JP3538887B2 - Catalyst for hydrotreating hydrocarbon oil and method for producing the same - Google Patents

Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Info

Publication number
JP3538887B2
JP3538887B2 JP09467494A JP9467494A JP3538887B2 JP 3538887 B2 JP3538887 B2 JP 3538887B2 JP 09467494 A JP09467494 A JP 09467494A JP 9467494 A JP9467494 A JP 9467494A JP 3538887 B2 JP3538887 B2 JP 3538887B2
Authority
JP
Japan
Prior art keywords
catalyst
weight
pore volume
activity
alumina hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09467494A
Other languages
Japanese (ja)
Other versions
JPH0819741A (en
Inventor
敏男 山口
吉幸男 植草
英治 横塚
英治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP09467494A priority Critical patent/JP3538887B2/en
Publication of JPH0819741A publication Critical patent/JPH0819741A/en
Application granted granted Critical
Publication of JP3538887B2 publication Critical patent/JP3538887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素油の脱硫や脱
窒素のために用いる触媒、とくにイオウ化合物、窒素化
合物、とくに窒素化合物を多量に含有する炭化水素油を
水素加圧下で処理して硫化水素とアンモニアに転化し、
原料炭化水素油中のイオウ及び窒素の含有量を同時に効
率よく低減せしめるために用いられる炭化水素油の水素
化処理用触媒に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a catalyst used for desulfurization and denitrification of hydrocarbon oils, in particular, a hydrocarbon oil containing a large amount of a sulfur compound, a nitrogen compound, and particularly a nitrogen compound, is treated under hydrogen pressure. To convert to hydrogen sulfide and ammonia,
The present invention relates to a hydrocarbon oil hydrotreating catalyst used for simultaneously and efficiently reducing the contents of sulfur and nitrogen in a raw hydrocarbon oil.

【0002】[0002]

【従来の技術】従来、原油や石炭から得られる炭化水素
油は水素の存在下で脱硫、脱窒素、分解などを行ういわ
ゆる水素化処理工程では、例えばγ−アルミナ担体に水
素化活性金属として周期律表第6族のモリブデン、タン
グステン、及び第8族金属のコバルト、ニッケルを担持
した触媒が用いられる。これらの触媒は、通常、擬ベー
マイト構造を有するアルミナ水和物を成型後、400℃
以上の温度で焼成して得たγ−アルミナ担体にモリブデ
ン、タングステン、コバルト、ニッケルなどの活性金属
塩水溶液を含浸させ、100℃程度で乾燥し、さらに4
00〜600℃程度で焼成することにより得られてい
る。
2. Description of the Related Art Conventionally, in a so-called hydrotreating process in which hydrocarbon oil obtained from crude oil or coal is subjected to desulfurization, denitrification, decomposition, and the like in the presence of hydrogen, for example, a γ-alumina carrier is subjected to periodic treatment as a hydrogenation active metal. A catalyst supporting molybdenum and tungsten of Group 6 of the Ritsumei Table and cobalt and nickel of Group 8 metals is used. These catalysts are usually prepared by molding alumina hydrate having a pseudo-boehmite structure,
The γ-alumina support obtained by firing at the above temperature is impregnated with an aqueous solution of an active metal salt such as molybdenum, tungsten, cobalt, nickel, etc., dried at about 100 ° C.
It is obtained by firing at about 00 to 600 ° C.

【0003】このようにして得られる水素化処理用触媒
には、活性金属が酸化物形態で担持されている。このた
めそのままでは活性はなく水素化処理に使用できない。
したがって、使用に際しては水素化活性を発現させるた
めに、前記触媒を反応塔に充填し、硫化剤を添加した軽
油などと、水素とを反応塔に送入し、触媒の各活性金属
種を酸化物形態から硫化物形態に変えるいわゆる予備硫
化処理を施し、その後実際に処理する油と水素とを送入
して操業に入っている。
[0003] The hydrotreating catalyst thus obtained carries an active metal in the form of an oxide. Therefore, it has no activity as it is and cannot be used for hydrotreating.
Therefore, at the time of use, in order to express the hydrogenation activity, the catalyst is packed in a reaction tower, light oil to which a sulphidating agent is added, and hydrogen are fed into the reaction tower, and each active metal species of the catalyst is oxidized. A so-called pre-sulfurization treatment is performed to change from a material form to a sulfide form, and then the oil and hydrogen to be actually treated are fed in to start operation.

【0004】しかしながら、燃料などの排気ガスにより
環境破壊が叫ばれている昨今において、重油、軽油など
に含まれているイオウ分や窒素分の低減化が更に要求さ
れているが、前記従来の触媒では必ずしも十分この要求
に答えることができず、すでに多くの提案がなされてお
り、例えば、米国特許4530917号公報開示の方法
や、特開平4−210240号公報開示の方法や、特開
平4−156949号公報開示の方法がある。
[0004] However, in recent years, where environmental destruction is being called for due to exhaust gas such as fuel, reduction of sulfur and nitrogen contained in heavy oil, light oil and the like is further required. However, it is not always possible to answer this request sufficiently, and many proposals have already been made. For example, the method disclosed in U.S. Pat. There is a method disclosed in Japanese Patent Publication No.

【0005】例えば、米国特許4530917号公報開
示の方法は有機多価イオウ化合物を軽油、重油、アルデ
ヒド、ケトン、アルコール、有機酸などに溶解して得た
溶液を、従来法にしたがって水素化活性金属が担持され
焼成された触媒に含浸させ、乾燥して得た触媒を反応塔
に充填し、水素ガスを送入しつつ昇温することにより、
より低温で触媒の活性化を終了させるものであり、これ
により高活性化された水素化脱硫触媒を得ようとするも
のである。
For example, a method disclosed in US Pat. No. 4,530,917 discloses that a solution obtained by dissolving an organic polyvalent sulfur compound in light oil, heavy oil, aldehyde, ketone, alcohol, organic acid, or the like is treated with a hydrogenation active metal according to a conventional method. Is impregnated into the calcined catalyst, and the catalyst obtained by drying is filled in a reaction tower, and the temperature is increased while introducing hydrogen gas.
The activation of the catalyst is terminated at a lower temperature, and it is intended to obtain a highly activated hydrodesulfurization catalyst.

【0006】しかし、この方法で、有機多価イオウ化合
物を担持させる触媒の活性金属は酸化物状態であり、担
体と強く結合している。よって、有機多価イオウ化合物
溶液を触媒に含浸させることにより活性化終了時の温度
を従来より引下げることを可能としても、触媒に担持さ
れた水素化活性金属の分散性を向上させることはできな
い。このため、水素化脱硫活性は焼成触媒をそのまま用
いて予備硫化した時と殆ど変わらない。
However, in this method, the active metal of the catalyst supporting the organic polyvalent sulfur compound is in an oxide state, and is strongly bonded to the carrier. Therefore, even if it is possible to lower the temperature at the end of the activation by impregnating the catalyst with the organic polyvalent sulfur compound solution, the dispersibility of the hydrogenation active metal supported on the catalyst cannot be improved. . For this reason, the hydrodesulfurization activity is almost the same as when preliminarily sulfurized using the calcined catalyst as it is.

【0007】また、例えば、特開平4−210240号
公報は、γ−アルミナ担体に水素化活性金属を含浸さ
せ、乾燥した触媒を反応塔に充填し、硫化水素含有水素
ガスを反応塔に流通させつつ、400℃まで昇温し、所
定の時間予備硫化すれば水素化脱硫活性化の向上が可能
であることを開示している。しかし、該公報記載の内容
には水素化脱硫に関することのみが記載されており、水
素化脱窒素に付いての記載はなく、かつ、脱硫及び脱窒
素反応を促進させるための添加剤について示唆する何の
記載も無い。
For example, Japanese Patent Application Laid-Open No. Hei 4-210240 discloses that a γ-alumina carrier is impregnated with a hydrogenation active metal, a dried catalyst is filled in a reaction tower, and hydrogen gas containing hydrogen sulfide is passed through the reaction tower. On the other hand, it discloses that if the temperature is raised to 400 ° C. and presulfurization is performed for a predetermined time, hydrodesulfurization activation can be improved. However, the content of this publication only describes hydrodesulfurization, there is no description about hydrodenitrogenation, and suggests an additive for promoting desulfurization and denitrification. There is no description.

【0008】また、例えば、特開平4−156949号
公報には無機酸化物と無機水和物の一方又はその両方を
主成分とする担体物質に水素化活性金属とヒドロキシカ
ルボン酸とリン酸とを含有する水溶液を添加し、混練り
し、成型した後200℃以下の温度で乾燥することを特
徴とする水素化処理触媒の製造方法が開示されている。
しかし、該公報には脱硫性能についてのみ言及してお
り、脱窒素性能に関する具体的な記載も見当たらない。
さらに、触媒の細孔特性についてもなんら記載されてい
ない。
[0008] For example, Japanese Patent Application Laid-Open No. 4-156949 discloses that a carrier material mainly containing one or both of an inorganic oxide and an inorganic hydrate contains a hydrogenation active metal, a hydroxycarboxylic acid and phosphoric acid. A method for producing a hydrotreating catalyst is disclosed in which an aqueous solution is added, kneaded, molded, and dried at a temperature of 200 ° C. or lower.
However, this publication only mentions desulfurization performance, and does not find any specific description regarding denitrification performance.
Furthermore, there is no description about the pore characteristics of the catalyst.

【0009】[0009]

【発明が解決しようとする課題】本発明は、炭化水素油
の水素化脱硫並びに脱窒素の両活性を十分に具備する触
媒を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a catalyst having a sufficient hydrodesulfurization and denitrification activity of a hydrocarbon oil.

【0010】[0010]

【課題を解決するための手段】本発明者らは前記課題を
解決し、前記目的を達成するために研究を重ねた結果、
特定担体に所定量の水素化活性金属とリン、さらに、特
定の添加剤を所定量担持させ、特定の細孔構造を有する
触媒とすれば目的を達成することができることを見出し
て本発明に至ったものである。すなわち、本発明の第1
の発明によれば、周期律表第6族金属のモリブデン、第
8族金属のニッケル及び/又はコバルト、ジエチレング
リコール及び/又はトリエチレングリコールから選ばれ
る多価アルコール、リン、及び擬ベーマイト構造を有す
るアルミナ水和物を含有する炭化水素油の水素化処理用
触媒であって各成分の含有量は、アルミナ水和物を酸
化物換算した重量に対し、モリブデンが酸化物換算で1
5〜30重量%、ニッケル及び/又はコバルトが酸化物
換算で3〜8重量%、リンが酸化物換算で2〜8重量
%、多価アルコールが周期律表第6族金属と第8族金属
の合計モル量に対し0.1〜0.25倍量であり、かつ
500℃で焼成した後の物理性状は、水銀圧入法で測定
した細孔構造で、全細孔容積が0.6ml/g以下、平
均細孔直径が70〜100オングストロームであり、且
つ平均細孔直径±10オングストロームの範囲の細孔容
積が全細孔容積の60%以上であることを特徴とする炭
化水素油の水素化処理用触媒が提供される。また、本発
明の第2の発明によれば、擬ベーマイト構造を有するア
ルミナ水和物と、周期律表第6族金属のモリブデンおよ
び第8族金属のニッケル及び/又はコバルトの水溶液
と、リン酸と、ジエチレングリコール及び/又はトリエ
チレングリコールとを混練し、成型し、次いで150℃
以下の温度で乾燥することを特徴とする請求項1に記載
炭化水素油の水素化処理用触媒の製造方法が提供され
る。
Means for Solving the Problems The present inventors have solved the above-mentioned problems, and as a result of repeated studies to achieve the above-mentioned objects,
The present invention was found to achieve the object if a predetermined amount of a hydrogenation-active metal and phosphorus and a specific additive were supported on a specific support and a catalyst having a specific pore structure was formed. It is a thing. That is, the first of the present invention
According to the invention, molybdenum of Group 6 metal of the periodic table,
Group 8 metals nickel and / or cobalt, diethylene glycol
Selected from recall and / or triethylene glycol
Has a polyhydric alcohol, phosphorus, and pseudo-boehmite structure
For the hydrotreatment of hydrocarbon oils containing alumina hydrate
In the catalyst, the content of each component is such that molybdenum is 1 % in terms of oxide based on the weight of alumina hydrate in terms of oxide.
5 to 30% by weight, nickel and / or cobalt are 3 to 8% by weight in terms of oxides, phosphorus is 2 to 8% by weight in terms of oxides, and polyhydric alcohols are metals of Group 6 and Group 8 of the periodic table. 0.1 to 0.25 times the total molar amount of
Physical properties after firing at 500 ° C are measured by mercury intrusion method
With a total pore volume of 0.6 ml / g or less,
An average pore diameter of 70 to 100 angstroms, and
Pore volume in the range of one average pore diameter ± 10 angstroms
The present invention provides a catalyst for hydrotreating a hydrocarbon oil, the catalyst having a volume of 60% or more of the total pore volume . Further, according to the second aspect of the present invention, there are provided alumina hydrate having a pseudo-boehmite structure , molybdenum of Group 6 metal of the periodic table and
And an aqueous solution of nickel and / or cobalt of a Group 8 metal , phosphoric acid, and diethylene glycol and / or triethylene glycol are kneaded and molded, and then 150 ° C.
Claim 1, characterized in that drying at temperatures below
The present invention provides a method for producing a catalyst for hydrotreating a hydrocarbon oil.

【0011】本発明において使用するアルミナ水和物
は、擬ベーマイト構造を有するアルミナ水和物であっ
て、例えば、pHを7〜10に保持するように硫酸アル
ミニウム水溶液とアルミン酸ナトリウム水溶液とを同時
に添加、混合し、加水分解反応を生じさせ、生成するア
ルミナ水和物をろ過洗浄することにより製造することか
できる。
The alumina hydrate used in the present invention is an alumina hydrate having a pseudo-boehmite structure. For example, an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate are simultaneously prepared so that the pH is maintained at 7 to 10. It can be produced by adding, mixing, causing a hydrolysis reaction, and filtering and washing the resulting alumina hydrate.

【0012】水素化活性金属としての周期律表第6族金
属はモリブデンであって、例えば三酸化酸モリブデンを
使用し、前記アルミナ水和物に、アルミナ水和物を酸化
物換算した重量に対して、モリブデンを酸化物換算で1
5〜30重量%添加、混合する。また、周期律表第8族
金属はニッケル及び/またはコバルトであって、例え
ば、炭酸ニッケル、炭酸コバルトを使用して前記モリブ
デンと同様、それぞれを酸化物換算で2〜8重量%添
加、混合する。
The metal of Group 6 of the periodic table as the hydrogenation active metal is molybdenum. For example, molybdenum trioxide is used. And converting molybdenum to 1
Add 5-30% by weight and mix. The Group VIII metal of the periodic table is nickel and / or cobalt. For example, nickel carbonate or cobalt carbonate is used and mixed with 2 to 8% by weight of oxide as in the case of molybdenum. .

【0013】さらに、本発明は多価アルコールを添加、
混合するが、多価アルコールとしては脂肪族系アルコー
ルがよく、ジエチレングリコール、トリエチレングリコ
ールが最適である。添加量は、周期律表第6族金属と第
8族金属との合計モル量の0.1〜1倍量である。
Further, the present invention further comprises the addition of a polyhydric alcohol,
As a polyhydric alcohol, an aliphatic alcohol is preferred, and diethylene glycol and triethylene glycol are optimal. The addition amount is 0.1 to 1 times the total molar amount of the Group 6 metal and the Group 8 metal in the periodic table.

【0014】このような本発明の触媒は、前記アルミナ
水和物に、三酸化モリブデンと炭酸ニッケル及び/また
は炭酸コバルトを水に懸濁させたスラリーにリン酸を添
加し、加熱溶解させた後多価アルコールを添加した溶液
を加え、成型可能な水分まで混練し、十分可塑化した
後、円筒型、三つ葉型、四つ葉型、球状などの一般的な
所望の触媒形状に成型した後乾燥することで製造するこ
とができる。乾燥温度は、添加した多価アルコールと有
機イオウ化合物が揮発したり、分解したりすることがな
い温度を選定すればよく、150℃以下の温度とするこ
とが望ましい。
The catalyst of the present invention is prepared by adding phosphoric acid to a slurry of molybdenum trioxide and nickel carbonate and / or cobalt carbonate suspended in water to the above-mentioned alumina hydrate, and dissolving by heating. After adding the solution to which the polyhydric alcohol is added, kneading to formable moisture, sufficiently plasticizing, then forming into a general desired catalyst shape such as cylindrical, three-leaf, four-leaf or spherical, and then drying. Can be manufactured. As the drying temperature, a temperature at which the added polyhydric alcohol and organic sulfur compound do not volatilize or decompose may be selected, and a temperature of 150 ° C. or lower is desirable.

【0015】このようにして製造した触媒は、500℃
で焼成した後の物理性状が、水銀圧入法で測定した細孔
構造として全細孔容積が0.6ml/g以下であり、平
均細孔直径が70〜100オンク゛ストロームであり、かつ平均
細孔直径±10オンク゛ストロームの範囲の細孔容積が全細孔容
積の60%以上であり、このような物理性状を有するも
のとなる。
The catalyst produced in this way is at 500 ° C.
The physical properties after calcination are as follows: the total pore volume is 0.6 ml / g or less, the average pore diameter is 70 to 100 Å, and the average pore diameter is the pore structure measured by the mercury intrusion method. The pore volume in the range of ± 10 angstroms is 60% or more of the total pore volume, and thus has such physical properties.

【0016】[0016]

【作用】本発明の触媒において、水素化活性金属が周期
律表第6族金属のモリブデンであり、第8族金属のニッ
ケル及び/又はコバルトであることやリンを用いるこ
と、またこれらの添加量も公知であり、また活性の高い
触媒が得られることも公知である。加えて、水素化活性
金属種としてコバルトとモリブデンを用いた触媒の水素
化脱硫活性が高く、ニッケルとモリブデンを用いた触媒
の水素化脱窒素活性が高いのも公知である。
In the catalyst of the present invention, the hydrogenation active metal is molybdenum of the Group 6 metal of the periodic table, nickel and / or cobalt of the Group 8 metal, and phosphorus is used. It is also known that a highly active catalyst can be obtained. In addition, it is also known that a catalyst using cobalt and molybdenum as the hydrogenation-active metal species has a high hydrodesulfurization activity, and a catalyst using nickel and molybdenum has a high hydrodenitrogenation activity.

【0017】本発明の触媒は、擬ベーマイト構造を有す
るアルミナ水和物に、所定量の水素化活性金属とリンを
含む溶液にさらに添加剤として多価アルコールを所定量
添加した溶液を加えた後、混練し、成型し、次いで15
0℃以下の温度で乾燥させたものであり、また、そのよ
うに製造された触媒を500℃で焼成した後の物理性状
が前記のような特性を有するものであって、このときに
最終的に触媒として用いる触媒の水素化脱硫・脱窒素の
効果が最も優れていることを見出したものである。
The catalyst of the present invention is obtained by adding a solution obtained by adding a predetermined amount of a polyhydric alcohol as an additive to a solution containing a predetermined amount of a hydrogenation active metal and phosphorus to alumina hydrate having a pseudo-boehmite structure. , Kneading, molding, then 15
The catalyst was dried at a temperature of 0 ° C. or less, and the physical properties of the catalyst thus produced after calcining at 500 ° C. have the above-described properties. It has been found that the effect of hydrodesulfurization and denitrification of a catalyst used as a catalyst is most excellent.

【0018】本発明の触媒を500℃で焼成した後の物
理性状で平均細孔直径が70オンク゛ストロームより小さいとき
は炭化水素油中の窒素化合物はイオウ化合物より分子サ
イズが大きいために触媒粒子内での拡散抵抗が大きく、
このため脱窒素活性が低下し、他方、平均細孔直径が1
00オンク゛ストロームより大きいときは、反応物質が一度に多
量に細孔内に侵入して反応するために、炭素質の析出が
おこり水素化脱硫・脱窒素の両活性を低下させることに
なる。また、平均細孔直径±10オンク゛ストロームの範囲の細
孔容積が全細孔容積の60%以下のとき、すなわち、細
孔分布が特定の範囲に集中していないときには、たとえ
平均細孔直径が70〜100オンク゛ストロームの範囲に入って
いたとしても、炭化水素油の水素化脱硫・脱窒素反応に
有効な細孔が減少するので両活性が低下する。さらに全
細孔容積が0.6ml/g以下とするのは触媒の容積当
りでの活性を高めるためである。
When the catalyst of the present invention is calcined at 500 ° C. and has an average pore diameter of less than 70 angstroms, the nitrogen compound in the hydrocarbon oil has a larger molecular size than the sulfur compound. Has a large diffusion resistance,
For this reason, the denitrification activity decreases, while the average pore diameter is 1
If it is larger than 00 angstroms, a large amount of the reactant enters the pores at once and reacts, so that carbonaceous material is deposited, and both hydrodesulfurization and denitrification activities are reduced. When the pore volume in the range of the average pore diameter of ± 10 angstroms is 60% or less of the total pore volume, that is, when the pore distribution is not concentrated in a specific range, even if the average pore diameter is 70% or less. Even if it falls within the range of 100100 Å, the pores effective for hydrodesulfurization and denitrification of hydrocarbon oils are reduced, and both activities are reduced. Further, the reason why the total pore volume is 0.6 ml / g or less is to increase the activity per volume of the catalyst.

【0019】添加する多価アルコールの添加量を前記の
ように限定したのは、水素化脱硫・脱窒素活性に対し効
果が現れる必要量から求めたものであり、0.1倍量未
満では十分な効果が得られず、1倍量以上添加してもよ
いが活性向上に対してより大な効果が認められないから
である。
The reason why the amount of the polyhydric alcohol to be added is limited as described above is that it is determined from the necessary amount that exerts an effect on the hydrodesulfurization / denitrification activity. This is because no significant effect can be obtained, and even more than 1 time may be added, but no greater effect on activity improvement is recognized.

【0020】このようにして得た触媒はそのまま反応塔
に充填し、ジメチルスルファイド、ブタンチオール等の
有機イオウ化合物を添加した軽油と水素ガスとを送入し
つつ昇温、昇圧した後に実操業に供するものである。
The catalyst obtained in this manner is directly charged into a reaction tower, and heated and pressurized while feeding gas oil and hydrogen gas to which organic sulfur compounds such as dimethyl sulfide and butanethiol are added, and then the actual operation is started. It is to be offered to.

【0021】本発明の触媒がなぜ活性が大幅に向上する
のかについては確言し得ないが、前記公知のヒドロキシ
カルボン酸であれば活性金属との錯イオンの形成が考え
られるが、本発明で用いる多価アルコールの配位能力は
低く主因とは考えられない。むしろ、活性金属とリンと
多価アルコールを含む溶液では多価アルコールがアルミ
ナと吸着力の強いリンの吸着速度を弱め、アルミナ粒子
に活性金属とリンが均一に分散し吸着され、それぞれの
位置で固定化された活性金属の凝集が抑えられ、さら
に、触媒の物理性状を限定することによって触媒の容積
当たりでの活性が高くなったものと思われる。
Although it is not possible to be certain why the catalyst of the present invention greatly improves the activity, the known hydroxycarboxylic acid may form a complex ion with an active metal, but is not used in the present invention. The coordination ability of polyhydric alcohols is low and is not considered a major cause. Rather, in a solution containing an active metal, phosphorus and a polyhydric alcohol, the polyhydric alcohol weakens the adsorption rate of alumina and phosphorus, which has a strong adsorptive power, and the active metal and phosphorus are uniformly dispersed and adsorbed on the alumina particles. It is considered that the aggregation of the immobilized active metal was suppressed, and the activity per volume of the catalyst was increased by limiting the physical properties of the catalyst.

【0022】[0022]

【実施例】次に本発明の実施例について述べる。Next, an embodiment of the present invention will be described.

【0023】(実施例1) 1)アルミナ水和物の調製 内容積100lの攪拌機付きステンレス反応槽に水4
9.5lと濃度50%のグルコン酸溶液(和光純薬工業
株式会社製)208g(加水分解で生成するAl23
対して0.05重量%)を入れ、70℃まで加温保持
し、攪拌しつつ硫酸アルミニウム水溶液(株式会社島田
商店販売 濃度8.1%硫酸バンド)9540gとAl
23として18.4重量%含むアルミン酸ナトリウム水
溶液(住友化学工業株式会社製 NA−170)693
0gを混合してpH8.8のアルミナ水和物スラリーを
得、次いで該スラリーを30分間攪拌しながら熟成した
後濾過・洗浄してアルミナ水和物ケーキを得た。
Example 1 1) Preparation of Alumina Hydrate Water 4 was placed in a stainless steel reaction vessel having an internal volume of 100 l and equipped with a stirrer.
9.5 liters and 208 g of a gluconic acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 50% (0.05% by weight based on Al 2 O 3 generated by hydrolysis) are added, and the mixture is heated to 70 ° C. and maintained. While stirring, 9540 g of aluminum sulfate aqueous solution (Shimada Shoten Co., Ltd. sales 8.1% sulfuric acid band) and Al
Sodium aluminate aqueous solution containing 18.4% by weight as 2 O 3 (NA-170, manufactured by Sumitomo Chemical Co., Ltd.) 693
0 g was mixed to obtain an alumina hydrate slurry having a pH of 8.8. The slurry was aged while stirring for 30 minutes, and then filtered and washed to obtain an alumina hydrate cake.

【0024】2)触媒の調製 次に加温ジャケット付きニーダーに、1)で調製したア
ルミナ水和物ケーキ2000g(Al23として500
g)を入れ、これに三酸化モリブデン122g、炭酸ニ
ッケル49g、85%リン酸44gと水とを加熱溶解
し、これにジエチレングリコールを54g添加し混合し
て調製して得た溶液とを加え、70℃で加熱しながら混
練し、十分可塑化した後、直径1.7mmのダイスを取
り付けた押出成型機を使用して成型し、100℃で15
時間乾燥して触媒Aを得た。
2) Preparation of catalyst Next, 2000 g of the alumina hydrate cake prepared in 1) (500 as Al 2 O 3 ) was placed in a kneader equipped with a heating jacket.
g), 122 g of molybdenum trioxide, 49 g of nickel carbonate, 44 g of 85% phosphoric acid and water were dissolved therein by heating, and 54 g of diethylene glycol was added thereto, and a solution obtained by mixing was added. After kneading while heating at 100 ° C. and plasticizing sufficiently, the mixture was molded using an extruder equipped with a die having a diameter of 1.7 mm.
After drying for an hour, Catalyst A was obtained.

【0025】触媒Aの金属含有量は、MoO3として1
8重量%、NiOとして4重量%、P25として4重量
%であり、ジエチレングリコールの添加量はモリブデン
とニッケルの合計モル数の(以下同じ)0.25倍量で
あった。また、触媒Aの一部を500℃で2時間焼成し
た後の物理性状が水銀圧入法で測定した細孔構造で、全
細孔容積が0.47ml/gであり、平均細孔直径が7
8オンク゛ストロームであり、かつ、平均細孔直径±10オンク゛ストロ
ームの範囲の細孔容積が全細孔容積の64%であった。
The metal content of the catalyst A is 1 as MoO 3.
The content was 8% by weight, 4% by weight as NiO, and 4% by weight as P 2 O 5 , and the amount of diethylene glycol added was 0.25 times the total number of moles of molybdenum and nickel (the same applies hereinafter). The physical properties of a portion of the catalyst A after calcination at 500 ° C. for 2 hours were a pore structure measured by a mercury porosimetry, the total pore volume was 0.47 ml / g, and the average pore diameter was 7
The pore volume was 8 angstroms and the pore volume in the range of average pore diameter ± 10 angstroms was 64% of the total pore volume.

【0026】3)活性評価 触媒充填量15mlの固定床流通反応装置を用い、ジメ
チルジサルファイドを2.5重量%添加した軽油で水素
/油供給比200Nl/l、液空間速度2.0hr-1
圧力30Kg/cm2Gの条件下100℃から315℃
まで7時間かけて昇温し、保持して16時間予備硫化し
た後イオウ分1.15重量%,窒素分68重量ppm含
むクエート常圧軽油を用い反応条件を、圧力30Kg/
cm2G、液空間速度2.0hr-1、水素/油供給比2
00Nl/l、温度350℃として水素化脱硫・脱窒素
を行った。
3) Activity evaluation Using a fixed bed flow reactor with a catalyst loading of 15 ml, a light oil containing 2.5% by weight of dimethyl disulfide was added, and the hydrogen / oil supply ratio was 200 Nl / l and the liquid hourly space velocity was 2.0 hr -1. ,
100 ° C to 315 ° C under a pressure of 30 kg / cm 2 G
The temperature was raised over 7 hours, and the temperature was maintained and presulfurized for 16 hours, and then the reaction conditions were adjusted to 30 kg / pressure using a quat normal pressure gas oil containing 1.15% by weight of sulfur and 68% by weight of nitrogen.
cm 2 G, liquid hourly space velocity 2.0 hr −1 , hydrogen / oil supply ratio 2
Hydrodesulfurization and denitrification were performed at a temperature of 00Nl / l and a temperature of 350 ° C.

【0027】脱硫・脱窒素活性は後述する触媒Kの速度
定数を100として求めた相対活性値であり、脱硫活性
の速度次数は脱硫反応速度が原料油のイオウ濃度の1.
75乗に比例するものとして Km=LHSV・(1/n−1)・{(1/Sn-1 )−
(1/Son-1 )} の式を用いて求め、脱窒素活性の速度次数は、脱窒素反
応速度が原料油の窒素濃度の1.0乗に比例するものと
して Km=LHSV・ln(No/N) の式を用いて求めた。式中のnは速度次数、LHSVは
液空間速度、Sは処理油中のイオウ濃度(%),Soは
原料油中のイオウ濃度(%)、Nは処理油中の窒素濃度
(%)、Noは原料油中の窒素濃度(%)である。な
お、処理油のイオウ分の分析は株式会社堀場製作所製S
LFA−920型を用い、窒素分の分析は三菱化成株式
会社製TN−05型を用いて行った。
The desulfurization / denitrification activity is a relative activity value obtained by assuming a rate constant of a catalyst K described later as 100. The rate order of the desulfurization activity is as follows.
Km = LHSV · (1 / n−1) · {(1 / Sn−1) −
The rate of the denitrification activity is determined by using the following equation: Km = LHSV · ln (No) / N). In the formula, n is the velocity order, LHSV is the liquid hourly space velocity, S is the sulfur concentration (%) in the treated oil, So is the sulfur concentration (%) in the feed oil, N is the nitrogen concentration (%) in the treated oil, No is the nitrogen concentration (%) in the feedstock oil. The sulfur content of the treated oil was analyzed by Horiba Seisakusho S
The analysis of nitrogen content was performed using Model TN-05 manufactured by Mitsubishi Kasei Corporation using LFA-920.

【0028】触媒Aの脱硫活性は121%,脱窒素活性
は121%と後述する従来の水素化処理触媒の製法に従
って調製した比較例1の触媒Kと比べ優れた脱硫・脱窒
素活性を有していることが明らかである。
The catalyst A has a desulfurization activity of 121% and a denitrification activity of 121%, which is superior to the catalyst K of Comparative Example 1 prepared according to the conventional method for producing a hydrotreating catalyst described later. It is clear that.

【0029】(実施例2〜4) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Examples 2 to 4) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0030】2)触媒の調製 添加するジエチレングリコールの量を27g(実施例
2)、113g(実施例3)、226g(実施例4)と
変化させた以外は実施例1−2)と同様にして触媒B
(実施例2)、触媒C(実施例3)、触媒D(実施例
4)を得た。触媒B、C、Dの金属含有量はいずれも、
MoO3として18重量%,NiOとして4重量%、P2
5として4重量%であり、ジエチレングリコールの添
加量は、触媒Bは0.125倍量、触媒Cは0.50倍
量、触媒Dは1.0倍量であった。また、実施例1と同
様にして求めた物理性状は、全細孔容積はそれぞれ0.
44ml/g(触媒B)、0.48ml/g(触媒
C)、0.51ml/g(触媒D)であり、平均細孔直
径(単位、オンク゛ストローム)がそれぞれ75(触媒B)、8
3(触媒C)、89(触媒D)であり、且つ、平均細孔
直径±10オンク゛ストロームの範囲の細孔容積が全細孔容積の
67%、62%、60%であった。
2) Preparation of catalyst The procedure of Example 1-2) was repeated except that the amount of diethylene glycol to be added was changed to 27 g (Example 2), 113 g (Example 3), and 226 g (Example 4). Catalyst B
(Example 2), Catalyst C (Example 3) and Catalyst D (Example 4) were obtained. The metal content of each of the catalysts B, C, and D was
18% by weight as MoO 3 , 4% by weight as NiO, P 2
O 5 was 4% by weight, and the amount of diethylene glycol added was 0.125 times for catalyst B, 0.50 times for catalyst C, and 1.0 times for catalyst D. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.1% each.
44 ml / g (catalyst B), 0.48 ml / g (catalyst C), and 0.51 ml / g (catalyst D), and the average pore diameter (unit: Å) was 75 (catalyst B), 8
3 (catalyst C) and 89 (catalyst D), and the pore volumes in the range of average pore diameter ± 10 angstroms were 67%, 62% and 60% of the total pore volume.

【0031】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性はそれぞれ123(触媒B)、120(触
媒C)、119(触媒D)で脱窒素活性ははそれぞれ1
20(触媒B)、120(触媒C)、118(触媒D)
であった。
3) Activity evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activities were 123 (catalyst B), 120 (catalyst C), and 119 (catalyst D), respectively. Is 1 each
20 (catalyst B), 120 (catalyst C), 118 (catalyst D)
Met.

【0032】(実施例5) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Embodiment 5) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0033】2)触媒の調製 多価アルコールをトリエチレングリコール80gとした
以外は実施例1−2)と同様に処理して触媒Eを得た。
2) Preparation of Catalyst A catalyst E was obtained in the same manner as in Example 1-2) except that the polyhydric alcohol was changed to 80 g of triethylene glycol.

【0034】触媒Eの金属含有量は、MoO3として1
8重量%、NiOとして4重量%、P25として4重量
%であり、トリエチレングリコールの添加量は0.25
倍量であった。また、実施例1と同様にして求めた物理
性状は、全細孔容積が0.48ml/gであり、平均細
孔直径が81オンク゛ストロームであり、且つ平均細孔直径±1
0オンク゛ストロームの範囲の細孔容積が全細孔容積の62%で
あった。
The metal content of the catalyst E is 1 as MoO 3.
8% by weight, 4% by weight as NiO, 4% by weight as P 2 O 5 , and the addition amount of triethylene glycol was 0.25%.
Double the amount. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.48 ml / g, the average pore diameter was 81 Å, and the average pore diameter was ± 1.
The pore volume in the range of 0 Å was 62% of the total pore volume.

【0035】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性は121であり、脱窒素活性は120であ
り、触媒Aと同等の性能を有していることが明かであっ
た。
3) Activity evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activity was 121, the denitrification activity was 120, and the performance was equivalent to that of catalyst A. It was clear that there was.

【0036】(実施例6) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Embodiment 6) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0037】2)触媒の調製 三酸化モリブデン122g、炭酸コバルト45g、85
%リン酸44gと水とを加熱溶解し、これにジエチレン
グリコールを54g添加し混合して調製して得た溶液と
を加え、70℃で加熱しながら混練し、十分可塑化した
後、直径1.7mmのダイスを取り付けた押出成型機を
使用して成型し、100℃で15時間乾燥して触媒Fを
得た。
2) Preparation of catalyst 122 g of molybdenum trioxide, 45 g of cobalt carbonate, 85
44 g of phosphoric acid and water are heated and dissolved, and a solution obtained by adding and mixing 54 g of diethylene glycol is added thereto, and the mixture is kneaded while heating at 70 ° C., and sufficiently plasticized. It was molded using an extruder equipped with a 7 mm die and dried at 100 ° C. for 15 hours to obtain Catalyst F.

【0038】触媒Fの金属含有量はいずれも、MoO3
として18重量%,CoOとして4重量%、P25とし
て4重量%であり、ジエチレングリコールの添加量は、
0.25倍量であった。また、実施例1と同様にして求
めた物理性状は、全細孔容積は0.48ml/gであ
り、平均細孔直径は78オンク゛ストロームであり、且つ、平均
細孔直径±10オンク゛ストロームの範囲の細孔容積が全細孔容
積の65%であった。
The metal content of each of the catalysts F was MoO 3
18% by weight, 4% by weight as CoO, and 4% by weight as P 2 O 5 .
The amount was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.48 ml / g, the average pore diameter was 78 angstroms, and the average pore diameter was ± 10 angstroms. The pore volume was 65% of the total pore volume.

【0039】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性はそれぞれ128で脱窒素活性ははそれぞ
れ116であった。ニッケルの代わりにコバルトを活性
金属種として添加しても触媒Aより多少脱窒素活性は劣
るものの高い脱硫、脱窒素活性が得られることがわか
る。
3) Activity evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activity was 128 and the denitrification activity was 116, respectively. It can be seen that even when cobalt is added as an active metal species in place of nickel, a high desulfurization and denitrification activity can be obtained although the denitrification activity is somewhat lower than that of catalyst A.

【0040】(実施例7) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Embodiment 7) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0041】2)触媒の調製 三酸化モリブデン127g、炭酸コバルト82g、85
%リン酸46gと水とを加熱溶解し、これにジエチレン
グリコールを61g添加し混合して調製して得た溶液と
を加え、70℃で加熱しながら混練し、十分可塑化した
後、直径1.7mmのダイスを取り付けた押出成型機を
使用して成型し、100℃で15時間乾燥して触媒Gを
得た。
2) Preparation of catalyst 127 g of molybdenum trioxide, 82 g of cobalt carbonate, 85
46 g of phosphoric acid and water are dissolved by heating, and a solution obtained by adding and mixing 61 g of diethylene glycol is added thereto. The mixture is heated and kneaded at 70 ° C., and sufficiently plasticized. The mixture was molded using an extruder equipped with a 7 mm die, and dried at 100 ° C. for 15 hours to obtain a catalyst G.

【0042】触媒Gの金属含有量はいずれも、MoO3
として18重量%,CoOとして7重量%、P25とし
て4重量%であり、ジエチレングリコールの添加量は、
0.25倍量であった。また、実施例1と同様にして求
めた物理性状は、全細孔容積は0.47ml/gであ
り、平均細孔直径は77オンク゛ストロームであり、且つ、平均
細孔直径±10オンク゛ストロームの範囲の細孔容積が全細孔容
積の63%であった。
The metal content of each of the catalysts G was MoO 3
18% by weight, 7% by weight as CoO, and 4% by weight as P 2 O 5 .
The amount was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.47 ml / g, the average pore diameter was 77 angstroms, and the average pore diameter was ± 10 angstroms. The pore volume was 63% of the total pore volume.

【0043】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性はそれぞれ128で脱窒素活性ははそれぞ
れ117であった。ニッケルの代わりにコバルトを活性
金属種として添加しても触媒Aよりも多少脱窒素活性は
劣るものの高い脱硫、脱窒素活性が得られることがわか
る。
3) Activity evaluation An activity evaluation test was carried out in the same manner as in Example 1-3). As a result, the desulfurization activity was 128 and the denitrification activity was 117, respectively. It can be seen that even when cobalt is added as an active metal species in place of nickel, a high desulfurization and denitrification activity can be obtained although the denitrification activity is somewhat lower than that of the catalyst A.

【0044】(実施例8) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。Example 8 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0045】2)触媒の調製 三酸化モリブデン208g、炭酸コバルト51g、85
%リン酸50gと水とを加熱溶解し、これにジエチレン
グリコールを76g添加し混合して調製して得た溶液と
を加え、70℃で加熱しながら混練し、十分可塑化した
後、直径1.7mmのダイスを取り付けた押出成型機を
使用して成型し、100℃で15時間乾燥して触媒Hを
得た。
2) Preparation of catalyst 208 g of molybdenum trioxide, 51 g of cobalt carbonate, 85 g
% Phosphoric acid and water are dissolved by heating, and a solution obtained by adding and mixing 76 g of diethylene glycol is added thereto, and the mixture is kneaded while heating at 70 ° C. to sufficiently plasticize. The mixture was molded using an extruder equipped with a 7 mm die, and dried at 100 ° C. for 15 hours to obtain Catalyst H.

【0046】触媒Hの金属含有量はいずれも、MoO3
として27重量%,CoOとして4重量%、P25とし
て4重量%であり、ジエチレングリコールの添加量は、
0.25倍量であった。また、実施例1と同様にして求
めた物理性状は、全細孔容積は0.43ml/gであ
り、平均細孔直径は81オンク゛ストロームであり、且つ、平均
細孔直径±10オンク゛ストロームの範囲の細孔容積が全細孔容
積の63%であった。
The metal content of the catalyst H was MoO 3
27% by weight, 4% by weight as CoO, and 4% by weight as P 2 O 5 .
The amount was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.43 ml / g, the average pore diameter was 81 angstroms, and the average pore diameter was ± 10 angstroms. The pore volume was 63% of the total pore volume.

【0047】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性はそれぞれ133で脱窒素活性ははそれぞ
れ119であった。ニッケルの代わりにコバルトを活性
金属種として添加しても、触媒Aよりも多少脱窒素活性
は劣るものの、高い脱硫、脱窒素活性が得られることが
わかる。
3) Activity evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activity was 133 and the denitrification activity was 119, respectively. It can be seen that even when cobalt is added as an active metal species in place of nickel, although the denitrification activity is somewhat lower than that of catalyst A, high desulfurization and denitrification activities can be obtained.

【0048】(実施例9) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Embodiment 9) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0049】2)触媒の調製 三酸化モリブデン127g、炭酸ニッケル90g、85
%リン酸46gと水とを加熱溶解し、これにジエチレン
グリコールを61g添加し混合して調製して得た溶液と
を加え、70℃で加熱しながら混練し、十分可塑化した
後、直径1.7mmのダイスを取り付けた押出成型機を
使用して成型し、100℃で15時間乾燥して触媒Iを
得た。
2) Preparation of catalyst 127 g of molybdenum trioxide, 90 g of nickel carbonate, 85 g
46 g of phosphoric acid and water are dissolved by heating, and a solution obtained by adding and mixing 61 g of diethylene glycol is added thereto. The mixture is heated and kneaded at 70 ° C., and sufficiently plasticized. The mixture was molded using an extruder equipped with a 7 mm die, and dried at 100 ° C. for 15 hours to obtain Catalyst I.

【0050】触媒Iの金属含有量はいずれも、MoO3
として18重量%,NiOとして7重量%、P25とし
て4重量%であり、ジエチレングリコールの添加量は、
0.25倍量であった。また、実施例1と同様にして求
めた物理性状は、全細孔容積は0.46ml/gであ
り、平均細孔直径は76オンク゛ストロームであり、且つ、平均
細孔直径±10オンク゛ストロームの範囲の細孔容積が全細孔容
積の64%であった。
The metal content of each of the catalysts I was MoO 3
18% by weight, 7% by weight as NiO, and 4% by weight as P 2 O 5 .
The amount was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.46 ml / g, the average pore diameter was 76 angstroms, and the average pore diameter was ± 10 angstroms. The pore volume was 64% of the total pore volume.

【0051】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性はそれぞれ120で脱窒素活性ははそれぞ
れ122であった。
3) Activity evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activity was 120 and the denitrification activity was 122, respectively.

【0052】。[0052]

【0053】(実施例10) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Embodiment 10) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0054】2)触媒の調製 三酸化モリブデン208g、炭酸ニッケル56g、85
%リン酸50gと水とを加熱溶解し、これにジエチレン
グリコールを76g添加し混合して調製して得た溶液と
を加え、70℃で加熱しながら混練し、十分可塑化した
後、直径1.7mmのダイスを取り付けた押出成型機を
使用して成型し、100℃で15時間乾燥して触媒Jを
得た。
2) Preparation of catalyst 208 g of molybdenum trioxide, 56 g of nickel carbonate, 85
% Phosphoric acid and water are dissolved by heating, and a solution obtained by adding and mixing 76 g of diethylene glycol is added thereto, and the mixture is kneaded while heating at 70 ° C. to sufficiently plasticize. The mixture was molded using an extruder equipped with a 7 mm die, and dried at 100 ° C. for 15 hours to obtain Catalyst J.

【0055】触媒Jの金属含有量はいずれも、MoO3
として27重量%,NiOとして4重量%、P25とし
て4重量%であり、ジエチレングリコールの添加量は、
0.25倍量であった。また、実施例1と同様にして求
めた物理性状は、全細孔容積は0.43ml/gであ
り、平均細孔直径は81オンク゛ストロームであり、且つ、平均
細孔直径±10オンク゛ストロームの範囲の細孔容積が全細孔容
積の63%であった。
The metal content of each of the catalysts J was MoO 3
Is 27% by weight, NiO is 4% by weight, P 2 O 5 is 4% by weight.
The amount was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.43 ml / g, the average pore diameter was 81 angstroms, and the average pore diameter was ± 10 angstroms. The pore volume was 63% of the total pore volume.

【0056】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性はそれぞれ124で脱窒素活性ははそれぞ
れ125であった。
3) Activity evaluation An activity evaluation test was performed in the same manner as in Example 1-3). As a result, the desulfurization activity was 124 and the denitrification activity was 125, respectively.

【0057】(比較例1) 1)アルミナ水和物の調製 実施例1−1)と同様にして調製した。(Comparative Example 1) 1) Preparation of alumina hydrate It was prepared in the same manner as in Example 1-1).

【0058】2)触媒の調製 アルミナ水和物ケーキ3000g(Al2O3として75
0g)を加温ジャケット付きニーダーに入れ70℃で加
熱しながら練り込み、十分可塑化した後直径1.7mm
のダイスを取り付けた押出し成型機にて成型し、100
℃で15時間乾燥し、500℃で2時間焼成してγ−ア
ルミナ担体を得た。次に該担体500gに三酸化モリブ
デン122g,炭酸ニッケル49g,85%リン酸44
gと水とを加熱溶解して得た390mlの溶液を含浸
し、次いで100℃で15時間乾燥し、500℃で2時
間焼成して触媒Kを得た。
2) Preparation of catalyst 3000 g of alumina hydrate cake (75 as Al 2 O 3)
0 g) in a kneader equipped with a heating jacket, kneaded while heating at 70 ° C., and sufficiently plasticized, followed by a diameter of 1.7 mm.
Molded with an extruder equipped with a die of 100
C. for 15 hours and calcined at 500.degree. C. for 2 hours to obtain a .gamma.-alumina support. Next, 122 g of molybdenum trioxide, 49 g of nickel carbonate, and 44% of 85% phosphoric acid were added to 500 g of the carrier.
Then, 390 ml of a solution obtained by heating and dissolving g and water was impregnated, then dried at 100 ° C. for 15 hours, and calcined at 500 ° C. for 2 hours to obtain a catalyst K.

【0059】触媒Kの金属含有量は、MoO3として1
8重量%、NiOとして4重量%、P25として4重量
%であり、物理性状は水銀圧入法で測定した細孔構造
で、全細孔容積が0.52ml/gであり、平均細孔直
径が85オンク゛ストロームであり、且つ平均細孔直径±10オンク
゛ストロームの範囲の細孔容積が全細孔容積の65%であっ
た。
The metal content of the catalyst K is 1 as MoO 3.
8% by weight, 4% by weight as NiO, and 4% by weight as P 2 O 5. The physical properties are a pore structure measured by a mercury intrusion method, the total pore volume is 0.52 ml / g, and the average fineness is The pore diameter was 85 angstroms, and the pore volume in the range of average pore diameter ± 10 angstroms was 65% of the total pore volume.

【0060】3)活性評価 実施例1−3)と同様にして活性評価試験を行った。触
媒Kは従来の触媒の製造方法に従い得られたもので、こ
の触媒の脱硫活性、脱窒素活性を100とした。
3) Activity evaluation An activity evaluation test was performed in the same manner as in Example 1-3). Catalyst K was obtained according to a conventional catalyst production method, and the desulfurization activity and the denitrification activity of this catalyst were set to 100.

【0061】(比較例2) 1)アルミナ水和物の調製 濃度50%グルコン酸を添加せず、且つ硫酸アルミニウ
ム水溶液とアルミン酸ナトリウム水溶液とを長時間かけ
て混合したこと以外実施例1と同様にしてアルミナ水和
物を得た。
Comparative Example 2 1) Preparation of Alumina Hydrate Same as Example 1 except that gluconic acid at 50% concentration was not added, and an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate were mixed for a long time. To obtain an alumina hydrate.

【0062】2)触媒の調製 実施例1−2)と同様にして触媒Lを得た。触媒Lの金
属含有量は、MoO3として18重量%、NiOとして
4重量%、P25として4重量%であり、ジエチレング
リコールの添加量は0.25倍であった。また、実施例
1と同様にして求めた物理性状は、全細孔容積が0.5
4ml/gであり、平均細孔直径が82オンク゛ストロームであ
り、且つ平均細孔直径±10オンク゛ストロームの範囲の細孔容
積が全細孔容積の45%であった。
2) Preparation of catalyst A catalyst L was obtained in the same manner as in Example 1-2). The metal content of the catalyst L was 18% by weight as MoO 3 , 4% by weight as NiO, and 4% by weight as P 2 O 5 , and the addition amount of diethylene glycol was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.5
It was 4 ml / g, the average pore diameter was 82 angstroms, and the pore volume in the range of the average pore diameter ± 10 angstroms was 45% of the total pore volume.

【0063】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性は108であり、脱窒素活性は105と触
媒Aより低い活性を示した。これは500℃で2時間焼
成した後の物理性状で細孔分布が広いためと思われる。
3) Activity Evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activity was 108, the denitrification activity was 105, which was lower than that of catalyst A. This is probably because the pore distribution is wide due to the physical properties after firing at 500 ° C. for 2 hours.

【0064】(比較例3) 1)アルミナ水和物の調製 硫酸アルミニウム水溶液とアルミン酸ナトリウム水溶液
とを短時間で混合したこと以外実施例1に示す方法とほ
ぼ同様の方法でアルミナ水和物を得た。
Comparative Example 3 1) Preparation of Alumina Hydrate Alumina hydrate was prepared in substantially the same manner as in Example 1 except that an aqueous solution of aluminum sulfate and an aqueous solution of sodium aluminate were mixed in a short time. Obtained.

【0065】2)触媒の調製 実施例1−2)と同様にして触媒Mを得た。触媒Mの金
属含有量は、MoO3として18重量%、NiOとして
4重量%、P25として4重量%であり、ジエチレング
リコールの添加量は0.25倍であった。また、実施例
1と同様にして求めた物理性状は、全細孔容積が0.4
2ml/gであり、平均細孔直径が62オンク゛ストロームであ
り、且つ平均細孔直径±10オンク゛ストロームの範囲の細孔容
積が全細孔容積の66%であった。
2) Preparation of catalyst A catalyst M was obtained in the same manner as in Example 1-2). The metal content of the catalyst M was 18% by weight as MoO 3 , 4% by weight as NiO, and 4% by weight as P 2 O 5 , and the addition amount of diethylene glycol was 0.25 times. The physical properties determined in the same manner as in Example 1 were such that the total pore volume was 0.4
It was 2 ml / g, the average pore diameter was 62 Å, and the pore volume in the range of average pore diameter ± 10 Å was 66% of the total pore volume.

【0066】3)活性評価 実施例1−3)と同様にして活性評価試験を行った結
果、脱硫活性は130であり、脱窒素活性は103であ
った。この触媒は脱硫活性は高いが脱窒素活性が劣って
いた。これは500℃で2時間焼成した後の物理性状で
平均細孔直径が小さいためと思われる。
3) Activity evaluation As a result of an activity evaluation test performed in the same manner as in Example 1-3), the desulfurization activity was 130 and the denitrification activity was 103. This catalyst had a high desulfurization activity but a poor denitrification activity. This is considered to be because the average pore diameter is small due to physical properties after firing at 500 ° C. for 2 hours.

【0067】[0067]

【発明の効果】本発明の水素化脱硫・脱窒素触媒は従来
提案されている水素化脱硫・脱窒素触媒に比べ極めて効
率良く炭化水素油の水素化脱硫・脱窒素を行うことがで
きる。
The hydrodesulfurization / denitrification catalyst of the present invention can carry out hydrodesulfurization / denitrification of hydrocarbon oil extremely efficiently as compared with the conventionally proposed hydrodesulfurization / denitrification catalyst.

【0068】従って、本発明の触媒を従来の触媒に変え
て使用すればイオウ含有量,窒素含有量の低い燃料油を
製造することができる。
Therefore, when the catalyst of the present invention is used in place of the conventional catalyst, a fuel oil having a low sulfur content and a low nitrogen content can be produced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 英治 千葉県 市川市 曽谷 6−30−19− 304 (56)参考文献 特開 平4−260442(JP,A) 特開 平4−166232(JP,A) 特開 平2−14745(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 B01D 53/86 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Eiji Yamaguchi 6-30-19-304 Soya, Ichikawa-shi, Chiba (56) References JP-A-4-260442 (JP, A) JP-A-4-166232 (JP) , A) JP-A-2-14745 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 B01D 53/86

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 周期律表第6族金属のモリブデン、第8
族金属のニッケル及び/又はコバルト、ジエチレングリ
コール及び/又はトリエチレングリコールから選ばれる
多価アルコール、リン、及び擬ベーマイト構造を有する
アルミナ水和物を含有する炭化水素油の水素化処理用触
媒であって各成分の含有量は、 アルミナ水和物を酸化物換算した重
量に対し、モリブデンが酸化物換算で15〜30重量
%、ニッケル及び/又はコバルトが酸化物換算で3〜8
重量%、リンが酸化物換算で2〜8重量%、多価アルコ
ールが周期律表第6族金属と第8族金属の合計モル量に
対し0.1〜0.25倍量であり、かつ 500℃で焼成
した後の物理性状は、水銀圧入法で測定した細孔構造
で、全細孔容積が0.6ml/g以下、平均細孔直径が
70〜100オングストロームであり、且つ平均細孔直
径±10オングストロームの範囲の細孔容積が全細孔容
積の60%以上であることを特徴とする炭化水素油の水
素化処理用触媒。
1. A metal of group 6 of the periodic table, molybdenum,
Group metal nickel and / or cobalt, diethylene glycol
Selected from coal and / or triethylene glycol
Has polyhydric alcohol, phosphorus, and pseudo-boehmite structures
Catalyst for hydrotreating hydrocarbon oils containing alumina hydrate
In the medium, the content of each component is such that molybdenum is 15 to 30% by weight in terms of oxide, and nickel and / or cobalt is 3 to 8 in terms of oxide, based on the weight of alumina hydrate in terms of oxide.
% By weight, phosphorus is 2 to 8% by weight in terms of oxide, polyhydric alcohol is 0.1 to 0.25 times the total molar amount of the metals of Group 6 and Group 8 of the periodic table , and Firing at 500 ° C
Physical properties of the pores measured by the mercury intrusion method
And the total pore volume is 0.6 ml / g or less, and the average pore diameter is
70-100 angstroms and average pore diameter
Pore volume in the range of diameter ± 10 angstroms is the total pore volume
A catalyst for hydrotreating a hydrocarbon oil, wherein the catalyst has a volume of 60% or more .
【請求項2】 擬ベーマイト構造を有するアルミナ水和
物と、周期律表第6族金属のモリブデンおよび第8族金
属のニッケル及び/又はコバルトの水溶液と、リン酸
と、ジエチレングリコール及び/又はトリエチレングリ
コールとを混練し、成型し、次いで150℃以下の温度
で乾燥することを特徴とする請求項1に記載の炭化水素
油の水素化処理用触媒の製造方法。
2. An alumina hydrate having a pseudo-boehmite structure, and molybdenum and metal of group VIII metal of the periodic table.
The aqueous solution of nickel and / or cobalt of the genus , phosphoric acid, and diethylene glycol and / or triethylene glycol are kneaded, molded, and then dried at a temperature of 150 ° C. or less, according to claim 1 , characterized in that : A method for producing a catalyst for hydrotreating hydrocarbon oils.
JP09467494A 1993-05-07 1994-05-09 Catalyst for hydrotreating hydrocarbon oil and method for producing the same Expired - Lifetime JP3538887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09467494A JP3538887B2 (en) 1993-05-07 1994-05-09 Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP13003093 1993-05-07
JP5-130030 1994-05-06
JP6-94067 1994-05-06
JP9406794 1994-05-06
JP09467494A JP3538887B2 (en) 1993-05-07 1994-05-09 Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0819741A JPH0819741A (en) 1996-01-23
JP3538887B2 true JP3538887B2 (en) 2004-06-14

Family

ID=27307470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09467494A Expired - Lifetime JP3538887B2 (en) 1993-05-07 1994-05-09 Catalyst for hydrotreating hydrocarbon oil and method for producing the same

Country Status (1)

Country Link
JP (1) JP3538887B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819741B2 (en) * 1990-07-02 1996-02-28 積水化学工業株式会社 Building unit
JP4743739B2 (en) * 1999-07-05 2011-08-10 アルベマーレ ネザーランズ ビー.ブイ. Method for regeneration and rejuvenation of additive-containing catalyst
FR2805276B1 (en) * 2000-02-23 2004-10-22 Inst Francais Du Petrole PROCESS FOR CONVERTING HYDROCARBONS ON A CATALYST WITH CONTROLLED ACIDITY
US6508999B1 (en) 2000-11-21 2003-01-21 Shell Oil Company Aluminum trihydroxide phase

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879265A (en) * 1982-08-19 1989-11-07 Union Oil Company Of California Hydroprocessing catalyst and phosphorous and citric acid containing impregnating solution
JP3244694B2 (en) * 1990-10-29 2002-01-07 住友金属鉱山株式会社 Method for producing hydrotreating catalyst
JP2936753B2 (en) * 1991-02-12 1999-08-23 住友金属鉱山株式会社 Method for producing hydrotreating catalyst

Also Published As

Publication number Publication date
JPH0819741A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
US4080313A (en) Catalyst
JP3272384B2 (en) Catalyst composition, method for producing the same, and method for hydrodesulfurizing sulfur-containing hydrocarbons using the catalyst composition
US4786404A (en) Process for hydrotreating hydrocarbon feeds
JP3538887B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
US4880524A (en) Process for hydrotreating hydrocarbon feeds
US4717707A (en) Hydrotreating catalysts prepared from hydrogels
US4716141A (en) Hydrotreating catalysts prepared from hydrogels
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
US4820679A (en) Hydrotreating catalysts prepared from hydrogels
US4717704A (en) Hydrotreating catalysts prepared from hydrogels
US4786403A (en) Process for hydrotreating hydro carbon feeds
JP2817598B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
JP3106761B2 (en) Catalyst for hydrodesulfurization and denitrification of hydrocarbon oil and method for producing the same
JPH0661464B2 (en) Catalyst for hydrodesulfurization and denitrification of heavy hydrocarbon oils
JP3303533B2 (en) Catalyst for hydrotreating hydrocarbon oil and method for producing the same
US4717698A (en) Hydrotreating catalysts prepared from hydrogels
JP2817622B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
US4738945A (en) Hydrotreating catalysts prepared from hydrogels
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel
US4880526A (en) Hydrotreating catalysts prepared from hydrogels
JP2817626B2 (en) Catalyst for hydrodesulfurization and denitrification and production method thereof
US4853108A (en) Process for hydrotreating hydrocarbon feeds
US4832827A (en) Hydrotreating with catalysts prepared from hydrogels
US4820680A (en) Hydrotreating catalysts prepared from hydrogels

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

EXPY Cancellation because of completion of term