JPH0660883A - Porous electrode and manufacture thereof - Google Patents

Porous electrode and manufacture thereof

Info

Publication number
JPH0660883A
JPH0660883A JP4209125A JP20912592A JPH0660883A JP H0660883 A JPH0660883 A JP H0660883A JP 4209125 A JP4209125 A JP 4209125A JP 20912592 A JP20912592 A JP 20912592A JP H0660883 A JPH0660883 A JP H0660883A
Authority
JP
Japan
Prior art keywords
electrode
porous electrode
air
holes
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4209125A
Other languages
Japanese (ja)
Inventor
Seiji Kaminami
誠治 神波
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4209125A priority Critical patent/JPH0660883A/en
Publication of JPH0660883A publication Critical patent/JPH0660883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a porous electrode having high conductivity and gas permeability, and a manufacture method therefor. CONSTITUTION:An air side electrode 2 is formed, mainly composed of lanthanum manganite as an oxide conductor having resistivity equal to or less than 10OMEGAcm. A plurality of holes 2a are formed through the electrode 2 from the upper side to the reverse side thereof in a thicknesswise direction, using a photo-lithograph method. The holes 2a are used as air permeation passages. According to this construction, the performance of a gas sensor, a temperature sensor or the like is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスセンサ、温度セン
サ及び燃料電池等に用いられる多孔質電極及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous electrode used for gas sensors, temperature sensors, fuel cells and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術と課題】一般に多孔質電極は、集電性能の
他に、ガスを透過させる性能が要求される。従来、多孔
質電極を作製する場合は、カーボン等の可燃性材料粉末
を電極材料のセラミック原料に混合して焼成する方法が
採用されていた。この方法は、可燃性材料の粉末が、セ
ラミック原料の焼成中に燃焼して飛散することを利用し
て可燃性材料の粉末跡に気孔を形成するものである。
2. Description of the Related Art Generally, a porous electrode is required to have gas permeation performance in addition to current collection performance. Conventionally, in the case of producing a porous electrode, a method has been adopted in which flammable material powder such as carbon is mixed with a ceramic raw material of an electrode material and fired. This method utilizes the fact that the powder of the flammable material burns and scatters during firing of the ceramic raw material to form pores in the traces of the powder of the flammable material.

【0003】しかしながら、従来の方法は多孔質電極の
内部に閉気孔が発生するため、通気性が劣っていた。そ
こで、本発明の課題は、導電性及び通気性が優れた多孔
質電極及びその製造方法を提供することにある。
However, the conventional method is inferior in air permeability because closed pores are formed inside the porous electrode. Then, the subject of this invention is providing the porous electrode excellent in electroconductivity and air permeability, and its manufacturing method.

【0004】[0004]

【課題を解決するための手段と作用】以上の課題を解決
するため、本発明に係る多孔質電極は、酸化物を主成分
とする、抵抗率が10Ωcm以下のセラミック材料から
なり、かつ、電極の厚み方向に電極の表面から裏面まで
貫通する孔を複数個設けたことを特徴とする。また、こ
の多孔質電極を形成するには、酸化物を主成分とする抵
抗率が10Ωcm以下のセラミック材料からなる電極部
の表面にフォトレジスト膜を形成し、該電極部に形成さ
れる孔のパターンが描かれたマスクでレジスト膜を覆
い、露光処理を行った後に溶剤で処理してレジスト膜に
エッチング用の窓を開け、エッチング液を用いて窓の部
分の電極部をエッチングし電極部に孔を開ければよい。
In order to solve the above-mentioned problems, the porous electrode according to the present invention is made of a ceramic material containing oxide as a main component and having a resistivity of 10 Ωcm or less. Is provided with a plurality of holes penetrating from the front surface to the back surface of the electrode. Further, in order to form this porous electrode, a photoresist film is formed on the surface of an electrode portion made of a ceramic material containing oxide as a main component and having a resistivity of 10 Ωcm or less, and a hole formed in the electrode portion is formed. Cover the resist film with a mask with a pattern drawn on it, and after exposing it to light, treat it with a solvent to open a window for etching in the resist film, and then use an etching solution to etch the electrode part of the window part to the electrode part. Just make a hole.

【0005】以上の構成からなる多孔質電極において、
多孔質電極に設けられた貫通孔はガスの透過通路とな
る。一方、多孔質電極の導電性については、貫通孔の孔
径や個数を適当に設定することにより、貫通孔を設けな
い多孔質電極と殆んど変わらない導電性が確保される。
In the porous electrode having the above structure,
The through hole provided in the porous electrode serves as a gas passage. On the other hand, regarding the conductivity of the porous electrode, by setting the hole diameter and the number of the through holes appropriately, it is possible to secure the conductivity which is almost the same as that of the porous electrode having no through holes.

【0006】[0006]

【実施例】以下、本発明に係る多孔質電極の一実施例を
その製造方法と共に説明する。実施例として、固体電解
質型燃料電池の空気側電極に適用した場合について説明
する。図1は空気側電極2及び燃料側電極3を設けた固
体電解質1の構成図である。固体電解質1にはイットリ
ウム安定化ジルコニア、空気側電極2には酸化物導電体
であるランタンマンガナイト、燃料側電極3には白金が
用いられている。空気側電極2には、図2に示すよう
に、孔2aが設けられている。空気はこの孔2aを通っ
て固体電解質1に達することになる。
EXAMPLES An example of the porous electrode according to the present invention will be described below together with its manufacturing method. As an example, the case of application to the air side electrode of a solid oxide fuel cell will be described. FIG. 1 is a configuration diagram of a solid electrolyte 1 provided with an air side electrode 2 and a fuel side electrode 3. Yttrium-stabilized zirconia is used for the solid electrolyte 1, lanthanum manganite that is an oxide conductor is used for the air-side electrode 2, and platinum is used for the fuel-side electrode 3. As shown in FIG. 2, the air side electrode 2 is provided with a hole 2a. Air reaches the solid electrolyte 1 through the holes 2a.

【0007】固体電解質1の原料として、Y23を8モ
ル%添加したZrO2の粉末(純度が99%以上、平均
粒径が0.7μmの粉末)を準備した。この粉末100
gに対して、焼結助剤としてMnCO3を1g、さらに
溶剤(エタノール/トルエン=2/8:重量比)を10
0cc、ポリビニルブチラール系バインダを6g、可塑
剤(ジオクチルブタレート系)を2g、分散剤(ソルビ
タン脂肪酸エステル系)を1g添加してスラリー化し、
ドクターブレード法によって厚み50μmの固体電解質
グリーンシートを作製した。
As a raw material of the solid electrolyte 1, a ZrO 2 powder (purity of 99% or more and an average particle size of 0.7 μm) containing 8 mol% of Y 2 O 3 was prepared. 100 of this powder
With respect to g, 1 g of MnCO 3 as a sintering aid, and 10% of solvent (ethanol / toluene = 2/8: weight ratio)
0 cc, 6 g of polyvinyl butyral type binder, 2 g of plasticizer (dioctyl butyrate type) and 1 g of dispersant (sorbitan fatty acid ester type) were added to form a slurry,
A solid electrolyte green sheet having a thickness of 50 μm was produced by the doctor blade method.

【0008】空気側電極2の原料として、(La0.7
0.3)Mn1.13の粉末(純度が99%以上、平均粒
径が1.0μmの粉末)を準備した。この粉末100g
に対して、焼結助剤としてSiO2を1g、さらに溶剤
(エタノール/トルエン=2/8:重量比)を70c
c、ポリビニルブチラール系バインダを9g、可塑剤
(ジオクチルブタレート系)を2g、分散剤(ソルビタ
ン脂肪酸エステル系)を1g添加してスラリー化し、ド
クターブレード法によって厚み50μmの空気側電極グ
リーンシートを作製した。
As a raw material for the air side electrode 2, (La 0.7 S
A powder of r 0.3 ) Mn 1.1 O 3 (a powder having a purity of 99% or more and an average particle size of 1.0 μm) was prepared. 100g of this powder
On the other hand, 1 g of SiO 2 as a sintering aid and 70 c of a solvent (ethanol / toluene = 2/8: weight ratio) were used.
c, polyvinyl butyral-based binder 9 g, plasticizer (dioctyl butarate-based) 2 g, dispersant (sorbitan fatty acid ester-based) 1 g were added to form a slurry, and an air-side electrode green sheet having a thickness of 50 μm was prepared by a doctor blade method. did.

【0009】作製された固体電解質グリーンシートを8
枚積み重ね、さらにその上に空気側電極グリーンシート
を2枚積み重ねた後、温度70℃の条件下で圧力2トン
の静水圧成型を行い、圧着体とした。この圧着体を所定
の大きさに裁断した後、空気中で1300℃まで昇温
し、この温度下で2時間焼成した。こうして、一辺の長
さが50mm、厚さが0.35mmの短形状焼結体を得
た。
The prepared solid electrolyte green sheet is
After stacking one sheet and further stacking two air-side electrode green sheets thereon, hydrostatic molding with a pressure of 2 tons was carried out at a temperature of 70 ° C. to obtain a pressure-bonded body. After this pressure-bonded body was cut into a predetermined size, the temperature was raised to 1300 ° C. in the air, and firing was performed at this temperature for 2 hours. Thus, a short shaped sintered body having a side length of 50 mm and a thickness of 0.35 mm was obtained.

【0010】次に、焼結体の空気側電極2に貫通孔2a
を形成する方法について説明する。焼結体の表裏面にス
ピナーを用いてフォトリソグラフ用レジスト膜を塗布し
た。次に、図3に示されている一辺の長さが45mmの
矩形状フォトマスク4を配置し、空気側電極2の表面に
塗布されたレジスト膜を全面にわたって露光した。フォ
トマスク4には、一辺の長さが0.05mmの矩形状パ
ターン5を有する基本部分4aが縦横に配列されてい
る。この矩形状パターン5の部分のみが光を透過し、他
の部分は光を透過しない。そして、この光を透過した部
分のレジスト膜が現像の際に除去され、その部分に空気
側電極2の一部が露出することになる。そして、この露
出している空気側電極2の部分を、規定濃度が10の塩
酸をエッチング液として用いてエッチングし、孔2aを
形成した。その後、溶剤にて残っているレジスト膜を除
去した。
Next, a through hole 2a is formed in the air side electrode 2 of the sintered body.
A method of forming the will be described. A resist film for photolithography was applied to the front and back surfaces of the sintered body using a spinner. Next, a rectangular photomask 4 having a side length of 45 mm shown in FIG. 3 was arranged, and the resist film applied on the surface of the air-side electrode 2 was exposed over the entire surface. In the photomask 4, basic portions 4a having a rectangular pattern 5 having a side length of 0.05 mm are arranged vertically and horizontally. Only the portion of the rectangular pattern 5 transmits light, and the other portions do not transmit light. Then, the resist film in the portion that transmits the light is removed during development, and a part of the air-side electrode 2 is exposed in that portion. Then, the exposed portion of the air-side electrode 2 was etched using hydrochloric acid having a prescribed concentration of 10 as an etching solution to form a hole 2a. Then, the remaining resist film was removed with a solvent.

【0011】さらに、固体電解質1の他方の面に、白金
からなる多孔質電極を燃料側電極3として形成する。こ
うして得られた実施例品の発電能力及び抵抗率について
評価した。評価結果を表1に示す。比較のために、従来
の空気側電極を備えた比較例品の評価結果も合わせて示
す。この比較例品の空気側電極は、その原料として、
(La0.7Sr0 .3)Mn1.13の粉末(純度が99%以
上、平均粒径が1.0μmの粉末)が準備され、この粉
末100gに対して、焼結助剤としてSiO2を1g、
気孔形成剤として粒径20μmのアビセル(球状のセル
ロース系樹脂)を20g、さらに溶剤(エタノール/ト
ルエン=2/8:重量比)を80cc、ポリビニルブチ
ラール系バインダを10g、可塑剤(ジオクチルブタレ
ート系)を2g、分散剤(ソルビタン脂肪酸エステル
系)を1g添加してスラリー化し、ドクターブレード法
によって厚み50μmの空気側電極グリーンシートを作
製した。この空気極電極グリーンシートと前述の固体電
解質グリーンシート及び白金を用いて実施例品と同様の
方法で比較例品を作製した。
Further, a porous electrode made of platinum is formed as the fuel side electrode 3 on the other surface of the solid electrolyte 1. The power generation capacity and resistivity of the thus obtained example products were evaluated. The evaluation results are shown in Table 1. For comparison, the evaluation result of the comparative example product including the conventional air-side electrode is also shown. The air-side electrode of this comparative example product, as its raw material,
(La 0.7 Sr 0 .3) Mn 1.1 O 3 powder (purity 99%, average particle size powder of 1.0 .mu.m) is ready, Powder 100 g, SiO 2 as sintering aids 1g,
20 g of Avicel (spherical cellulose-based resin) having a particle size of 20 μm as a pore-forming agent, 80 cc of solvent (ethanol / toluene = 2/8: weight ratio), 10 g of polyvinyl butyral-based binder, plasticizer (dioctyl butarate-based) 2 g) and 1 g of a dispersant (sorbitan fatty acid ester type) were added to form a slurry, and an air side electrode green sheet having a thickness of 50 μm was prepared by a doctor blade method. Using this air electrode electrode green sheet, the above-mentioned solid electrolyte green sheet and platinum, a comparative example product was produced in the same manner as the example product.

【0012】[0012]

【表1】 [Table 1]

【0013】発電能力は以下に説明する測定回路を用い
て評価した。図4に示すように、電極2,3にそれぞれ
空気供給管7a、燃料ガス供給管7bを取り付けて燃料
電池を作製した。この燃料電池を測定回路19に接続
し、発電能力を測定した。すなわち、燃料電池を100
0℃の温度に保持しながら、空気と燃料である水素ガス
をそれぞれ電極2,3に供給し、固体電解質1を介して
電極反応を起こさせ、かつ、電流計11にて観察しなが
ら単位電極面積当たり0.3A/cm2の電流が流れる
状態下の燃料電池に発生する電圧値を電圧計10で測定
した。なお、8a,8bは白金線、9は可変抵抗器であ
る。この電圧値が大きいほど電極の導電性及びガス透過
性が優れ、かつ、電池としての性能も優れていることに
なる。表1には、実施例品と比較例品の抵抗率が略等し
いにもかかわらず、電圧に大きな違いが生じていること
が示されている。従って、両者のガス透過性には違いが
あり、実施例品は比較例品より優れていることがわか
る。
The power generation capacity was evaluated using the measuring circuit described below. As shown in FIG. 4, an air supply pipe 7a and a fuel gas supply pipe 7b were attached to the electrodes 2 and 3, respectively, to fabricate a fuel cell. This fuel cell was connected to the measurement circuit 19 and the power generation capacity was measured. That is, 100 fuel cells
While maintaining the temperature at 0 ° C., air and hydrogen gas, which are fuels, are supplied to the electrodes 2 and 3, respectively, to cause an electrode reaction through the solid electrolyte 1, and while observing with the ammeter 11, the unit electrode The voltage value generated in the fuel cell under the condition that a current of 0.3 A / cm 2 per area flows was measured by the voltmeter 10. In addition, 8a and 8b are platinum wires, and 9 is a variable resistor. The higher the voltage value, the better the conductivity and gas permeability of the electrode, and the better the battery performance. Table 1 shows that there is a large difference in voltage even though the resistivity of the example product and the resistivity of the comparative example product are substantially equal. Therefore, there is a difference in gas permeability between the two, and it is understood that the example product is superior to the comparative product.

【0014】なお、本発明に係る多孔質電極及びその製
造方法は前記実施例に限定するものではなく、その要旨
の範囲内で種々に変形することができる。多孔質電極に
設けられる貫通孔は、必ずしも前記実施例のように、離
散して配置する必要はなく、直線状に連続的に接近させ
て溝状に配置させてもよい。また、前記実施例では固体
電解質型燃料電池の空気側電極に適用した場合を説明し
たが、これ以外に、例えばガスセンサや湿度センサの多
孔質電極に適用してもよい。
The porous electrode and the method for producing the same according to the present invention are not limited to the above-mentioned embodiment, but can be variously modified within the scope of the gist thereof. The through holes provided in the porous electrode do not necessarily have to be arranged discretely as in the above-mentioned embodiment, and may be arranged linearly and continuously so as to be arranged in a groove shape. Further, in the above-mentioned embodiment, the case where the present invention is applied to the air side electrode of the solid oxide fuel cell has been described, but other than this, it may be applied to the porous electrode of, for example, a gas sensor or a humidity sensor.

【0015】[0015]

【発明の効果】以上の説明で明らかなように、本発明に
係る多孔質電極によれば、電極に複数の貫通孔を設けて
多孔質構造としたので、ガスはこの貫通孔を介してスム
ースに電極を透過できる。一方、電極の導電性について
は、抵抗率が10Ωcm以下のセラミック材料を電極材
料として用い、また、貫通孔の孔径や個数を適当に設定
することにより、貫通孔を設けない多孔質電極と殆ど変
わらない導電性が確保できる。従って、導電性及び通気
性が優れた多孔質電極を得ることができる。この結果、
ガスセンサ、温度センサ及び燃料電池等の性能を向上さ
せることが可能になる。
As is apparent from the above description, according to the porous electrode of the present invention, a plurality of through holes are provided in the electrode to form a porous structure, so that the gas smoothly passes through the through holes. Can pass through the electrode. On the other hand, the conductivity of the electrode is almost the same as that of the porous electrode having no through hole by using a ceramic material having a resistivity of 10 Ωcm or less as the electrode material and appropriately setting the hole diameter and the number of through holes. There is no conductivity. Therefore, a porous electrode having excellent conductivity and air permeability can be obtained. As a result,
It is possible to improve the performance of the gas sensor, the temperature sensor, the fuel cell and the like.

【0016】さらに、本発明に係る製造方法によれば、
導電性及び通気性が優れた前記多孔質電極を容易に得る
ことができる。
Further, according to the manufacturing method of the present invention,
The porous electrode having excellent conductivity and air permeability can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多孔質電極の一実施例を表面に設
けた固体電解質の斜視図。
FIG. 1 is a perspective view of a solid electrolyte provided on the surface of an embodiment of a porous electrode according to the present invention.

【図2】図1に示した多孔質電極を表面に設けた固体電
解質の一部拡大断面図。
FIG. 2 is a partially enlarged cross-sectional view of a solid electrolyte having a surface on which the porous electrode shown in FIG. 1 is provided.

【図3】図1に示した多孔質電極を形成する際に用いら
れるマスクの平面図。
FIG. 3 is a plan view of a mask used when forming the porous electrode shown in FIG.

【図4】図1に示した多孔質電極を備えた燃料電池の発
電能力を測定するための測定回路を示す電気回路図。
FIG. 4 is an electric circuit diagram showing a measuring circuit for measuring the power generation capacity of the fuel cell provided with the porous electrode shown in FIG.

【符号の説明】[Explanation of symbols]

2…空気側電極 2a…貫通孔 2 ... Air side electrode 2a ... Through hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 1/20 Z 7244−5G H01M 4/88 T ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H01B 1/20 Z 7244-5G H01M 4/88 T

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化物を主成分とする、抵抗率が10Ω
cm以下のセラミック材料からなり、かつ、電極の厚み
方向に電極の表面から裏面まで貫通する孔を複数個設け
たことを特徴とする多孔質電極。
1. A resistivity of 10 Ω, which is mainly composed of an oxide.
A porous electrode, which is made of a ceramic material having a size of 1 cm or less and has a plurality of holes penetrating from the front surface to the back surface of the electrode in the thickness direction of the electrode.
【請求項2】 酸化物を主成分とする抵抗率が10Ωc
m以下のセラミック材料からなる電極部の表面にフォト
レジスト膜を形成し、該電極部に形成される孔のパター
ンが描かれたマスクでレジスト膜を覆い、露光処理を行
った後に溶剤で処理してレジスト膜にエッチング用の窓
を開け、エッチング液を用いて窓の部分の電極部をエッ
チングし電極部に孔を開けることを特徴とする多孔質電
極の製造方法。
2. The oxide-based resistivity is 10 Ωc.
A photoresist film is formed on the surface of the electrode portion made of a ceramic material of m or less, and the resist film is covered with a mask in which a pattern of holes formed in the electrode portion is drawn. A method for manufacturing a porous electrode, characterized in that a window for etching is opened in the resist film, and an electrode portion of the window portion is etched by using an etching solution to form a hole in the electrode portion.
JP4209125A 1992-08-05 1992-08-05 Porous electrode and manufacture thereof Pending JPH0660883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4209125A JPH0660883A (en) 1992-08-05 1992-08-05 Porous electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4209125A JPH0660883A (en) 1992-08-05 1992-08-05 Porous electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0660883A true JPH0660883A (en) 1994-03-04

Family

ID=16567703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4209125A Pending JPH0660883A (en) 1992-08-05 1992-08-05 Porous electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0660883A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method
JP2006173091A (en) * 2004-12-16 2006-06-29 General Electric Co <Ge> High-performance fuel cell electrode and its manufacturing method
JP2006344486A (en) * 2005-06-08 2006-12-21 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2008004423A (en) * 2006-06-23 2008-01-10 Japan Fine Ceramics Center Solid oxide fuel cell, and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286680A (en) * 2001-03-27 2002-10-03 Ngk Spark Plug Co Ltd Lamination type gas sensor element and its manufacturing method
JP4730722B2 (en) * 2001-03-27 2011-07-20 日本特殊陶業株式会社 Method for manufacturing laminated gas sensor element and laminated gas sensor element
JP2006173091A (en) * 2004-12-16 2006-06-29 General Electric Co <Ge> High-performance fuel cell electrode and its manufacturing method
JP2006344486A (en) * 2005-06-08 2006-12-21 Japan Fine Ceramics Center Solid oxide fuel cell and its manufacturing method
JP2008004423A (en) * 2006-06-23 2008-01-10 Japan Fine Ceramics Center Solid oxide fuel cell, and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3351791B2 (en) Solid oxide fuel cell
US5190834A (en) Composite membrarnes and electrochemical cells containing them
US5342705A (en) Monolithic fuel cell having a multilayer interconnect
US7569304B2 (en) Fuel cells and related devices
US7670711B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
KR100437498B1 (en) Anode-supported tubular solid oxide fuel cell stack and fabrication method of it
KR920005401A (en) Thin tubular self-supporting electrodes for solid oxide electrolyte electrochemical cells
JP2006518919A (en) Porous electrode, solid oxide fuel cell, and manufacturing method thereof
JP4018378B2 (en) Solid oxide fuel cell and manufacturing method thereof
JPH02306547A (en) Fuel cell deuice and its manufacture
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JPH07254417A (en) Solid electrolyte fuel cell
JPH0660883A (en) Porous electrode and manufacture thereof
JP3347561B2 (en) Solid oxide fuel cell
JPH0656554A (en) Production of porous electrode
JP2622261B2 (en) Method for manufacturing solid electrolyte fuel cell
JP2005196981A (en) Intermediate body of fuel electrode supporting film type fuel cell, and manufacturing method of the same
JPH0562688A (en) Solid electrolyte type fuel cell
JP6317710B2 (en) Solid oxide electrochemical cell, method for producing solid oxide electrochemical cell, solid oxide fuel cell, and high-temperature steam electrolysis apparatus
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JP3151934B2 (en) Solid oxide fuel cell
JP3435608B2 (en) Method for manufacturing porous electrode and method for manufacturing fuel cell
JPH0656556A (en) Production of porous electrode
JP3257363B2 (en) Solid oxide fuel cell
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell