JP2622261B2 - Method for manufacturing solid electrolyte fuel cell - Google Patents

Method for manufacturing solid electrolyte fuel cell

Info

Publication number
JP2622261B2
JP2622261B2 JP62249948A JP24994887A JP2622261B2 JP 2622261 B2 JP2622261 B2 JP 2622261B2 JP 62249948 A JP62249948 A JP 62249948A JP 24994887 A JP24994887 A JP 24994887A JP 2622261 B2 JP2622261 B2 JP 2622261B2
Authority
JP
Japan
Prior art keywords
fuel cell
air electrode
layer
solid electrolyte
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62249948A
Other languages
Japanese (ja)
Other versions
JPH0193065A (en
Inventor
康弘 山内
正康 坂井
光男 神坂
義 玄後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62249948A priority Critical patent/JP2622261B2/en
Publication of JPH0193065A publication Critical patent/JPH0193065A/en
Application granted granted Critical
Publication of JP2622261B2 publication Critical patent/JP2622261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池、酸素センサなどに使用される固体
電解質燃料電池の製作方法に関する。
The present invention relates to a method for manufacturing a solid electrolyte fuel cell used for a fuel cell, an oxygen sensor, and the like.

〔従来の技術〕[Conventional technology]

従来の固体電解質燃料電池の構成を第3図、第4図に
よつて説明する。第3図はその断面図であり、第4図は
第3図のB−B矢視図である。
The configuration of a conventional solid oxide fuel cell will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a cross-sectional view, and FIG. 4 is a view taken along the line BB of FIG.

第3図、第4図において、1は空気極(一例として
は、LaMnO3のペロプスカイト型酸化物スラリーの焼成膜
で、厚さは数百μmである気体を通す多孔質膜があげら
れる)、2は電解質(一例としては、イツトリア安定化
ジルコニアYSZの蒸着膜で、電気化学蒸着法、すなわちE
VD法、で作られた50μm程度の気密膜)、3は燃料極
(一例としてはNiOとZrO2のサーメツトのスラリー焼成
膜で厚さ数十μmの多孔質膜)、4はインコネクタ(一
例としてはLaCrO3のEVD法による蒸着膜で厚さ数十μm
の気密膜)、5は基体管(一例としてはカルシア安定化
ジルコニアで作られた直径13mm、長さ400mm、厚さ1.6mm
の多孔質セラミツクチユーブ)である。
3 and 4, reference numeral 1 denotes an air electrode (as an example, a fired film of a perovskite-type oxide slurry of LaMnO 3 , which is a porous film through which a gas having a thickness of several hundred μm is passed) Reference numeral 2 denotes an electrolyte (for example, a deposited film of yttria-stabilized zirconia YSZ.
3 is a fuel electrode (as an example, a slurry film of cermet slurry of NiO and ZrO 2 with a thickness of several tens of μm) 4 is an in-connector (as an example) Is several tens of μm in thickness by evaporation of LaCrO 3 by the EVD method.
5 is a base tube (13mm in diameter, 400mm in length, 1.6mm in thickness made of calcia stabilized zirconia as an example)
Is a porous ceramic tube).

約1,000℃に保持された上記構成の固体電解質燃料電
池の管内外に、空気とH2,COの燃料を供給すると、燃料
極3でH2,COがNiの触媒作用によりイオン化して電子を
放つ。これにより燃料極3と空気極1との間に電位差が
生じる。今、燃料極3と空気極1をインコネクタ4を介
して外部回路で連ぐと、燃料極3にたまつた電子は外部
回路とインコネクタ4を通つて空気極1へ移動し、基体
管5を通つてきた空気中の酸素をイオン化する。イオン
化した酸素は酸素イオン導電性の電解質2を通つて燃料
極3へ移動し水素イオンと結合して水蒸気となる。
When air and H 2 , CO fuel are supplied inside and outside the solid electrolyte fuel cell tube maintained at about 1,000 ° C., H 2 , CO is ionized by the catalytic action of Ni at the fuel electrode 3 to convert electrons. Release. This causes a potential difference between the fuel electrode 3 and the air electrode 1. Now, when the fuel electrode 3 and the air electrode 1 are connected to each other by an external circuit via the in-connector 4, the electrons accumulated at the fuel electrode 3 move to the air electrode 1 through the external circuit and the in-connector 4, and the substrate tube The oxygen in the air passing through 5 is ionized. The ionized oxygen moves to the fuel electrode 3 through the oxygen ion conductive electrolyte 2 and combines with hydrogen ions to form water vapor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の技術では基体管を用いているので、製作可能な
基体管径に限界があり、あまり小さい径の燃料電池や酸
素センサーは製作できない。このため例えば容積当りの
固体電解質燃料電池の発電量は140KW/m3程度であり、大
容量化した場合のスペースが大きくなりすぎ、また基体
管が空気の拡散抵抗となるため電池出力が低下するとい
う問題点がある。
In the prior art, since the base tube is used, there is a limit in the base tube diameter that can be manufactured, and a fuel cell or an oxygen sensor having a too small diameter cannot be manufactured. For this reason, for example, the power generation amount of the solid electrolyte fuel cell per volume is about 140 KW / m 3 , the space becomes too large when the capacity is increased, and the cell output decreases because the base tube becomes a diffusion resistance of air. There is a problem.

〔発明の目的〕[Object of the invention]

本発明は上記技術水準に鑑み、従来技術の有する問題
点を解消した固体電解質燃料電池の製作方法を提供しよ
うとするものである。
The present invention has been made in view of the above-mentioned state of the art, and an object of the present invention is to provide a method of manufacturing a solid oxide fuel cell which has solved the problems of the prior art.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は電解質層を挟んで燃料極層と空気極層とが重
ね合わされた筒状の固体電解質燃料電池を製作する方法
であつて、上記空気極層か燃料極層かのいずれか一方の
層を構成する材料の粉末スラリーを成形して筒状物と
し、上記電解質層および他の極層を構成するそれぞれの
材料の粉末スラリーを未焼成の状態の上記筒状物表面に
順次塗布乾燥させた後、焼成することを特徴とする固体
電解質燃料電池の製作方法である。
The present invention relates to a method for manufacturing a cylindrical solid electrolyte fuel cell in which a fuel electrode layer and an air electrode layer are overlapped with an electrolyte layer interposed therebetween, and wherein either one of the air electrode layer and the fuel electrode layer is provided. The powder slurry of the material constituting the material was formed into a tubular material, and the powder slurry of each material constituting the electrolyte layer and the other electrode layer was sequentially applied to the surface of the unbaked tubular material and dried. Thereafter, firing is performed, followed by firing.

本発明における空気極層として使用される材料として
は、LaCaMnO3,LaCoO3,LaCrO3及びLaMnO3などのペロブス
カイト型酸化物が、電解質層となる材料としてはイツト
リア安定化ジルコニア(YSZ),CeCaなどが、燃料極層と
して使用される材料としてはNiO/カルシア安定化ジルコ
ニア(CSZ),NiO/イツトリア安定化ジルコニア(YSZ)
などがあげられる。またインコネクターが使用される
が、この材料としてはNiAl/Al2O3+NiCr/Al2O3,FeNiCo,
LaCrO3などがあげられる。
Materials used as the air electrode layer in the present invention include perovskite oxides such as LaCaMnO 3 , LaCoO 3 , LaCrO 3 and LaMnO 3, and materials used as the electrolyte layer include yttria-stabilized zirconia (YSZ) and CeCa However, the materials used for the fuel electrode layer are NiO / calcia stabilized zirconia (CSZ) and NiO / yttria stabilized zirconia (YSZ)
And so on. An in-connector is used, and the material is NiAl / Al 2 O 3 + NiCr / Al 2 O 3 , FeNiCo,
LaCrO 3 and the like.

空気極層、燃料極層は多孔質なものとする必要がある
ので、その材料の粒径は比較的大きい(例えば1〜100
μ程度)材料をスラリー化して用いられ、インコネクタ
ー、電解質層は緻密質とする必要があるので、その材料
の粒径は比較的小さい(例えば0.1〜1μ程度)材料を
スラリー化して用いられる。
Since the air electrode layer and the fuel electrode layer need to be porous, the particle size of the material is relatively large (for example, 1 to 100).
The material is used in the form of a slurry, and the interconnector and the electrolyte layer need to be dense. Therefore, the material having a relatively small particle size (for example, about 0.1 to 1 μ) is used in the form of a slurry.

一例として、空気極を筒状に成形し最内層にする場合
の、それぞれの層の一般的な材料の粒径、スラリー粘
度、スラリー濃度を下記に示す。
As an example, the particle diameter, slurry viscosity, and slurry concentration of general materials of each layer in the case where the air electrode is formed into a cylindrical shape to be the innermost layer are shown below.

空気極を筒状に成形し最内層とする場合、空気極とな
る材料の導電率が低い場合には膜厚を厚くしなければな
らぬが、膜厚を厚くすると酸素の拡散が不十分となるの
で両者の兼ね合いでその膜厚を決定すべきである。
When the air electrode is formed into a cylindrical shape and used as the innermost layer, the thickness must be increased if the material of the air electrode is low in conductivity, but if the thickness is increased, diffusion of oxygen is insufficient. Therefore, the film thickness should be determined in consideration of both.

また筒状に成形して最内層とするのが、空気極であつ
ても、また燃料極であつても、その強度の点から、その
膜厚は300μ以上にするのが好ましい。
Regardless of whether it is an air electrode or a fuel electrode formed into a cylindrical shape to form the innermost layer, it is preferable that the film thickness be 300 μm or more from the viewpoint of strength.

一般的に空気極は1000℃以上、燃料極は1300℃以上、
電解質及びインコネクターは1300℃以上で焼成される
が、本発明においては構成材料を一度で焼結するため
に、焼成温度は少なくとも1300℃以上にするべきであ
る。
Generally, the air electrode is over 1000 ℃, the fuel electrode is over 1300 ℃,
The electrolyte and the interconnector are fired at 1300 ° C. or higher, but in the present invention, the firing temperature should be at least 1300 ° C. in order to sinter the constituent materials at one time.

〔作用〕[Action]

本発明によれば基体管の使用を排除しているので小型
の固体電解質燃料電池が得られ、そのため例えば5mmの
直径の電池を作ることができ、その場合従来の直径15mm
の電池に比べて容積当りの発電量は9倍になり、また直
径3mmの電池を作れば、直径15mmの従来電池の発電量の2
5倍となる。また基体管がないため空気が空気極へ拡散
しやすく空気極の酸素分圧が増加して電池出力が増加す
る。
According to the present invention, the use of a base tube is eliminated, so that a small solid electrolyte fuel cell can be obtained, so that a cell having a diameter of, for example, 5 mm can be produced, in which case a conventional diameter of 15 mm is used.
The amount of power generation per volume is 9 times that of a conventional battery, and if a 3 mm diameter battery is made, the power generation of a 15 mm diameter conventional battery is
5 times. Further, since there is no base tube, air is easily diffused to the air electrode, and the oxygen partial pressure of the air electrode increases, so that the battery output increases.

〔実施例1〕 以下、本発明の一実施例を第1図及び第2図によつて
説明する。第1図はこの実施例によつて製作された固体
電解質燃料電池の断面図であり、第2図は第1図のA−
A矢視図である。この実施例においては、1は空気極、
2は電解質、3は燃料極、4はインコネクターである。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a sectional view of a solid oxide fuel cell manufactured according to this embodiment, and FIG.
FIG. In this embodiment, 1 is an air electrode,
2 is an electrolyte, 3 is a fuel electrode, and 4 is an in-connector.

先ず、LaMnO3粒子(1〜10μ)の70%濃度のスラリー
(粘度∞)をプレスまたは押出し成形機で厚さ500μの
円筒形多孔質管に成形し空気極1を形成する。
First, a slurry (viscosity の) of 70% concentration of LaMnO 3 particles (1 to 10 μ) is formed into a cylindrical porous tube having a thickness of 500 μ by a press or an extruder to form an air electrode 1.

次に、イツトリア安定化ジルコニア(YSZ)粒子(0.1
〜1μ)の50%濃度スラリー(粘度1000cp)を空気極1
上に塗布乾燥して厚さ150μの電解質層2を形成し、更
にその電解質層2の上に、NiO/YSZ(6:4)粒子(1〜10
μ)の60%濃度スラリー(粘度1000cp)を塗布乾燥し厚
さ100μの燃料極層3を形成させる。次いで最後にLaCrO
3粒子(0.1〜1μ)の50%濃度スラリーを、第1図に示
すように露出している空気極1上に塗布乾燥し厚さ100
μのインコネクター4を形成させる。
Next, the yttria stabilized zirconia (YSZ) particles (0.1
~ 1μ) 50% concentration slurry (viscosity 1000cp)
On the electrolyte layer 2, a 150 μm thick electrolyte layer 2 is formed by coating and drying, and NiO / YSZ (6: 4) particles (1 to 10
μ) of 60% concentration (viscosity: 1000 cp) is applied and dried to form a fuel electrode layer 3 having a thickness of 100 μ. Then finally LaCrO
A 50% concentration slurry of three particles (0.1 to 1 μm) is applied and dried on the exposed air electrode 1 as shown in FIG.
The μ in connector 4 is formed.

上記したように構成された未焼成の成形体を1300℃以
上で2〜4時間焼成することによつて空気極を最内層と
して有し基体管を省略した固体電解質燃料電池が得られ
る。
By firing the unsintered compact having the above-mentioned structure at 1300 ° C. or higher for 2 to 4 hours, a solid electrolyte fuel cell having an air electrode as the innermost layer and omitting the base tube is obtained.

〔実施例2〕 他の実施例を同様に第1図及び第2図によつて説明す
る。この場合、第1図、第2図における1は燃料極、2
は電解質、3は空気極、4はインコネクターである。
Embodiment 2 Another embodiment will be described with reference to FIGS. 1 and 2. FIG. In this case, 1 in FIG. 1 and FIG.
Is an electrolyte, 3 is an air electrode, and 4 is an in connector.

先ずNiO/YSZ(6:4)粒子(1〜10μ)の70%濃度スラ
リー(粘度∞)をプレスまたは押出し成形機で厚さ500
μの円筒形多孔質管に成形し燃料極1を成形する。
First, a 70% strength slurry (viscosity の) of NiO / YSZ (6: 4) particles (1 to 10μ) is pressed or extruded to a thickness of 500 mm.
The fuel electrode 1 is formed by molding into a cylindrical porous tube of μ.

次に、イツトリア安定化ジルコニア(YSZ)粒子(0.1
〜1μ)の50%濃度スラリー(粘度1000cp)を燃料極1
の上に塗布乾燥し厚さ150μの電解質層2を形成し、更
にその電解質層2の上に、LaMnO3粒子(1〜10μ)の60
%濃度スラリー(粘度1000cp)を塗布乾燥し、厚さ300
μの空気極層3を形成させる。次いで最後にLaCrO3粒子
(0.1〜1μ)の50%濃度スラリーを、第1図に示すよ
うに露出している燃料極1上に塗布乾燥し厚さ100μの
インコネクター4を形成させる。
Next, the yttria stabilized zirconia (YSZ) particles (0.1
~ 1μ) 50% concentration slurry (viscosity 1000cp)
Is applied and dried to form an electrolyte layer 2 having a thickness of 150 μm. Further, on the electrolyte layer 2, 60 μm of LaMnO 3 particles (1 to 10 μm) are formed.
% Concentration slurry (viscosity 1000cp)
The air electrode layer 3 of μ is formed. Next, a 50% concentration slurry of LaCrO 3 particles (0.1 to 1 μm) is applied and dried on the exposed fuel electrode 1 as shown in FIG. 1 to form an interconnector 4 having a thickness of 100 μm.

上記したように構成された未焼成の成形体を1300℃以
上で2〜4時間焼成することによつて燃料極を最内層と
して有し基体管を省略した固体電解質燃料電池が得られ
る。
By firing the unsintered molded body having the above structure at 1300 ° C. or higher for 2 to 4 hours, a solid electrolyte fuel cell having a fuel electrode as the innermost layer and omitting the base tube is obtained.

〔発明の効果〕〔The invention's effect〕

基体管がないため電池直径を小さくすることができま
た、空気の拡散抵抗が減つて空気極への空気の拡散が容
易となるため空気極の酸素分圧が増加して電池出力が増
加する。
Since there is no base tube, the diameter of the battery can be reduced, and the diffusion resistance of the air decreases, and the diffusion of the air to the air electrode becomes easy. Therefore, the oxygen partial pressure of the air electrode increases, and the battery output increases.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第2図は本発明の固体電解質燃料電池の実施例
を説明するための図で、第1図は固体電解質燃料電池の
断面図、第2図は第1図のA−A矢視図である。第3
図、第4図は従来の固体電解質燃料電池の構成を説明す
るための図で、第3図はその断面図、第4図は第3図の
B−B矢視図である。
1 and 2 are views for explaining an embodiment of a solid electrolyte fuel cell according to the present invention. FIG. 1 is a cross-sectional view of the solid electrolyte fuel cell, and FIG. 2 is an arrow AA in FIG. FIG. Third
FIG. 4 is a view for explaining the configuration of a conventional solid oxide fuel cell, FIG. 3 is a cross-sectional view thereof, and FIG. 4 is a view taken along the line BB of FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玄後 義 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (56)参考文献 特開 昭63−261679(JP,A) 特公 昭45−14730(JP,B2) 特公 昭45−33982(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshiyoshi Gengo 1-1, Akunouramachi, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (56) References JP-A-63-261679 (JP, A) JP 4514730 (JP, B2) JP 45-33982 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質槽を挟んで燃料極層と空気極層とが
重ね合わされた筒状の固体電解質燃料電池を製作する方
法であって、上記空気極層か燃料極層かのいずれか一方
の層を構成する材料の粉末スラリーを成形して筒状物と
し、上記電解質層および他の極層を構成するそれぞれの
材料の粉末スラリーを未焼成の状態の上記筒状物表面に
順次塗布乾燥させた後、焼成することを特徴とする固体
電解質燃料電池の製作方法。
1. A method for producing a cylindrical solid electrolyte fuel cell in which a fuel electrode layer and an air electrode layer are overlapped with an electrolyte tank interposed therebetween, wherein one of the air electrode layer and the fuel electrode layer is provided. The powder slurry of the material constituting the layer is formed into a cylindrical material, and the powder slurry of each material constituting the electrolyte layer and the other electrode layer is sequentially applied and dried on the surface of the unfired cylindrical material. A method for producing a solid oxide fuel cell, which comprises firing after firing.
JP62249948A 1987-10-05 1987-10-05 Method for manufacturing solid electrolyte fuel cell Expired - Lifetime JP2622261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62249948A JP2622261B2 (en) 1987-10-05 1987-10-05 Method for manufacturing solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62249948A JP2622261B2 (en) 1987-10-05 1987-10-05 Method for manufacturing solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0193065A JPH0193065A (en) 1989-04-12
JP2622261B2 true JP2622261B2 (en) 1997-06-18

Family

ID=17200563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62249948A Expired - Lifetime JP2622261B2 (en) 1987-10-05 1987-10-05 Method for manufacturing solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2622261B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697613B2 (en) * 1990-07-12 1994-11-30 日本碍子株式会社 Method for producing air electrode material for solid oxide fuel cell
JPH04115461A (en) * 1990-09-03 1992-04-16 Mitsui Eng & Shipbuild Co Ltd Preparation method of single cell of solid-electrolyte-type fuel battery
EP0514552B1 (en) * 1990-12-10 2000-05-17 Yuasa Corporation Method for manufacturing solid-state electrolytic fuel cell
EP0714104A1 (en) * 1994-03-18 1996-05-29 Toto Ltd. Thin solid electrolyte film and method of production thereof
WO1999054946A1 (en) 1998-04-21 1999-10-28 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
NL1014284C2 (en) * 2000-02-04 2001-08-13 Stichting Energie A method of manufacturing an assembly comprising an anode-supported electrolyte and a ceramic cell comprising such an assembly.
JP4622146B2 (en) * 2001-04-25 2011-02-02 株式会社デンソー Method for manufacturing gas sensor element

Also Published As

Publication number Publication date
JPH0193065A (en) 1989-04-12

Similar Documents

Publication Publication Date Title
US5190834A (en) Composite membrarnes and electrochemical cells containing them
US7550217B2 (en) Stack supported solid oxide fuel cell
EP0194374A1 (en) High temperature electrochemical cells
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
JPH07245120A (en) Solid electrolyte fuel cell
JP4111325B2 (en) Solid oxide fuel cell
US20080206618A1 (en) Electrochemical devices and electrochemical apparatus
JP2007103217A (en) Electrochemical reactor tube cell and electrochemical reaction system constituted from it
JPS63261678A (en) Electrode for solid oxide fuel battery
JP2622261B2 (en) Method for manufacturing solid electrolyte fuel cell
JP4923407B2 (en) Method for producing solid oxide fuel cell
JPH0955215A (en) Solid electrolytic fuel cell
JP2006331743A (en) Horizontally striped fuel cell and its manufacturing method, fuel cell stack and its manufacturing method, and fuel cell
JPH05151981A (en) Solid electrolyte fuel cell
JP3636406B2 (en) SUPPORT FOR SOLID ELECTROLYTE FUEL CELL, UNIT CELL FOR SOLID ELECTROLYTE FUEL CELL, AND METHOD FOR PRODUCING SUPPORT FOR SOLID ELECTROLYTE FUEL CELL
KR20170025163A (en) Flat-type solid oxide fuel cell and battery module comprising the same
JP2004063226A (en) Fuel battery cell, its manufacturing method, and fuel battery
JP4093321B2 (en) Hybrid porous tube
JP3342621B2 (en) Solid oxide fuel cell
JP2001052725A (en) Material for peripheral member of cylindrical solid electrolyte fuel cell and cell making use of the same
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP4102877B2 (en) Method for producing hybrid molded porous tube
JPH1064565A (en) Solid electrolytic fuel cell
JP2675546B2 (en) Solid electrolyte fuel cell
JP2008041506A (en) Electrochemical cell, manufacturing method therefor, and electrochemical device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 11