can with a smaller can diameter.

さらに、この発明に関する缶用鋼板の成分にTt、v、
B等の元素を添加できるが、これらを添加しなくともよ
いことは勿論である。
Furthermore, the components of the steel sheet for cans according to the present invention include Tt, v,
Although elements such as B can be added, it is of course not necessary to add these elements.

かくして、従来は、缶胴の折り曲げ、円筒状曲げ方向は
圧延方向であることが全世界を通じて常識であったため
、塗装、印刷の帯板塗装化が難しかったが、この発明に
より圧延方向に対する直角方向の巻きゃ曲げも可能にな
ったことにより、3ピース缶鋼板の帯i塗装化が積極的
に進み合理化が図られ、缶コストが削減できることは明
らかである。
In the past, it was common knowledge throughout the world that the bending direction of the can body and the cylindrical bending direction were in the rolling direction, which made it difficult to paint and print strips. It is clear that since it has become possible to roll and bend three-piece can steel sheets, the application of strip-coating to three-piece can steel plates has been actively promoted, rationalization has been achieved, and can cost can be reduced.

〔発明の効果〕 以上説明したように、この発明の3ピース缶用鋼板は、
めっき後の耐食性が維持されるとともに熱間圧延による
脆性化が防止され且つ冷間圧延性が向上するばかりか、
析出物が減少して熱影響部での割れを防止するとともに
充分に脱酸することができる。特に、この発明の3ピー
ス缶用鋼板は結晶粒を大きくし且つ小さな結晶粒の混入
率を大幅に低減しているため、圧延に起因する異方性を
生じないから、缶胴を製造するにあたって圧延方向に対
して直角方向の曲げ重ね溶接し且つフランジ加工を施し
才も、この理由からも熱影響部に割れを生じることなく
、またこれにより帯板塗装が可能となるから、製造工程
の短縮やコストダウンをはかることができる。
[Effects of the Invention] As explained above, the three-piece steel plate for cans of the present invention has the following effects:
Corrosion resistance after plating is maintained, brittleness due to hot rolling is prevented, and cold rollability is improved.
Precipitates are reduced, preventing cracking in the heat-affected zone, and sufficient deoxidation can be achieved. In particular, the three-piece steel sheet for cans of the present invention has large crystal grains and greatly reduces the mixing rate of small crystal grains, so it does not produce anisotropy due to rolling, so it is suitable for manufacturing can bodies. The advantage of bending and lap welding in a direction perpendicular to the rolling direction and applying flange processing is that there is no cracking in the heat-affected zone, and this also makes it possible to paint the strip, which shortens the manufacturing process. and can reduce costs.

また調質圧延後の前記結晶粒の、圧延幅方向の短径に対
する、圧延方向の長径の比を1.5以内にすることによ
って、結晶組織の異方性の露呈をこの点からも防止する
ことができる。
Furthermore, by setting the ratio of the major axis in the rolling direction to the minor axis in the rolling width direction of the crystal grains after temper rolling to be within 1.5, exposure of anisotropy in the crystal structure is also prevented from this point. be able to.

さらに、この発明の3ピース缶用鋼板の製造方法におい
ては、第1に、鋼板自体に前記のように異方性がないた
め、帯板の幅方向への折り曲げや湾曲が可能となったこ
と、第2に、帯板の幅方向両端部を外して塗装するため
これ以外の部分の塗装は帯板の長手方向に連続して行う
ことができるから作業が容易であること、第3に、切断
位置は非塗装部の位置を考慮することなく所定の寸法ご
とに行えばよいから、切断位置の制御も容易となること
、の理由によって、製造工程の短縮及びコストダウンに
貢献できるという効果がある。
Furthermore, in the method of manufacturing a three-piece steel plate for cans according to the present invention, firstly, since the steel plate itself does not have anisotropy as described above, it is possible to bend and curve the strip in the width direction. Second, since both ends of the strip in the width direction are removed and painted, the other parts can be painted continuously in the longitudinal direction of the strip, making the work easy; Third, The cutting position can be made for each predetermined size without considering the position of the non-painted part, making it easier to control the cutting position.This has the effect of contributing to shortening the manufacturing process and reducing costs. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の3ピース缶用鋼板の塗装及び切断位
置の説明図、第2図は缶胴溶接部の断面第 1 回 製造工程説明図、第5図は従来の3ピース缶用鋼板の塗
装及び切断位置の説明図、第6図はフランジ加工の説明
図である。 S・・・帯板、l・・・切板、2・・・切断線、3・・
・スリット線、4・・・曲げ線、5・・・接合部、6・
・・ブランクシート。 M2図(a)
Fig. 1 is an explanatory diagram of the painting and cutting positions of the steel plate for three-piece cans of the present invention, Fig. 2 is a cross-sectional diagram of the welded part of the can body, an explanatory diagram of the first manufacturing process, and Fig. 5 is a conventional steel plate for three-piece cans. FIG. 6 is an explanatory diagram of the painting and cutting positions, and FIG. 6 is an explanatory diagram of the flange processing. S... Band plate, l... Cutting plate, 2... Cutting line, 3...
・Slit line, 4...Bending line, 5...Joint part, 6・
・Blank sheet. M2 diagram (a)

Claims (3)

【特許請求の範囲】[Claims] (1)重量比で、C:0.01〜0.05%、Si:0
.02%以下、Mn:0.15〜0.30%、P:0.
020%以下、S:0.020%以下、N:0.005
%以下、Al:0.02〜0.20%を含むとともに、
残部がFe及び不可避的不純物より成り、かつ、8μm
以上の長径を有する結晶粒と4μm以上8μm未満の長
径を有する結晶粒とから構成されるとともに前記8μm
以上の長径を有する結晶粒が面積比で50%以上である
ことを特徴とする3ピース缶用鋼板。
(1) Weight ratio: C: 0.01-0.05%, Si: 0
.. 02% or less, Mn: 0.15-0.30%, P: 0.
020% or less, S: 0.020% or less, N: 0.005
% or less, including Al: 0.02 to 0.20%,
The remainder consists of Fe and unavoidable impurities, and the diameter is 8 μm.
It is composed of crystal grains having a long axis of 4 μm or more and less than 8 μm, and crystal grains having a long axis of 4 μm or more and less than 8 μm.
A steel sheet for a three-piece can, characterized in that crystal grains having a longer diameter of 50% or more in terms of area ratio.
(2)第1請求項記載の3ピース缶用鋼板において、前
記結晶粒の長径に対する短径の比が1/1.5〜1であ
ることを特徴とする3ピース缶用鋼板。
(2) The steel sheet for three-piece cans according to the first aspect, wherein the ratio of the short axis to the long axis of the crystal grains is 1/1.5 to 1.
(3)重量比で、C:0.01〜0.05%、Si:0
.02%以下、Mn:0.15〜0.30%、P:0.
020%以下、S=0.020%以下、N:0.005
%以下、Al:0.02〜0.20%を含むとともに、
残部がFe及び不可避的不純物より成る連続鋳造スラブ
に、常法により熱間圧延、酸洗、冷間圧延、連続焼鈍お
よび調質圧延を施し、これにメッキ、化成処理、塗油な
どの表面処理を施して帯板を得、この帯板に、その巾方
向両端部の所定巾を外して、帯板の表裏に塗装を施して
焼付し、次いで必要に応じて印刷・焼付した後、所定の
長さに切断し、さらにブランキングしてブランキングシ
ートとし、該ブランキングシートを圧延方向とは直角方
向に曲げて前記非塗装部を重ね接合してから、フランジ
加工により天蓋と底蓋を取り付けて仕上げることを特徴
とする3ピース缶の製造方法。
(3) Weight ratio: C: 0.01-0.05%, Si: 0
.. 02% or less, Mn: 0.15-0.30%, P: 0.
020% or less, S = 0.020% or less, N: 0.005
% or less, including Al: 0.02 to 0.20%,
A continuously cast slab, the remainder of which is composed of Fe and unavoidable impurities, is subjected to hot rolling, pickling, cold rolling, continuous annealing, and temper rolling using conventional methods, and is then subjected to surface treatments such as plating, chemical conversion treatment, and oil coating. After removing a predetermined width from both ends of the strip, painting and baking the front and back sides of the strip, and then printing and baking as necessary, the strip has a predetermined width. Cut to length and further blanked to obtain a blanking sheet, bend the blanking sheet in a direction perpendicular to the rolling direction, overlap and join the non-painted parts, and then attach the canopy and bottom lid by flange processing. A method for manufacturing a three-piece can, characterized by finishing it by
JP8339290A 1990-03-30 1990-03-30 Manufacture of steel sheet for three-piece can and three-piece can Pending JPH03285044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8339290A JPH03285044A (en) 1990-03-30 1990-03-30 Manufacture of steel sheet for three-piece can and three-piece can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8339290A JPH03285044A (en) 1990-03-30 1990-03-30 Manufacture of steel sheet for three-piece can and three-piece can

Publications (1)

Publication Number Publication Date
JPH03285044A true JPH03285044A (en) 1991-12-16

Family

ID=13801161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8339290A Pending JPH03285044A (en) 1990-03-30 1990-03-30 Manufacture of steel sheet for three-piece can and three-piece can

Country Status (1)

Country Link
JP (1) JPH03285044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113648A (en) * 2014-12-12 2016-06-23 Jfeスチール株式会社 Steel sheet for hard vessel and manufacturing method therefor
CN107299206A (en) * 2017-06-05 2017-10-27 柳州市御朗机械制造有限公司 The production method of automobile tyrerim hot-rolled steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938336A (en) * 1982-08-26 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet for can having high yield strength and drawability
JPS6024327A (en) * 1983-07-20 1985-02-07 Nippon Steel Corp Manufacture of very thin steel sheet for welded can with superior flanging workability
JPH01184229A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp Production of steel sheet for di can having excellent stretch flanging property
JPH03249133A (en) * 1990-02-28 1991-11-07 Nippon Steel Corp Production of steel sheet for welded can excellent in blank layout property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938336A (en) * 1982-08-26 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet for can having high yield strength and drawability
JPS6024327A (en) * 1983-07-20 1985-02-07 Nippon Steel Corp Manufacture of very thin steel sheet for welded can with superior flanging workability
JPH01184229A (en) * 1988-01-18 1989-07-21 Nippon Steel Corp Production of steel sheet for di can having excellent stretch flanging property
JPH03249133A (en) * 1990-02-28 1991-11-07 Nippon Steel Corp Production of steel sheet for welded can excellent in blank layout property

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113648A (en) * 2014-12-12 2016-06-23 Jfeスチール株式会社 Steel sheet for hard vessel and manufacturing method therefor
CN107299206A (en) * 2017-06-05 2017-10-27 柳州市御朗机械制造有限公司 The production method of automobile tyrerim hot-rolled steel

Similar Documents

Publication Publication Date Title
JP4538914B2 (en) Manufacturing method of hot-rolled steel sheet for ultra-thin steel sheet
US5360676A (en) Tin mill black plate for canmaking, and method of manufacturing
EP2166121A1 (en) High strength steel sheet and method for manufacturing the same
EP2794935B2 (en) Easy-open lid for cans and method to produce an easy-open lid
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
KR20210091795A (en) Steel plate for cans and manufacturing method thereof
JP3377825B2 (en) Steel plate for can and method of manufacturing the same
JPH03285044A (en) Manufacture of steel sheet for three-piece can and three-piece can
JPH0421741A (en) Manufacture of steel sheet for three-piece can and three-piece can manufactured therefrom
JPH11315343A (en) Slit steel strip for welded can, its manufacture, and cold rolled steel strip coil for slit steel strip
JPH03285046A (en) Manufacture of steel sheet for three-piece can and three-piece can
JPH04187741A (en) Steel sheet for can, its manufacture and manufacture of three-piece can
JP3290693B2 (en) Steel plate for can excellent in weldability, method for producing the same and method for making can
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP3023385B2 (en) Manufacturing method of steel sheet for cans
JPH10237585A (en) Extremely thin steel sheet for welded can excellent in flanging workability, welded can, and production of extremely thin steel sheet for welded can
JP2733423B2 (en) Plated sheet excellent in secondary workability and weldability and method for producing the same
JP3293001B2 (en) Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability
JPH09241744A (en) Production of steel sheet for can by annealing obviated process
JPS5925934A (en) Production of ultrathin sheet having excellent processability for flanging
JPH1180889A (en) Hot rolled steel sheet for drum can, its production and high strength drum can made of steel
JPS58164752A (en) Steel sheet for welded can with superior flanging workability
JP2001234246A (en) Method for producing cold rolled steel strip for three piece can
JP3324074B2 (en) High strength and high ductility steel plate for container and method of manufacturing the same
JP3434905B2 (en) Manufacturing method of steel plate for welding can