JPH0661464B2 - Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils - Google Patents

Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils

Info

Publication number
JPH0661464B2
JPH0661464B2 JP61038972A JP3897286A JPH0661464B2 JP H0661464 B2 JPH0661464 B2 JP H0661464B2 JP 61038972 A JP61038972 A JP 61038972A JP 3897286 A JP3897286 A JP 3897286A JP H0661464 B2 JPH0661464 B2 JP H0661464B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrodesulfurization
denitrification
alumina
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61038972A
Other languages
Japanese (ja)
Other versions
JPS62197150A (en
Inventor
酒井  茂
敏男 山口
尚登 金原
好昌 井上
孝雄 鈴木
孝光 ▲高▼浜
勝久 藤田
将史 下分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61038972A priority Critical patent/JPH0661464B2/en
Publication of JPS62197150A publication Critical patent/JPS62197150A/en
Publication of JPH0661464B2 publication Critical patent/JPH0661464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重質炭化水素油中に含まれる硫黄化合物ならび
に窒素化合物の両者を効果的に除去するための水素化処
理用触媒に関する。さらに詳しくは硫黄化合物、窒素化
合物及び触媒被毒物質を多量に含有する重質炭化水素
油、特に残渣油を水素加圧下で処理し硫化水素とアンモ
ニアに転化させ原料炭化水素油中の硫黄及び窒素の含有
量を同時に低減させるために使用される水素化処理触媒
に関するものである。
The present invention relates to a hydrotreating catalyst for effectively removing both sulfur compounds and nitrogen compounds contained in heavy hydrocarbon oils. More specifically, heavy hydrocarbon oils containing a large amount of sulfur compounds, nitrogen compounds and catalyst poisoning substances, especially residual oils, are treated under hydrogen pressure and converted into hydrogen sulfide and ammonia to convert sulfur and nitrogen in the raw hydrocarbon oils. The present invention relates to a hydrotreating catalyst used for simultaneously reducing the content of

〔従来技術〕[Prior art]

従来の水素化脱硫を主体とする水素化処理用触媒は多孔
性アルミナを基体とする触媒担体に周期律表VIa族金属
及びVIII族金属を担持させた触媒が一般に使用されてい
る。しかし、これらの水素化処理触媒は水素化脱硫を水
素消費量を少なくし、経済的に行うのに適し、水素化脱
硫反応には高活性を示す水素化脱窒素反応には十分な活
性を示さない。
As a conventional hydrotreating catalyst mainly composed of hydrodesulfurization, a catalyst in which a group VIa metal and a group VIII metal of the periodic table are carried on a catalyst carrier based on porous alumina is generally used. However, these hydrotreatment catalysts are suitable for economically performing hydrodesulfurization by reducing hydrogen consumption, and show high activity for hydrodesulfurization reaction and sufficient activity for hydrodenitrogenation reaction. Absent.

一方、原油を蒸溜して溜出分としてのガソリン、灯油、
軽油(沸点約340℃程度)を採つた残りの特に一般に
残渣油ともいわれる重質炭化水素油は硫黄分および窒素
分が濃縮されている。このような重質炭化水素油からは
水素化脱硫工程を経て燃料油が製造されるが、公害防止
の観点から窒素分の低い燃料油が望まれている。ところ
で炭化水素油を処理して硫黄化合物と窒素化合物を同時
に除去するためには従来から知られている水素化脱硫触
媒の水素化脱硫活性に加えて、C−N結合を開裂させる
水素化脱窒素活性を具備した触媒が必要である。溜出油
用触媒としてはそのような水素化脱硫・脱窒素両活性を
具備したものが知られているが、重質炭化水素油をその
ような溜出油触媒で処理しても、反応すべき分子のサイ
ズが大きいため小さい細孔へ入つていかないこともあつ
て充分機能しない。そこで、溜出油用触媒に比して触媒
の細孔直径を大きくして処理時に反応すべき分子が細孔
内に入つて行きやすくするような試みがなされている
が、なおアスフアルテン類の分解で生ずる炭素質が触媒
表面に析出し触媒性能が低下し、この性能低下は重質炭
化水素油中に含まれるバナジウム、ニツケル等の金属化
合物が触媒粒子表面に堆積することにより助長されて触
媒寿命が短かくなる問題点があつた。
On the other hand, distilling crude oil to distillate gasoline, kerosene,
The remaining heavy hydrocarbon oil, which is generally referred to as residual oil, obtained by collecting light oil (boiling point: about 340 ° C.) is concentrated in sulfur and nitrogen. Fuel oils are produced from such heavy hydrocarbon oils through a hydrodesulfurization step, and fuel oils having a low nitrogen content are desired from the viewpoint of pollution prevention. By the way, in order to treat a hydrocarbon oil to remove a sulfur compound and a nitrogen compound at the same time, in addition to the hydrodesulfurization activity of a conventionally known hydrodesulfurization catalyst, hydrodenitrogenation for cleaving a C—N bond is performed. A catalyst with activity is needed. As a distillate oil catalyst, one having both hydrodesulfurization and denitrification activity is known, but it reacts even if a heavy hydrocarbon oil is treated with such distillate oil catalyst. Since the size of the molecule to be used is large, it does not work well because it may not enter the small pores. Therefore, attempts have been made to make the pore diameter of the catalyst larger than that of the distillate catalyst to facilitate the entry of molecules that should react during the treatment into the pores. The carbonaceous substances generated in the catalyst deposit on the surface of the catalyst and the catalyst performance deteriorates. There was a problem that became short.

脱硫、脱窒素の両活性を具えた触媒として種種の研究が
行われており、例えば米国特許第3446730号には1.2〜2.
6の水和水を含有する水酸化アルミニウムを焼成して作
られたアルミナ担体にニツケルまたは第VI族金属または
それら金属の酸化物または硫化物を担持しさらに0.1〜
2.0wt%のリン、珪素またはバリウムからなる促進剤を
添加した触媒が提案されているがアルミナ担体の特性に
ついては何も記載されていない。しかも処理油に関して
は残渣油を含めたいかなる溜分にも適用可能であるとし
ているが実際は溜出油を対象とするものと解される。ま
た米国特許第3,749,664号にはアルミナまたはシリカ−
アルミナ担体にモリブデンとニツケルまたはコバルトと
リンとを特定の割合で担持させた触媒が記載されてお
り、担体は一般的には0.6〜1.4c.c./gの孔容量を有する
ものが好ましいと説明されているが、孔径については検
討されておらず重質炭化水素の水素化処理には満足する
性能を有していない。
Various kinds of research have been conducted as catalysts having both desulfurization and denitrification activities, for example, U.S. Pat.
Nickel or Group VI metals or oxides or sulfides of these metals are supported on an alumina carrier made by calcining aluminum hydroxide containing water of hydration of 6 to 0.1-
A catalyst added with 2.0 wt% of a promoter consisting of phosphorus, silicon or barium has been proposed, but nothing about the characteristics of the alumina carrier is described. Moreover, although it is said that the treated oil can be applied to any distillate including the residual oil, it is understood that the distillate oil is actually targeted. U.S. Pat.No. 3,749,664 describes alumina or silica-
A catalyst in which molybdenum and nickel or cobalt and phosphorus are supported in a specific ratio on an alumina carrier is described, and it is generally described that the carrier preferably has a pore volume of 0.6 to 1.4 cc / g. However, the pore size has not been examined and it does not have sufficient performance for hydrotreating heavy hydrocarbons.

前記の改良として特開昭56-40432号には酸化チタンを担
体とし、触媒成分としては同じくVIa族並びにVIII族金
属とリンあるいはホウ素を担持させたものが提案されて
いるが、担体として用いる酸化チタンは価格も高く、そ
の物理的性質上アルミナに比して比表面積を大きくとり
にくく、しかも触媒成分担持後の焼成処理において比表
面積が低下しやすく、後述するアルミナのようにその細
孔分布を所望の範囲に維持することが困難である欠点が
あつた。
As an improvement of the above, JP-A-56-40432 proposes that titanium oxide is used as a carrier and the catalyst component is also loaded with Group VIa and Group VIII metals and phosphorus or boron. Titanium is high in price, it is difficult to take a large specific surface area compared to alumina due to its physical properties, and the specific surface area is likely to decrease in the firing treatment after supporting the catalyst component. There is a drawback that it is difficult to maintain the desired range.

〔発明が解決しようとする問題点〕 本発明は前記したような従来の触媒の持つ問題点を解消
し、炭化水素油の水素化脱硫並びに脱窒素の両活性を十
分に具えた安価な触媒を提供しようとするものである。
このために本発明者等は従来から提案されていたVIa
族、VIII族及びリンを担持させたアルミナを担体とする
触媒についてさらに検討を行つたところ、水素化脱硫、
脱窒素の両反応には担体アルミナにある特定範囲の有効
な細孔径が存在し且つ活性金属の担持量にも特定の好適
範囲が存在することを見出して本発明に到達した。
[Problems to be Solved by the Invention] The present invention solves the problems of the conventional catalysts as described above, and provides an inexpensive catalyst having sufficient hydrodesulfurization and denitrification activities of hydrocarbon oil. It is the one we are trying to provide.
For this reason, the present inventors have proposed VIa
Further studies were carried out on a catalyst having alumina supported on Group III, Group VIII and phosphorus as a result of hydrodesulfurization,
The present invention has been achieved by finding that both denitrification reactions have a specific range of effective pore size in carrier alumina and a specific suitable range of the amount of active metal supported.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は原油を蒸溜してガスおよびガソリン、灯油なら
びに軽油相当溜分を採取した残りの残渣油を脱硫、脱金
属して約1.1%以下の硫黄含有量とした重質炭化水素
油の水素化脱硫、脱窒素用触媒としてアルミナを基体と
する担体に、活性成分を特定の範囲、すなわち周期律表
VIa族金属から選ばれた少くとも1種の金属の酸化物を
金属として4〜14重量%と、鉄族金属から選ばれた少
くとも1種の金属の酸化物を金属として1.5〜5重量
%と、リンを単体として0.5〜3重量%とを担持さ
せ、担体の細孔分布について見れば、窒素ガス吸着法で
測定した細孔分布が100〜〜150Åの平均細孔直径を有
し、且つ平均細孔直径±50Åの範囲内の容積が、この
担体の直径0〜600Åの細孔が占める容積の少くとも
70%を占めるように触媒を構成したものである。
The present invention relates to a heavy hydrocarbon oil having a sulfur content of about 1.1% or less by desulfurizing and demetallizing the residual oil obtained by distilling crude oil to collect gas, gasoline, kerosene and light oil equivalent distillate. As a catalyst for hydrodesulfurization and denitrification, the active ingredient is contained in a specific range, that is, the periodic table, on an alumina-based carrier.
4 to 14% by weight of an oxide of at least one metal selected from the VIa group metals, and 1.5 to 5 of an oxide of at least one metal selected from an iron group metal. %, And 0.5 to 3% by weight of phosphorus as a simple substance, the average pore diameter of 100 to 150 Å is 100 to 150 Å when the pore distribution of the carrier is measured by nitrogen gas adsorption method. The catalyst is configured so that the volume of the pores having an average pore diameter of ± 50Å occupies at least 70% of the volume occupied by the pores having a diameter of 0 to 600Å of the carrier.

触媒活性成分としては周期律表VIa族ならびにVIII族金
属の少くとも各1種と、リンの3種類の成分が同時に夫
々前記した範囲に担持されていることが必要であり、特
にリンが含有されていないと脱窒素活性について飛躍的
な向上が認められず、この向上は3成分の相乗効果であ
ると考えられる。
As the catalytically active component, at least one each of Group VIa and Group VIII metals of the Periodic Table and three types of components of phosphorus must be simultaneously loaded in the above-mentioned ranges at the same time. If not, no dramatic improvement in denitrification activity was observed, and this improvement is considered to be a synergistic effect of the three components.

周期律表のVIa族金属として用いられるものはクロム、
モリブデン、タングステンであり、特に好ましいものは
モリブデンである。また鉄族金属として用いられるもの
は鉄、コバルト、ニツケルであり、特に好ましいものは
ニツケル及び/又はコバルトであつて、これ等を組合せ
て用いるのが最も好ましい。活性成分の含有量はVIa族
金属については金属量として触媒全重量に対して4〜1
4重量%、鉄族金属については金属量として1.5〜5
重量%、これら金属成分の下限は水素化脱硫活性の所望
値の発生に必要な最低限の量であり、上限はこれ以上添
加量を増加しても、最早水素化脱硫活性の増加は見込ま
れない値である。またリンの担持量の下限0.5重量%
以下では脱窒素活性が所望値以上とならず、3重量%以
上とすると水素化脱硫活性を阻害し始める現象が現われ
る。
Chromium is used as the VIa group metal of the periodic table,
Molybdenum and tungsten are preferable, and molybdenum is particularly preferable. Further, iron, cobalt and nickel are used as the iron group metal, nickel and / or cobalt are particularly preferable, and it is most preferable to use these in combination. The content of the active ingredient is 4 to 1 based on the total weight of the catalyst as a metal amount for the VIa group metal.
4% by weight, for iron group metals, the amount of metal is 1.5 to 5
% By weight, the lower limit of these metal components is the minimum amount necessary to generate the desired value of hydrodesulfurization activity, and the upper limit is expected to increase the hydrodesulfurization activity even if the addition amount is further increased. There is no value. Also, the lower limit of the supported amount of phosphorus is 0.5% by weight.
Below, the denitrification activity does not exceed the desired value, and when it is 3% by weight or more, a phenomenon appears to start to inhibit the hydrodesulfurization activity.

アルミナを基体とする触媒担体の細孔直径や細孔分布に
ついては脱硫及び脱窒素に有効な細孔径を有する細孔を
できるだけ多くし、他の有害な反応を抑制するために
は、その細孔分布が狭く、且つ平均細孔直径が特定な値
であることが必要で、その細孔構造の条件は窒素ガス吸
着法の吸着側で測定され、BJH法によつて計算される細
孔分布で平均細孔直径が100〜150Åで、且つ平均細孔直
径±50Åの細孔が占める容積が直径0〜600Åの細
孔が占める容積の少くとも70%であるときに脱硫、脱
窒素の効果が最もすぐれていることを見出したものであ
る。
Regarding the pore diameter and pore distribution of the catalyst carrier based on alumina, in order to suppress as many other pores as possible with effective pore diameters for desulfurization and denitrification and to suppress other harmful reactions, It is necessary that the distribution is narrow and the average pore diameter is a specific value, and the conditions of the pore structure are measured on the adsorption side of the nitrogen gas adsorption method and calculated by the BJH method. When the average pore diameter is 100 to 150Å and the volume occupied by the pores having an average pore diameter of ± 50Å is at least 70% of the volume occupied by the pores having a diameter of 0 to 600Å, the effect of desulfurization and denitrification is obtained. We have found that it is the best.

ここで云う平均細孔直径とはBJH法で計算された結果を
もとに、細孔直径と細孔容積の関係を累積細孔分布曲線
に表わした時のメジアン径で示したものである。
The average pore diameter referred to herein is the median diameter when the relationship between the pore diameter and the pore volume is represented in the cumulative pore distribution curve based on the result calculated by the BJH method.

平均細孔直径が100Åより小さいときは反応物質の触
媒粒子内での拡散抵抗が大きく水素化脱硫、脱窒素の両
活性が低下し、他方平均細孔直径が150Åより大きい
ときは重質炭化水素油中に含まれるアスフアルテン等が
細孔内に侵入し、その分解による炭素質の析出が水素化
脱硫、脱窒素の両活性を低下させることになる。また平
均細孔直径±50Åの細孔の占める容積が直径0〜60
0Åの細孔の占める面積の70%以下のとき、すなわち
細孔分布が特定の範囲に集中していないときには、たと
え平均細孔直径が100〜150Åの範囲に入つていた
としても、重質炭化水素油の水素化脱硫・脱窒素反応に
有効な直径の細孔が減少するので両活性が低下する。
When the average pore diameter is less than 100Å, the diffusion resistance of the reactants in the catalyst particles is large and both hydrodesulfurization and denitrification activities decrease, while when the average pore diameter is greater than 150Å, heavy hydrocarbons Asphaltene and the like contained in oil penetrate into the pores, and the decomposition of carbonaceous matter by the decomposition thereof lowers both hydrodesulfurization and denitrification activities. Also, the volume occupied by pores with an average pore diameter of ± 50Å is 0-60 diameters.
When the area occupied by 0 Å pores is 70% or less, that is, when the pore distribution is not concentrated in a specific range, even if the average pore diameter falls within the range of 100 to 150 Å, Both activities decrease because the number of pores having a diameter effective for the hydrodesulfurization / denitrification reaction of hydrocarbon oil decreases.

前記したような細孔分布が狭く平均細孔径が所望値のア
ルミナを基体とする担体は例えば特公昭57-44605号公
報に記載された方法あるいは特開昭58-190823号公報に
記載された方法によつて製造することができる。前者の
方法は、pH6〜10に調節し、且つ温度を50℃以上に
保持した水酸化アルミニウム含有スラリーに硝酸アルミ
ニウムなどのアルミニウム塩とアルミン酸ナトリウムの
ような中和剤とを交互に添加してスラリーのpHを5以
下、あるいは9以上になるようにpH値を規定された巾の
値より以上に変動させる操作を複数回行ない、最終的に
はpHを6〜10の範囲で止めるもので、この場合pHを変
動させる回数が増加する程平均細孔直径は逐次増加し、
且つ原料として前記した硝酸アルミニウムとアルミン酸
ナトリウムを組合せて使用すると、細孔分布は平均細孔
直径±50Åの範囲に入るものが直径0〜600Åの細孔容
積の70%以上となつてくる。
The carrier based on alumina having a narrow pore distribution and a desired average pore diameter as described above is, for example, the method described in JP-B-57-44605 or the method described in JP-A-58-190823. It can be manufactured by. The former method is to adjust the pH to 6 to 10 and alternately add an aluminum salt such as aluminum nitrate and a neutralizing agent such as sodium aluminate to a slurry containing aluminum hydroxide which is maintained at a temperature of 50 ° C or higher. The operation of changing the pH value of the slurry to 5 or less, or 9 or more so as to be more than the specified width value is carried out plural times, and finally the pH is stopped within the range of 6 to 10, In this case, the average pore diameter increases sequentially as the number of pH changes increases,
In addition, when the above-mentioned aluminum nitrate and sodium aluminate are used in combination as the raw material, the pore distribution is such that the average pore diameter is within the range of ± 50Å and 70% or more of the pore volume of diameter 0 to 600Å.

一方後者の方法は、pH6〜11に調節し且つ50℃以上
の温度に保持した水酸化アルミニウムスラリーに、該ス
ラリー中の水酸化アルミニウムに対してアルミニウムモ
ル比で20〜500%/hrの速度で、pH6〜11に保持しな
がらアルミニウム塩およびpH制御剤を同時に添加してア
ルミナゲルを形成するものであり、この方法によつても
前者と細孔構造が同等のアルミナ担体を得ることができ
る。このようにして得られるアルミナゲルを過・洗浄
後、成型・仮焼してアルミナ担体を得る。
On the other hand, the latter method uses an aluminum hydroxide slurry adjusted to pH 6 to 11 and maintained at a temperature of 50 ° C. or higher at a rate of 20 to 500% / hr in terms of aluminum molar ratio to aluminum hydroxide in the slurry. While maintaining the pH at 6 to 11, an aluminum salt and a pH control agent are simultaneously added to form an alumina gel. This method also makes it possible to obtain an alumina carrier having the same pore structure as the former. The alumina gel thus obtained is overwashed, washed, and then molded and calcined to obtain an alumina carrier.

このようにして得られた所望の細孔構造を持つたアルミ
ナを基体とする担体に活性成分を担持させるには例えば
三酸化モリブデン及び炭酸ニツケル、炭酸コバルトの少
くとも一方を水に懸濁させたスラリーに正リン酸を添加
し、加熱溶解させた水溶液を用意して、この水溶液中に
アルミナ担体を浸漬して液を吸収させて所望量の活性成
分を担持可能とするように水溶液の濃度を調節するか、
あるいは前記水溶液量全量がアルミナ担体に丁度吸着可
能な量を用意し、この中には所望の活性金属を溶解させ
ておいて水溶液全量を吸着させ、次いで乾燥し、乾燥物
を例えば500〜700℃で2時間程度焼成することにより本
発明の触媒を得ることができる。
In order to support the active ingredient on the alumina-based carrier having the desired pore structure thus obtained, for example, molybdenum trioxide, nickel carbonate, or at least one of cobalt carbonate is suspended in water. Orthophosphoric acid was added to the slurry, an aqueous solution prepared by heating and dissolving was prepared, and the concentration of the aqueous solution was adjusted so that the alumina carrier was immersed in the aqueous solution to absorb the liquid and carry a desired amount of active ingredient. Adjust or
Alternatively, the amount of the aqueous solution is prepared so that it can be adsorbed on the alumina carrier, the desired active metal is dissolved therein to adsorb the aqueous solution, and then dried, and the dried product is, for example, 500 to 700 ° C. The catalyst of the present invention can be obtained by calcination for about 2 hours.

〔実施例〕〔Example〕

実施例 1 内容積30のステンレス製反応槽に水19を入れ7
0℃に加温し、その中にAl2O3濃度として5.4重量%
の硝酸アルミニウム水溶液640gを加えた。次いで、
その中にAl2O3濃度として9.2重量%のアルミン酸ソ
ーダ水溶液690gを加え5分間撹拌し、アルミナヒド
ロゲルを生成した。このときの液のpHは9.8であつ
た。次にこのアルミナヒドロゲルに前記硝酸アルミニウ
ム水溶液を800g加え5分間保持した。このときのpH
は3.2となつた。さらに前記アルミン酸ソーダ水溶液
を800g加え5分間保持した。このときのpHは9.2
となつた。この硝酸アルミニウム水溶液とアルミン酸ソ
ーダを交互に加える操作を4回、7回、10回、13回、
18回繰り返して、アルミナゲル(a)、(b)、(c)、(d)、
(e)を得た。各々のアルミナゲルは過・洗浄後加熱捏
和し、捏和物を1.0mmφ孔のダイスを有する押出成型機
により円柱状に成型した後、成型物を120℃で16時
間乾燥した。更に乾燥物を500℃、2時間仮焼し、ア
ルミナ担体A、B、C、D、Eをそれぞれ得た。これら
の担体の窒素ガス吸着法で測定した平均細孔直径はそれ
ぞれ92、128、144、151、170Åであり、いずれも平均
細孔直径±50Åの範囲の容積は直径0〜600Åの細孔
が占める容積の70%以上を占めていた。
Example 1 Water 19 was put into a stainless steel reaction tank having an inner volume of 7
It was heated to 0 ℃ and the Al 2 O 3 concentration in it was 5.4% by weight.
640 g of the aluminum nitrate aqueous solution of was added. Then
690 g of an aqueous solution of sodium aluminate having an Al 2 O 3 concentration of 9.2 wt% was added thereto, and the mixture was stirred for 5 minutes to form an alumina hydrogel. The pH of the liquid at this time was 9.8. Next, 800 g of the aluminum nitrate aqueous solution was added to this alumina hydrogel and held for 5 minutes. PH at this time
Was 3.2. Further, 800 g of the aqueous sodium aluminate solution was added and held for 5 minutes. The pH at this time is 9.2.
Tonatsuta. The operation of alternately adding the aqueous solution of aluminum nitrate and sodium aluminate is performed 4 times, 7 times, 10 times, 13 times,
Repeated 18 times, alumina gel (a), (b), (c), (d),
I got (e). Each of the alumina gels was over-washed and then heat-kneaded, and the kneaded product was molded into a cylindrical shape by an extruder having a die having 1.0 mmφ holes, and the molded product was dried at 120 ° C. for 16 hours. Further, the dried product was calcined at 500 ° C. for 2 hours to obtain alumina carriers A, B, C, D and E, respectively. The average pore diameters of these carriers measured by the nitrogen gas adsorption method are 92, 128, 144, 151 and 170Å, respectively, and the volume of the average pore diameter ± 50Å is 0 to 600Å in all cases. It occupied 70% or more of the occupied volume.

実施例 2 三酸化モリブデン27.9g、炭酸ニツケル9.3gを水
60gに懸濁し、正リン酸15.6gを添加して加熱下
で溶解し、担体の吸水量に見合う液量に水で液量調節し
た含浸液を、実施例1で得た本発明の範囲にほぼ含まれ
る平均細孔直径を持つアルミナ担体B、C、D各100
gに含浸させ、2時間放置し、120℃で16時間乾燥
した。更に、この乾燥物を500℃で2時間焼成し、触
媒F、G、Hを得た。
Example 2 27.9 g of molybdenum trioxide and 9.3 g of nickel carbonate were suspended in 60 g of water, and 15.6 g of orthophosphoric acid was added and dissolved under heating to obtain a liquid amount corresponding to the water absorption amount of the carrier. The adjusted impregnating liquid was added to 100 of alumina carriers B, C and D each having an average pore diameter substantially within the range of the present invention obtained in Example 1.
It was impregnated with g and left for 2 hours, and dried at 120 ° C. for 16 hours. Further, the dried product was calcined at 500 ° C. for 2 hours to obtain catalysts F, G and H.

比較例 1 実施例1で得た本発明の範囲からずれた平均細孔直径を
持つアルミナ担体A、E各100gに実施例2と同一の
方法で触媒成分モリブデン、ニツケル、リンを担持し、
触媒I、Jを得た。
Comparative Example 1 Catalyst components molybdenum, nickel, and phosphorus were loaded on 100 g of each of alumina carriers A and E having an average pore diameter deviated from the range of the present invention obtained in Example 1 by the same method as in Example 2,
Catalysts I and J were obtained.

比較例 2 窒素ガス吸着法で測定した細孔分布が、細孔分布の広さ
の点で本発明の範囲内にないアルミナ担体、すなわち平
均細孔直径は135Åではあるが細孔分布については13
5±50Åの範囲のものが0〜600Åの容積の32%のも
のに実施例2と同一の方法で触媒成分のモリブデン、ニ
ツケル、リンを担持し、触媒Kを得た。
Comparative Example 2 An alumina carrier whose pore distribution measured by the nitrogen gas adsorption method is not within the scope of the present invention in terms of the breadth of the pore distribution, that is, the average pore diameter is 135Å but the pore distribution is 13
A catalyst K was obtained by carrying molybdenum, nickel and phosphorus as catalyst components in the same manner as in Example 2 on the one having a volume in the range of 5 ± 50Å to 32% of the volume of 0 to 600Å.

実施例 3 実施例1で得たアルミナ担体C100gに、三酸化モリ
ブデン9.0g、炭酸ニツケル3.7g、水60g、正
リン酸6.3gから実施例2と同様の方法で調整した水
溶液を含浸させ触媒Lを得た。更に、同一担体100g
に三酸化モリブデン16.1g、炭酸ニツケル6.8
g、水60g、正リン酸6.8gから実施例2と同様の
方法で調整した水溶液を含浸させ触媒Mを得た。
Example 3 100 g of the alumina carrier C obtained in Example 1 was impregnated with an aqueous solution prepared from 9.0 g of molybdenum trioxide, 3.7 g of nickel carbonate, 60 g of water, 6.3 g of orthophosphoric acid in the same manner as in Example 2. Then, a catalyst L was obtained. Furthermore, the same carrier 100g
Molybdenum trioxide 16.1g, nickel carbonate 6.8
g, 60 g of water, and 6.8 g of orthophosphoric acid were impregnated with an aqueous solution prepared in the same manner as in Example 2 to obtain a catalyst M.

比較例 3 実施例1で得たアルミナ担体C100gに、三酸化モリ
ブデン17.2g、炭酸ニツケル7.2g、水60g、
正リン酸19.5gから実施例2と同様の方法で調製し
た水溶液を含浸させ触媒Nを得た。更に同一担体100
gにパラモリブデン酸アンモニウム18.4g、硝酸ニ
ツケル・6水和物15.3g、濃アンモニア水25gか
ら調製した水溶液を含浸させ触媒Oを得た。この触媒N
及びOはいずれもリンの含有量において本発明の範囲外
のものである。
Comparative Example 3 On 100 g of the alumina carrier C obtained in Example 1, 17.2 g of molybdenum trioxide, 7.2 g of nickel carbonate, 60 g of water,
A catalyst N was obtained by impregnating 19.5 g of orthophosphoric acid with an aqueous solution prepared in the same manner as in Example 2. Furthermore, the same carrier 100
g was impregnated with an aqueous solution prepared from 18.4 g of ammonium paramolybdate, 15.3 g of nickel nitrate hexahydrate and 25 g of concentrated aqueous ammonia to obtain a catalyst O. This catalyst N
The contents of phosphorus and O are both outside the scope of the present invention.

実施例 4 内容積70のホーローびき反応槽に水30と12重量
%硫酸水溶液879gを入れ、70℃に加温した後撹拌し
ながらAl2O3濃度9.2重量%のアルミン酸ソーダ水溶
液730gを瞬時に加え、pH9.5の水酸化アルミニウム
スラリーを得た。該スラリーを種子としてこれに12重
量%硫酸水溶液とAl2O3濃度9.2重量%アルミン酸ソ
ーダ水溶液をそれぞれ毎時879gおよび730gの速度で同
時に且つ連続的に7時間添加した。この添加の間温度は
70℃に保持した。得られたアルミナヒドロゲルは過
・洗浄後、加熱捏和し、捏和物を実施例1と同様の方法
で成型・仮焼してアルミナ担体を得た。この担体100g
に、三酸化モリブデン16.1g、炭酸ニツケル6.8
gを水60gに懸濁し正リン酸6.8gを添加して加熱
下で溶解・調製した水溶液を含浸させ、触媒Qを得た。
Example 4 Water 30 and 879 g of a 12 wt% sulfuric acid aqueous solution were placed in an enamel birefringent reaction vessel having an internal volume of 70, heated to 70 ° C., and then stirred and 730 g of a sodium aluminate aqueous solution having an Al 2 O 3 concentration of 9.2 wt%. Was added instantaneously to obtain an aluminum hydroxide slurry having a pH of 9.5. The slurry was used as seeds, and a 12 wt% sulfuric acid aqueous solution and an Al 2 O 3 concentration 9.2 wt% sodium aluminate aqueous solution were added simultaneously and continuously for 7 hours at a rate of 879 g and 730 g per hour, respectively. The temperature was kept at 70 ° C. during this addition. The obtained alumina hydrogel was over-washed, kneaded by heating, and the kneaded product was molded and calcined in the same manner as in Example 1 to obtain an alumina carrier. 100g of this carrier
To, 16.1 g of molybdenum trioxide, 6.8 g of nickel carbonate
g was suspended in 60 g of water, 6.8 g of orthophosphoric acid was added, and an aqueous solution dissolved and prepared under heating was impregnated to obtain a catalyst Q.

実施例1〜4及び比較例1〜3にて調製した触媒のMo、
Ni及びPの金属又は単体に換算した含有量並びに窒素ガ
ス吸着法により測定された細孔構造に関する値を第1表
に示す。
Mo of the catalysts prepared in Examples 1 to 4 and Comparative Examples 1 to 3,
Table 1 shows the contents of Ni and P converted to metals or simple substances and the values related to the pore structure measured by the nitrogen gas adsorption method.

触媒の水素化脱硫・脱窒素反応活性測定法 第1表に示した各種の触媒について触媒充填量50mlの
固定床流通反応装置を用い、重質炭化水素油の水素化脱
硫、脱窒素反応性を調査した。
Method for measuring hydrodesulfurization / denitrification reaction activity of catalysts For various catalysts shown in Table 1, the hydrodesulfurization and denitrification reactivity of heavy hydrocarbon oil was measured using a fixed bed flow reactor with a catalyst loading of 50 ml. investigated.

反応条件は、 圧 力 140kg/cm2G LHSV 0.5hr-1 水素/油供給比 700Nl/ 反応温度 385℃ 原料油は、クエート常圧残油を一度通常の水素化脱硫触
媒で硫黄を約1.1重量%まで水素化脱硫、脱金属した
ものを使用した。その性状は以下の通り。
The reaction conditions are as follows: pressure 140 kg / cm 2 G LHSV 0.5 hr -1 hydrogen / oil supply ratio 700 Nl / reaction temperature 385 ° C. As feedstock, use Kuwait atmospheric residue once once with normal hydrodesulfurization catalyst to reduce sulfur to about 1 The material that had been hydrodesulfurized and demetalized to 1% by weight was used. The properties are as follows.

比重(15/4℃) 0.926 粘度(50℃) 120cst 硫黄分 1.07重量% 窒素分 1400ppm アスフアルテン 1.37重量% メタル分(ニツケル+パナジウム) 27ppm 反応開始から300時間後の生成油中の硫黄及び窒素含
有量を分析して脱硫率、脱窒素率を求め結果を第1表に
併記する。
Specific gravity (15/4 ℃) 0.926 Viscosity (50 ℃) 120cst Sulfur content 1.07% by weight Nitrogen content 1400ppm Asphaltene 1.37% by weight Metal content (Nickel + Panadium) 27ppm Sulfur and nitrogen contents in the produced oil after 300 hours from the reaction start Is analyzed to obtain the desulfurization rate and denitrification rate, and the results are also shown in Table 1.

上表の結果から見ると触媒F、G、Hは同一のMo、Ni、
Pの含有量であり、平均細孔直径及び細孔分布に関して
はいずれも本発明の範囲を満足するもので高い脱硫率、
脱窒素率を示すが、触媒I、Jは活性成分担持量、細孔
分布については本発明の範囲に入るが、平均細孔直径
は、100〜150Åの範囲外にあるため脱硫、脱窒素率共触
媒F、G、Hより低い値を示している。
From the results in the above table, the catalysts F, G and H have the same Mo, Ni,
P content, both satisfying the scope of the present invention with respect to the average pore diameter and pore distribution, high desulfurization rate,
Although the denitrification rate is shown, the catalysts I and J are within the scope of the present invention in terms of the amount of active ingredient supported and the pore distribution, but the average pore diameter is out of the range of 100 to 150Å, so the desulfurization and denitrification rates The values are lower than those of the cocatalysts F, G and H.

触媒Kは触媒Gと同一のMo、Ni、Pの含有量と平均細孔
直径を有しているが、平均細孔直径±50Åの範囲の細
孔容積が、0〜600Åの細孔容積の32%しかない細孔
分布の広い触媒で、この触媒Kの脱硫・脱窒素率は、細
孔分布の狭い触媒Gより低い値を示している。
Catalyst K has the same Mo, Ni, and P content and average pore diameter as catalyst G, but the pore volume in the range of average pore diameter ± 50 Å is 0 to 600 Å. With the catalyst having a wide pore distribution of only 32%, the desulfurization / denitrification rate of this catalyst K is lower than that of the catalyst G having a narrow pore distribution.

触媒L、M、N、Oは、平均細孔直径がほとんど同一だ
が、Mo、Ni、Pの含有量を変えたものである。触媒L、
Mは、触媒Gに比較しMo、Ni、Pの含有量が少いが本発
明の範囲内であり十分に高い脱硫、脱窒素率を有してい
る。触媒N、Oは触媒Mと同一のMo、Niの含有量である
がPは本発明の範囲外であり、Pの高すぎる触媒Nは高
い脱窒素率を示すが、脱硫率が低下し、Pを含有しない
触媒Oは高い脱硫率を示すが、脱窒素率が低下してい
る。
The catalysts L, M, N, and O have almost the same average pore diameter, but the contents of Mo, Ni, and P are changed. Catalyst L,
M has a smaller content of Mo, Ni and P than the catalyst G, but is within the range of the present invention and has a sufficiently high desulfurization and denitrification rate. The catalysts N and O have the same Mo and Ni contents as the catalyst M, but P is out of the range of the present invention. The catalyst N having too high P shows a high denitrification rate, but the desulfurization rate decreases, The catalyst O containing no P shows a high desulfurization rate, but the denitrification rate is lowered.

触媒Qは触媒Mとアルミナ担体の製法が異なるが、細孔
構造が殆ど同一で、同等の活性を示している。
The catalyst Q differs from the catalyst M in the manufacturing method of the alumina carrier, but has almost the same pore structure and exhibits the same activity.

〔効果〕〔effect〕

本発明の水素化脱硫・脱窒素用触媒を重質炭化水素油の
水素化脱硫工程、例えば石油系残渣油の直接脱硫装置で
使用すると、従来の水素化脱硫触媒を使用する時と全く
変らない操業条件で効率良く脱硫・脱窒素を行うことが
できる。従つてこの触媒を従来の脱硫触媒に変えて使用
すればコストアツプなしに窒素含有量の低い燃料油を製
造することができる。
When the catalyst for hydrodesulfurization and denitrification of the present invention is used in a hydrodesulfurization process of heavy hydrocarbon oil, for example, a direct desulfurization device for petroleum-based residual oil, there is no difference from when a conventional hydrodesulfurization catalyst is used. Desulfurization and denitrification can be performed efficiently under operating conditions. Therefore, if this catalyst is used in place of a conventional desulfurization catalyst, fuel oil having a low nitrogen content can be produced without cost up.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 孝雄 愛媛県新居浜市星越町13−14 (72)発明者 ▲高▼浜 孝光 愛媛県新居浜市王子町3−531 (72)発明者 藤田 勝久 愛媛県新居浜市庄内町3−10−55 (72)発明者 下分 将史 愛媛県新居浜市王子町3−613 (56)参考文献 特開 昭59−150537(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Suzuki 13-14, Hoshikoshi-cho, Niihama-shi, Ehime (72) Inventor ▲ Taka ▼ Takamitsu 3-531, Oji-cho, Niihama-shi, Ehime (72) Inventor Katsuhisa Fujita 3-10-55 Shonai-cho, Niihama-shi, Ehime (72) Inventor Masafumi Shimobata 3-613 Oji-cho, Niihama-shi, Ehime (56) References JP-A-59-150537 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルミナを基体とする触媒担体に触媒成分
として周期律表VIa族金属から選ばれた少なくとも1種
の金属を4〜14重量%と、鉄族金属から選ばれた少な
くとも1種の金属を1.5〜5重量%と、リン0.5〜
3重量%とを担持させ、窒素ガス吸着法で測定した細孔
分布が100〜150Åの平均細孔直径を有し、且つ平
均細孔直径±50Åの範囲の細孔容積が直径0〜600
Åの細孔が占める容積の70%以上であることを特徴と
する、原油を蒸溜してガスおよびガソリン、灯油ならび
に軽油相当溜分を採取した残りの残渣油を脱硫、脱金属
して1.1%以下の硫黄分含有量とした重質炭化水素油
の水素化脱硫脱窒素用触媒。
1. An alumina-based catalyst carrier containing 4 to 14% by weight of at least one metal selected from Group VIa metals of the periodic table as a catalyst component and at least one selected from iron group metals. 1.5 to 5% by weight of metal and 0.5 to 0.5 of phosphorus
3% by weight, and the pore distribution measured by the nitrogen gas adsorption method has an average pore diameter of 100 to 150Å, and the pore volume in the range of average pore diameter ± 50Å has a diameter of 0 to 600.
The residual oil obtained by distilling crude oil to collect gas and gasoline, kerosene, and light oil equivalent fraction is characterized by having a volume of 70% or more of the volume occupied by pores of Å. A catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oil having a sulfur content of 1% or less.
JP61038972A 1986-02-26 1986-02-26 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils Expired - Lifetime JPH0661464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038972A JPH0661464B2 (en) 1986-02-26 1986-02-26 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038972A JPH0661464B2 (en) 1986-02-26 1986-02-26 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils

Publications (2)

Publication Number Publication Date
JPS62197150A JPS62197150A (en) 1987-08-31
JPH0661464B2 true JPH0661464B2 (en) 1994-08-17

Family

ID=12540067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038972A Expired - Lifetime JPH0661464B2 (en) 1986-02-26 1986-02-26 Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils

Country Status (1)

Country Link
JP (1) JPH0661464B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399259A (en) * 1992-04-20 1995-03-21 Texaco Inc. Hydroconversion process employing catalyst with specified pore size distribution
EP0665280B1 (en) * 1993-12-30 2000-05-10 Cosmo Oil Company, Ltd Process for producing a hydrodesulfurization catalyst
FR2787041B1 (en) * 1998-12-10 2001-01-19 Inst Francais Du Petrole HYDROCARBON CHARGE HYDROTREATMENT CATALYST IN A FIXED BED REACTOR
US7943115B2 (en) 2001-07-27 2011-05-17 Chiyoda Corporation Porous 4 group metal oxide and method for preparation thereof
JP4800565B2 (en) * 2003-09-04 2011-10-26 出光興産株式会社 Method for producing presulfided hydrotreating catalyst and method for desulfurizing light oil
JP5206811B2 (en) 2011-01-31 2013-06-12 ブラザー工業株式会社 Image forming apparatus
CA2987590C (en) 2015-05-29 2021-01-05 Advanced Refining Technologies Llc High hdn selectivity hydrotreating catalyst
KR20180013844A (en) * 2015-05-29 2018-02-07 제이엑스티지 에네루기 가부시키가이샤 Process for producing hydrogenated oil and process for producing catalytic cracked oil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749664A (en) * 1971-04-01 1973-07-31 Union Oil Co Hydrogenative denitrogenation
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
JPS5423096A (en) * 1977-07-22 1979-02-21 Exxon Research Engineering Co Hydrotreating catalyst and method of using it
JPS55119445A (en) * 1979-03-07 1980-09-13 Shokubai Kasei Kogyo Kk Desulfurization catalyst of petroleum base heavy hydrocarbon oil
US4255282A (en) * 1979-05-11 1981-03-10 Union Oil Company Of California Hydrotreating catalyst and process for its preparation
JPS59150537A (en) * 1982-12-06 1984-08-28 アモコ コーポレーション Hydrotreating catalyst and hydrotreating of hydrocarbon

Also Published As

Publication number Publication date
JPS62197150A (en) 1987-08-31

Similar Documents

Publication Publication Date Title
JP2832033B2 (en) Method for catalytic hydroprocessing of hydrocarbon oils containing nitrogen or sulfur
EP0469675B1 (en) Hydrodesulphurization process
US6174432B1 (en) Hydrotreating catalyst for heavy hydrocarbon oil, process for producing the catalyst, and hydrotreating method using the same
US4455390A (en) Catalyst and method for impregnating at a pH less than one
JP4303820B2 (en) Hydrotreating catalyst and hydrotreating method
US4613425A (en) Process for hydrotreating heavy hydrocarbon oils
WO1993005878A1 (en) Resid hydroprocessing catalyst
US4048115A (en) Hydrodesulfurization catalyst and method of preparation
JPH0555187B2 (en)
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
US4880524A (en) Process for hydrotreating hydrocarbon feeds
JP3378402B2 (en) Desulfurization method of catalytic cracking gasoline
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JPH0631164A (en) Alumina-containing carrier and catalyst for hydrogen treating of hydrocarbon oil
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP3244695B2 (en) Method for producing hydrotreating catalyst
US4717698A (en) Hydrotreating catalysts prepared from hydrogels
JPH06127931A (en) Silica-alumina, its production and catalyst for hydrogenation
JPS58210993A (en) Method for treating heavy hydrocarbon oil
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
US4738945A (en) Hydrotreating catalysts prepared from hydrogels
JPH06210182A (en) Catalyst for hydrodesulfirization denitrification of hydrocarbon oil and its production
US3591487A (en) Hydrocracking process improvement by high temperature sulfiding and dry gas processing

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term