JPH07254417A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH07254417A
JPH07254417A JP6044010A JP4401094A JPH07254417A JP H07254417 A JPH07254417 A JP H07254417A JP 6044010 A JP6044010 A JP 6044010A JP 4401094 A JP4401094 A JP 4401094A JP H07254417 A JPH07254417 A JP H07254417A
Authority
JP
Japan
Prior art keywords
electrode
air
power generation
pore diameter
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6044010A
Other languages
Japanese (ja)
Other versions
JP3548772B2 (en
Inventor
Sadaaki Sakamoto
禎章 坂本
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP04401094A priority Critical patent/JP3548772B2/en
Publication of JPH07254417A publication Critical patent/JPH07254417A/en
Application granted granted Critical
Publication of JP3548772B2 publication Critical patent/JP3548772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To restrict local irregularity in the pore ratio of a porous body at junction parts, restrict polarization of each electrode, and improve battery performance by making a pore diameter in the junction parts of a fuel electrode, and an air electrode with an interconnector 5mum or less to provide a porous structure of high uniformity in the pore diameter. CONSTITUTION:A solid electrolyte fuel cell includes a power generation part 4 comprising layers of a fuel electrode 1, a solid electrolyte film 2, and an air electrode 3 combined on each other to compose a three-layer film, and this acts as the minimum unit of the fuel cell to generate electricity by reaction of hydrogen and air supplied from the external. In laminating this power generation part 4, an interconnector 5 is used for parting the power generation parts 4 from each other. A series of grooves 6 are provided in perpendicular directions to each other in both surfaces of the connector 5 to be passages for hydrogen to enter on the fuel electrode 1 side, and for air to enter on the air electrode 3 side. The connector 5 prevents mixing of hydrogen entering into the electrode 1 with air entering into the electrode 3. Junction parts 6a of the fuel electrode 1 and the air electrode 3 with the connector 5 have a porous structure having pores of a diameter of 5mum or less, and having a high uniformity in the pore diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質型燃料電池
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell.

【0002】[0002]

【従来の技術】固体電解質型燃料電池は、燃料に含有さ
れる化学エネルギーを、燃焼による熱エネルギーの形態
を経由することなく、電気化学的手段を利用して連続的
に電気エネルギーへ直接変換する装置であり、高いエネ
ルギー変換効率を有するものである。
2. Description of the Related Art A solid oxide fuel cell directly converts chemical energy contained in a fuel into electrical energy by utilizing electrochemical means without passing through the form of thermal energy by combustion. The device has high energy conversion efficiency.

【0003】平板型の固体電解質型燃料電池は、例えば
第1図の分解斜視図に示すような基本構造からなる。す
なわち、燃料極1、固体電解質膜2、及び空気極3の各
層を重ねて、三層膜を構成する発電部4があり、これが
燃料電池の最小単位となって、外部から供給される水素
と空気(酸素)と反応を起こし、電気を発生する。この
発電部4を直列に接続、積層して大きな電圧を得るため
に、発電部4を積層する際、インターコネクタ5を用い
て発電部と発電部を仕切っている。
A flat plate type solid oxide fuel cell has a basic structure as shown in an exploded perspective view of FIG. 1, for example. That is, there is a power generation unit 4 that forms a three-layer film by stacking the respective layers of the fuel electrode 1, the solid electrolyte membrane 2, and the air electrode 3, and this serves as the minimum unit of the fuel cell, and hydrogen supplied from the outside. Reacts with air (oxygen) to generate electricity. In order to connect and stack the power generating units 4 in series to obtain a large voltage, the power generating units are separated from each other by using the interconnector 5 when the power generating units 4 are stacked.

【0004】このインターコネクタ5の両面には、互い
に直角方向に一連の溝6が設けられ、燃料極側には水素
が、また、空気極側には空気(酸素)が入る流路になっ
ている。そして、インターコネクタ5は燃料極1に入る
水素と空気極3に入る空気(酸素)とが混じるのを防ぐ
とともに、二つの発電部を直列に繋ぐための電子伝導体
の役目も果たす。燃料極1、空気極3、及びこれら各極
とインターコネクタ5との接合部6aには、電気伝導性
を有する多孔質体(図示せず)が用いられている。な
お、水素と空気(酸素)が混じるのを防ぐため、発電部
4とインターコネクタ5の各端部のガスシールを必要と
する接合部7には、ガラス系シール材(図示せず)が用
いられている。
A series of grooves 6 are provided on both sides of the interconnector 5 at right angles to each other, and serve as a flow path into which hydrogen enters the fuel electrode side and air (oxygen) enters the air electrode side. There is. The interconnector 5 prevents the hydrogen entering the fuel electrode 1 and the air (oxygen) entering the air electrode 3 from mixing with each other, and also serves as an electronic conductor for connecting the two power generation units in series. A porous body (not shown) having electrical conductivity is used for the fuel electrode 1, the air electrode 3, and the joint portion 6a between these electrodes and the interconnector 5. In order to prevent hydrogen and air (oxygen) from being mixed, a glass-based sealing material (not shown) is used for the joint 7 that requires gas sealing at each end of the power generation unit 4 and the interconnector 5. Has been.

【0005】[0005]

【発明が解決しようとする課題】従来、燃料極1、空気
極3、及びこれら各極とインターコネクタ5との接合部
6aで用いられる電気伝導性を有する多孔質体は、その
微細構造を観察すると、局所的に気孔率(一定の体積中
に占める気孔の体積の割合)がばらついた構造になって
いる。
Conventionally, the fine structure of the porous body having electrical conductivity used in the fuel electrode 1, the air electrode 3, and the joint portion 6a between these electrodes and the interconnector 5 is observed. Then, the structure is such that the porosity (ratio of the volume of pores in a certain volume) varies locally.

【0006】一般に、多孔質体の気孔率χとヤング率ε
との関係式として、 ε=ε0 exp(−Bχ) ε0 :χ=0のときのε
B:定数 が知られている。
Generally, the porosity χ and Young's modulus ε of a porous body are
As a relational expression with, ε = ε 0 exp (−Bχ) ε 0 : ε when χ = 0
B: A constant is known.

【0007】従来の多孔質体の場合、局所的な気孔率の
ばらつきが大きいため、前記関係式により、局所的なヤ
ング率のばらつきも大きくなる。このため、同じ量の歪
みが発生しても、多孔質体の局所では発生する応力のば
らつきが大きくなる。そして、所々で破壊応力を超える
応力に達して、多孔質体自体が破壊されたり、多孔質体
と接合している発電部4(三層膜)やインターコネクタ
5が破壊される原因となっていた。また、大きく破壊さ
れるまでに至らない場合でも、部分的な破壊により、燃
料極1や空気極3で分極が大きくなったり、接合部6a
では電気伝導が不良になったりして、燃料電池の性能が
悪くなる原因となっていた。
In the case of the conventional porous body, since the variation in the local porosity is large, the variation in the Young's modulus is also large according to the above relational expression. For this reason, even if the same amount of strain occurs, the variation in stress locally generated in the porous body becomes large. Then, the stress exceeding the breaking stress is reached in some places, which causes the porous body itself to be broken, or the power generation unit 4 (three-layer film) and the interconnector 5 that are joined to the porous body to be broken. It was Even if it is not destroyed to a large extent, the partial destruction causes a large polarization in the fuel electrode 1 and the air electrode 3, and the junction 6a.
In that case, the electric conduction becomes poor, which causes the performance of the fuel cell to deteriorate.

【0008】そこで本発明の目的は、燃料極、空気極及
び前記各極とインターコネクタの接合部を構成している
多孔質体の局所的な気孔率のばらつきを抑えて、前記各
極の分極を小さくし、また、前記接合部の電気伝導を良
好に保って、電池の性能を向上させることができる固体
電解質型燃料電池を提供することにある。
Therefore, an object of the present invention is to suppress the local variation of the porosity of the fuel electrode, the air electrode, and the porous body forming the joint between each electrode and the interconnector, and to polarize each electrode. It is an object of the present invention to provide a solid oxide fuel cell capable of improving the performance of the cell by reducing the size of the cell and maintaining good electrical conductivity of the joint.

【0009】[0009]

【課題を解決するための手段】本発明は、請求項1にお
いて、燃料極、固体電解質膜及び空気極からなる発電部
の前記各極が5μm以下の気孔径を有し、かつ、前記気
孔径の均一度が高い多孔質構造を有することを特徴とす
るものである。
According to a first aspect of the present invention, each of the electrodes of a power generation section including a fuel electrode, a solid electrolyte membrane and an air electrode has a pore diameter of 5 μm or less, and the pore diameter is 5 μm or less. Is characterized by having a porous structure with high uniformity.

【0010】また、請求項2において、燃料極、固体電
解質膜及び空気極からなる発電部の前記各極とインター
コネクタの接合部が5μm以下の気孔径を有し、かつ、
前記気孔径の均一度が高い多孔質構造を有することを特
徴とするものである。
Further, in claim 2, the joint between each electrode and the interconnector of the power-generating portion consisting of the fuel electrode, the solid electrolyte membrane and the air electrode has a pore diameter of 5 μm or less, and
It is characterized by having a porous structure with a high degree of uniformity of the pore diameter.

【0011】なお、気孔径を5μm以下としたのは、本
発明者らが実験によって、気孔径と気孔率の各ばらつき
の関係を調べた結果、気孔径が5μmを超えると、その
ばらつきを抑えても局所的な気孔率のばらつきは小さく
ならないことを見出だしているためである。そして同じ
く、気孔径のばらつきの下限値としては、0.05μ
m、好ましくは0.1μmにあることが望ましいことも
確認している。
The reason why the pore diameter is set to 5 μm or less is that the inventors of the present invention experimentally investigated the relationship between each variation of the pore diameter and the porosity and found that when the pore diameter exceeds 5 μm, the variation is suppressed. However, it has been found that the local variation in porosity does not become small. Similarly, the lower limit of the variation in pore diameter is 0.05 μ
It has also been confirmed that it is desirable that the thickness is m, preferably 0.1 μm.

【0012】[0012]

【作用】本発明によれば、発電部の燃料極と空気極、及
び前記各極とインターコネクタの接合部が5μm以下の
気孔径を有し、かつ、気孔径の均一度が高い多孔質構造
を有することにより、気孔径のばらつきが小さくなり、
局所的な気孔率のばらつきも小さく押さえることができ
るようになる。
According to the present invention, the porous structure in which the fuel electrode and the air electrode of the power generation section, and the joint between each electrode and the interconnector have a pore diameter of 5 μm or less and the pore diameter is highly uniform. By having, the variation of the pore diameter is reduced,
It is possible to suppress local variations in porosity to a small level.

【0013】そして、局所的な気孔率のばらつきが小さ
いため、局所的なヤング率のばらつきも小さくできる。
そのため、仮に歪みが発生しても、多孔質体の局所で発
生する応力のばらつきが小さくなり、応力の大きなとこ
ろでも、破壊応力を超えるような場合をなくすことがで
きる。そして、多孔質体自体が破壊されたり、多孔質体
と接合している発電部(三層膜)やインターコネクタが
破壊されることも防げる。
Since the local variation in porosity is small, the local variation in Young's modulus can also be reduced.
Therefore, even if a strain is generated, the variation in the stress locally generated in the porous body is reduced, and it is possible to prevent the case where the fracture stress is exceeded even in a place where the stress is large. It is also possible to prevent the porous body itself from being destroyed, or the power generation part (three-layer film) and the interconnector that are joined to the porous body from being destroyed.

【0014】これにより、燃料極や空気極では分極が大
きくなることがなく、また、燃料極、空気極の各極とイ
ンターコネクタの接合部では電気伝導が不良になること
もない。
As a result, the polarization does not increase at the fuel electrode and the air electrode, and the electrical conduction does not become poor at the joint between the fuel electrode and the air electrode and the interconnector.

【0015】[0015]

【実施例】以下、本発明の実施例及び比較例につき、図
面を参照して説明する。
EXAMPLES Examples and comparative examples of the present invention will be described below with reference to the drawings.

【0016】(実施例1)まず、本発明を平板型の固体
電解質型燃料電池の空気極に実施した。
Example 1 First, the present invention was carried out on an air electrode of a flat plate type solid oxide fuel cell.

【0017】空気極材である粒径約0.5μmのLaM
nO3 (ランタンマンガナイト)粉末に、ポリビニルブ
チラール系の結合剤とエタノールとトルエンとを混合し
た溶剤、及び気孔を作るための有機高分子で、分級によ
り粒径を約1μmに揃えた球状セルロース粉末を加え
て、空気極ペーストとした。
LaM having a particle size of about 0.5 μm, which is an air electrode material
Spherical cellulose powder in which nO 3 (lanthanum manganite) powder is mixed with a polyvinyl butyral type binder, ethanol and toluene, and an organic polymer for forming pores, and the particle size is adjusted to about 1 μm by classification. Was added to obtain an air electrode paste.

【0018】これを固体電解質膜であるYSZ(イット
リア安定化ジルコニア)基板の一方の面に塗布して、1
200℃で焼き付けた。そして、この基板の反対側の面
には、多孔質性のPt(白金)ペーストを塗布し、10
00℃で焼き付けて燃料極とし、発電部となる三層膜を
得た。
This is applied to one surface of a YSZ (yttria-stabilized zirconia) substrate which is a solid electrolyte membrane, and 1
It was baked at 200 ° C. Then, a porous Pt (platinum) paste was applied to the opposite surface of the substrate, and 10
It was baked at 00 ° C. to make a fuel electrode, and a three-layer film to be a power generation part was obtained.

【0019】(比較例1)さらに、実施例1と比較を行
うべく、空気極材である粒径約0.5μmのLaMnO
3 粉末に、ポリビニルブチラール系の結合剤とエタノー
ルとトルエンとを混合した溶剤を加えて、空気極ペース
トとした。これをYSZ基板に塗布して1200℃で焼
き付け、この基板の反対側の面には燃料極として、実施
例1と同様に多孔質性のPtペーストを塗布して100
0℃で焼き付け、発電部となる三層膜を得た。
(Comparative Example 1) Further, for comparison with Example 1, LaMnO having a particle size of about 0.5 μm, which is an air electrode material, is used.
A solvent obtained by mixing a polyvinyl butyral binder with ethanol and toluene was added to the 3 powders to prepare an air electrode paste. This was applied to a YSZ substrate and baked at 1200 ° C., and a porous Pt paste was applied to the opposite surface of this substrate as a fuel electrode in the same manner as in Example 1 and 100
Baking was performed at 0 ° C. to obtain a three-layer film to be a power generation part.

【0020】図2は、実施例1と比較例1を水銀ポロシ
メータで測定して、空気極の気孔率(空気極の体積に対
して気孔体積の占める割合)が30%であるものの気孔
径分布を示している。なお、30%の気孔率は多孔質体
の最良特性を示す状態として知られているものである。
横軸に気孔径、縦軸に任意の気孔体積を採り、分布状況
を見たが、比較例1は気孔径分布が広くばらついている
のに対して、実施例1によれば、気孔径が5μm以下で
あり、その分布がより狭い気孔径の範囲に集中し、均一
度が高い多孔質構造になっていることがわかる。
FIG. 2 shows the pore size distribution of Example 1 and Comparative Example 1 measured by a mercury porosimeter, in which the porosity of the air electrode (the ratio of the pore volume to the volume of the air electrode) is 30%. Is shown. The porosity of 30% is known as the state showing the best characteristics of the porous body.
The pore diameter was plotted on the horizontal axis and the arbitrary pore volume was plotted on the vertical axis, and the distribution was examined. In Comparative Example 1, the pore diameter distribution was widely varied, whereas according to Example 1, the pore diameter was It can be seen that the distribution is 5 μm or less, the distribution is concentrated in a narrower range of pore diameter, and the porous structure has high uniformity.

【0021】図3は、実施例1と比較例1について、各
試料の電流密度と端子電圧を測定した装置の回路図であ
る。燃料極1と空気極3が固体電解質膜2を挟んで発電
部4を構成し、前記各極から燃料電池の運転温度に耐え
るPt線8を引き出して、電圧計9及び可変抵抗器10
を接続した電流計11に、それぞれ接続した。Pt線8
と発電部4の各極が接続されている箇所は、運転温度で
耐熱気密性に優れたアルミナ管12で覆っている。
FIG. 3 is a circuit diagram of an apparatus for measuring the current density and the terminal voltage of each sample in Example 1 and Comparative Example 1. The fuel electrode 1 and the air electrode 3 constitute the power generation unit 4 with the solid electrolyte membrane 2 sandwiched therebetween, and the Pt wire 8 that withstands the operating temperature of the fuel cell is drawn out from each electrode, and the voltmeter 9 and the variable resistor 10 are connected.
Were connected to the ammeters 11 connected to. Pt wire 8
The area where the respective electrodes of the power generation section 4 are connected to each other is covered with an alumina tube 12 which is excellent in heat resistance and airtightness at the operating temperature.

【0022】次に図4は、これらの実施例1と比較例1
について1000℃で発電を行い、図3に示す測定装置
を用いて電流密度と端子電圧を測定、比較したものであ
る。この比較から、本発明により空気極の電流・電圧特
性が改善されたことがわかる。
Next, FIG. 4 shows these Example 1 and Comparative Example 1.
Is generated at 1000 ° C., and the current density and the terminal voltage are measured and compared using the measuring device shown in FIG. From this comparison, it can be seen that the present invention improved the current / voltage characteristics of the air electrode.

【0023】(実施例2)次に、本発明を平板型の固体
電解質型燃料電池の燃料極に実施した。
Example 2 Next, the present invention was applied to the fuel electrode of a flat plate type solid oxide fuel cell.

【0024】燃料極材である粒径約0.5μmのNiO
(酸化ニッケル)粉末及び粒径約0.5μmのYSZ
(イットリア安定化ジルコニア)粉末に、ポリビニルブ
チラール系の結合剤とエタノールとトルエンとを混合し
た溶剤、及び気孔を作るための有機高分子で、分級によ
り粒径を約1μmに揃えた球状セルロース粉末を加え
て、燃料極ペーストとした。
NiO having a particle size of about 0.5 μm, which is a fuel electrode material
(Nickel oxide) powder and YSZ with a particle size of about 0.5 μm
(Yttria-stabilized zirconia) powder, polyvinyl butyral-based binder, ethanol and toluene mixed solvent, and an organic polymer for creating pores, spherical cellulose powder with a particle size of about 1 μm is prepared by classification. In addition, a fuel electrode paste was used.

【0025】これを固体電解質膜であるYSZ基板の一
方の面に塗布して、1400℃で焼き付けた。そして、
この基板の反対側の面には、多孔質性のPtペーストを
塗布し、1000℃で焼き付けて空気極とし、発電部と
なる三層膜を得た。
This was coated on one surface of a YSZ substrate which was a solid electrolyte membrane, and baked at 1400 ° C. And
A porous Pt paste was applied to the surface on the opposite side of this substrate and baked at 1000 ° C. to form an air electrode, and a three-layer film to be a power generation part was obtained.

【0026】(比較例2)さらに、実施例2との比較を
行うべく、燃料極材である粒径約0.5μmのNiO粉
末及び粒径約0.5μmのYSZ粉末に、ポリビニルブ
チラール系の結合剤とエタノールとトルエンとを混合し
た溶剤を加えて、燃料極ペーストとした。これをYSZ
基板に塗布して1400℃で焼き付け、この基板の反対
側の面には空気極として、実施例品と同様に多孔質性の
Ptペーストを塗布して1000℃で焼き付け、発電部
となる三層膜を得た。
(Comparative Example 2) Further, in order to make a comparison with Example 2, a NiO powder having a particle diameter of about 0.5 μm and a YSZ powder having a particle diameter of about 0.5 μm, which are fuel electrode materials, were made of polyvinyl butyral type. A binder, a solvent in which ethanol and toluene were mixed was added to prepare a fuel electrode paste. This is YSZ
Three layers to be a power generation part are applied on a substrate and baked at 1400 ° C., and on the opposite side of this substrate, an air electrode is applied, and a porous Pt paste is applied as in the example product and baked at 1000 ° C. A film was obtained.

【0027】図5は、実施例2と比較例2を水銀ポロシ
メータで測定して、燃料極の気孔率(燃料極の体積に対
して気孔体積の占める割合)が30%であるものの気孔
径分布を示している。横軸に気孔径、縦軸に任意の気孔
体積を採り、分布状況を見たが、比較例2は分布が広く
ばらついているのに対して、実施例2によれば、気孔径
が5μm以下であり、その分布がより狭い気孔径の範囲
に集中し、均一度が高い多孔質構造になっていることが
わかる。
FIG. 5 shows the pore size distribution of the fuel cell of Example 2 and Comparative Example 2 measured by a mercury porosimeter, in which the porosity of the fuel electrode (the ratio of the pore volume to the volume of the fuel electrode) is 30%. Is shown. The distribution condition was observed by taking the pore diameter on the horizontal axis and the arbitrary pore volume on the vertical axis, and the distribution is widely dispersed in Comparative Example 2, whereas according to Example 2, the pore diameter is 5 μm or less. It can be seen that the distribution is concentrated in a narrower range of pore diameters, and has a highly uniform porous structure.

【0028】図6は、これらの実施例2と比較例2につ
いて1000℃で発電を行い、図3に示す測定装置を用
いて電流密度と端子電圧を測定、比較したものである。
この比較から、本発明により燃料極の電流・電圧特性が
改善されたことがわかる。
FIG. 6 shows a comparison between Example 2 and Comparative Example 2 in which electric power was generated at 1000 ° C. and the current density and the terminal voltage were measured by using the measuring device shown in FIG.
From this comparison, it is understood that the present invention improved the current / voltage characteristics of the fuel electrode.

【0029】(実施例3)次に、本発明を平板型の固体
電解質型燃料電池の発電部(三層膜)の空気極とインタ
ーコネクタの接合部に実施した。
(Embodiment 3) Next, the present invention was carried out at the joint between the air electrode and the interconnector of the power generation section (three-layer membrane) of the flat plate type solid oxide fuel cell.

【0030】接合部材である粒径約0.5μmのLaC
oO3 (ランタンコバルタイト)粉末に、ポリビニルブ
チラール系の結合剤とエタノールとトルエンとを混合し
た溶剤、及び気孔を作るための有機高分子で、分級によ
り粒径を約1μmに揃えた球状セルロース粉末を加え
て、接合部用ペーストとした。
LaC having a particle size of about 0.5 μm, which is a joining member
Spherical cellulose powder with a particle size of about 1 μm that is classified by classification with an oO 3 (lanthanum cobaltite) powder mixed with a polyvinyl butyral-based binder, ethanol and toluene, and an organic polymer for forming pores. Was added to obtain a joint portion paste.

【0031】これを発電部(三層膜)の空気極面に塗布
して、インターコネクタをのせて接着し、1200℃で
焼き付けた。
This was applied to the air electrode surface of the power generation section (three-layer film), and an interconnector was placed thereon and adhered, followed by baking at 1200 ° C.

【0032】(比較例3)さらに、実施例3との比較を
行うべく、接合部材である粒径約0.5μmのLaCo
3 粉末に、ポリビニルブチラール系の結合剤とエタノ
ールとトルエンとを混合した溶剤を加えて、接合部用ペ
ーストとした。これを実施例3と同様に発電部(三層
膜)の空気極面に塗布し、インターコネクタをのせて接
着し、1200℃で焼き付けた。
Comparative Example 3 Further, in order to make a comparison with Example 3, LaCo having a particle diameter of about 0.5 μm which is a joining member.
A solvent obtained by mixing a polyvinyl butyral-based binder, ethanol, and toluene was added to the O 3 powder to prepare a paste for a joint. This was applied to the air electrode surface of the power generation section (three-layer film) in the same manner as in Example 3, and an interconnector was placed thereon and adhered, followed by baking at 1200 ° C.

【0033】図7は、実施例3と比較例3を水銀ポロシ
メータで測定して、接合部の気孔率(接合部の体積に対
して気孔体積の占める割合)が30%であるものの気孔
径分布を示している。横軸に気孔径、縦軸に任意の気孔
体積を採り、分布状況を見たが、比較例3は分布が広く
ばらついているのに対して、実施例3によれば、気孔径
が5μm以下であり、その分布がより狭い気孔径の範囲
に集中し、均一度が高い多孔質構造になっていることが
わかる。
FIG. 7 shows the porosity distribution of the joint 3 having a porosity of 30% (measured by the porosity of the joint to the volume of the joint) measured by a mercury porosimeter. Is shown. The distribution was examined by taking the pore diameter on the horizontal axis and the arbitrary pore volume on the vertical axis. The distribution of Comparative Example 3 varies widely, whereas according to Example 3, the pore diameter is 5 μm or less. It can be seen that the distribution is concentrated in a narrower range of pore diameters, and has a highly uniform porous structure.

【0034】これらの実施例3と比較例3について10
00℃で発電を行い、発電部(三層膜)の燃料極側は水
素雰囲気、空気極側は空気雰囲気にして、空気極とイン
ターコネクタ間の抵抗を測定した。その結果を表1に示
す。
About these Example 3 and Comparative Example 3, 10
Power generation was performed at 00 ° C., and the fuel electrode side of the power generation section (three-layer film) was in a hydrogen atmosphere and the air electrode side was in an air atmosphere, and the resistance between the air electrode and the interconnector was measured. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】この比較から、本発明により空気極とイン
タ−コネクタの接合部の抵抗値が従来より減少し、電気
伝導特性が改善されたことがわかる。
From this comparison, it can be seen that the present invention reduced the resistance value of the joint portion between the air electrode and the interconnector from the conventional value and improved the electric conduction characteristics.

【0037】(実施例4)次に、本発明を平板型の固体
電解質型燃料電池の発電部(三層膜)の燃料極とインタ
ーコネクタの接合部に実施した。
(Example 4) Next, the present invention was carried out at the joint between the fuel electrode and the interconnector of the power generation section (three-layer membrane) of the flat plate type solid oxide fuel cell.

【0038】接合部材である粒径約0.5μmのNiO
粉末に、ポリビニルブチラール系の結合剤とエタノール
とトルエンとを混合した溶剤、及び気孔を作るための有
機高分子で、分級により粒径を約1μmに揃えた球状セ
ルロース粉末を加えて、接合部用ペーストとした。
NiO having a particle size of about 0.5 μm as a joining member
For the joint part, add to the powder a polyvinyl butyral-based binder, a solvent that mixes ethanol and toluene, and a spherical cellulose powder that is an organic polymer for creating pores and has a particle size of approximately 1 μm that is classified by classification. It was a paste.

【0039】これを発電部(三層膜)の燃料極面に塗布
して、インターコネクタをのせて接着し、1200℃で
焼き付けた。
This was applied to the fuel electrode surface of the power generation section (three-layer film), and an interconnector was placed thereon and adhered, followed by baking at 1200 ° C.

【0040】(比較例4)さらに、実施例4との比較を
行うべく、接合部材である粒径約0.5μmのNiO粉
末に、ポリビニルブチラール系の結合剤とエタノールと
トルエンとを混合した溶剤を加えて、接合部用ペースト
とした。これを実施例4と同様に発電部(三層膜)の燃
料極面に塗布し、インターコネクタをのせて接着し、1
200℃で焼き付けた。
(Comparative Example 4) Further, in order to make a comparison with Example 4, a solvent in which a polyvinyl butyral type binder, ethanol and toluene are mixed with NiO powder having a particle size of about 0.5 μm which is a joining member. Was added to obtain a joint portion paste. In the same manner as in Example 4, this was applied to the fuel electrode surface of the power generation section (three-layer film), and the interconnector was put on and bonded to
It was baked at 200 ° C.

【0041】図8は、実施例4と比較例4を水銀ポロシ
メータで測定して、接合部の気孔率が30%であるもの
の気孔径分布を示している。横軸に気孔径、縦軸に任意
の気孔体積を採り、分布状況を見たが、比較例4は分布
が広くばらついているのに対して、実施例4によれば、
気孔径が5μm以下であり、その分布がより狭い気孔径
の範囲(分布の上限は実施例1〜4の中では最も値の大
きい5μmである)に集中し、均一度が高い多孔質構造
になっていることがわかる。
FIG. 8 shows the pore size distributions of Example 4 and Comparative Example 4 measured with a mercury porosimeter, even though the porosity of the joint is 30%. The pore diameter was plotted on the horizontal axis and the arbitrary pore volume was plotted on the vertical axis, and the distribution was observed. Comparative Example 4 shows a wide variation in distribution, whereas Example 4 shows that
The pore diameter is 5 μm or less, and the distribution is concentrated in a narrow pore diameter range (the upper limit of the distribution is 5 μm, which has the largest value in Examples 1 to 4), and a highly uniform porous structure is formed. You can see that it has become.

【0042】これらの実施例4と比較例4について10
00℃で発電を行い、発電部(三層膜)の燃料極側は水
素雰囲気、空気極側は空気雰囲気にして、燃料極とイン
ターコネクタ間の抵抗を測定した。その結果を表2に示
す。
About Example 4 and Comparative Example 4 10
Power generation was performed at 00 ° C., and the fuel electrode side of the power generation unit (three-layer film) was set to a hydrogen atmosphere and the air electrode side was set to an air atmosphere, and the resistance between the fuel electrode and the interconnector was measured. The results are shown in Table 2.

【0043】[0043]

【表2】 [Table 2]

【0044】この比較から、本発明により燃料極とイン
ターコネクタの接合部の抵抗値が従来より減少し、接合
部の電気伝導特性が改善されたことがわかる。
From this comparison, it can be seen that according to the present invention, the resistance value of the joint portion between the fuel electrode and the interconnector is reduced as compared with the conventional one, and the electric conduction characteristic of the joint portion is improved.

【0045】[0045]

【発明の効果】本発明のように、固体電解質型燃料電池
の燃料極、空気極及び前記各極とインターコネクタの接
合部の気孔径を5μm以下にして、気孔径のばらつきを
従来より抑え、均一度が高い多孔質構造としたため、局
所的な気孔率のばらつきを小さくすることができる。こ
のため、同じ量の歪みが発生しても、多孔質体の局所で
発生する応力のばらつきを抑えられるようになり、部分
的な破壊の減少で燃料極や空気極では分極が小さくな
る。また同様に、各極とインターコネクタの接合部では
電気伝導がよくなるなど、発電部に係る多孔質体構造を
改善することにより、固体電解質型燃料電池の性能が向
上するという効果を奏するものである
EFFECT OF THE INVENTION As in the present invention, the pore diameter of the fuel electrode, the air electrode of the solid oxide fuel cell and the joint portion between each electrode and the interconnector is set to 5 μm or less to suppress the variation of the pore diameter as compared with the prior art. Since the porous structure has a high degree of uniformity, local variations in porosity can be reduced. Therefore, even if the same amount of strain is generated, it is possible to suppress the variation in the stress locally generated in the porous body, and the polarization is reduced in the fuel electrode and the air electrode due to the reduction of partial destruction. Further, similarly, by improving the porous body structure related to the power generation part, such as good electrical conduction at the joint between each electrode and the interconnector, it is possible to improve the performance of the solid oxide fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質型燃料電池の基本構造を示す分解斜
視図。
FIG. 1 is an exploded perspective view showing a basic structure of a solid oxide fuel cell.

【図2】本発明の実施例1及び比較例1の各試料の空気
極の気孔径分布図。
FIG. 2 is a pore diameter distribution diagram of the air electrode of each sample of Example 1 and Comparative Example 1 of the present invention.

【図3】本発明の実施例1及び2の電流密度と端子電圧
の測定装置の回路図。
FIG. 3 is a circuit diagram of an apparatus for measuring current density and terminal voltage according to Examples 1 and 2 of the present invention.

【図4】本発明の実施例1及び比較例1の電流密度と端
子電圧の特性図。
FIG. 4 is a characteristic diagram of current density and terminal voltage of Example 1 and Comparative Example 1 of the present invention.

【図5】本発明の実施例2及び比較例2の各試料の燃料
極の気孔径分布図。
FIG. 5 is a pore size distribution diagram of the fuel electrode of each sample of Example 2 and Comparative Example 2 of the present invention.

【図6】本発明の実施例2及び比較例2の電流密度と端
子電圧の特性図。
FIG. 6 is a characteristic diagram of current density and terminal voltage of Example 2 and Comparative Example 2 of the present invention.

【図7】本発明の実施例3及び比較例3の空気極とイン
ターコネクタの接合部の気孔径分布図。
FIG. 7 is a pore diameter distribution diagram of the joint portion between the air electrode and the interconnector of Example 3 and Comparative Example 3 of the present invention.

【図8】本発明の実施例4及び比較例4の燃料極とイン
ターコネクタの接合部の気孔径分布図。
FIG. 8 is a pore diameter distribution diagram of the joint portion between the fuel electrode and the interconnector of Example 4 and Comparative Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料極 2 固体電解質膜 3 空気極 4 発電部 5 インターコネクタ 6a 発電部の各極とインターコネクタの接合部 1 Fuel Electrode 2 Solid Electrolyte Membrane 3 Air Electrode 4 Power Generation Section 5 Interconnector 6a Joint between Each Electrode of Power Generation Section and Interconnector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料極、固体電解質膜及び空気極からな
る発電部の前記各極が5μm以下の気孔径を有し、か
つ、前記気孔径の均一度が高い多孔質構造を有すること
を特徴とする固体電解質型燃料電池。
1. A porous structure having a pore diameter of 5 μm or less in each of the electrodes of a power generation section including a fuel electrode, a solid electrolyte membrane, and an air electrode, and having a highly uniform pore diameter. Solid oxide fuel cell.
【請求項2】 燃料極、固体電解質膜及び空気極からな
る発電部の前記各極とインターコネクタの接合部が5μ
m以下の気孔径を有し、かつ、前記気孔径の均一度が高
い多孔質構造を有することを特徴とする固体電解質型燃
料電池。
2. The connecting portion between each electrode and the interconnector of the power generating portion including the fuel electrode, the solid electrolyte membrane and the air electrode is 5 μm.
A solid oxide fuel cell having a pore size of m or less and a porous structure having a high uniformity of the pore size.
JP04401094A 1994-03-15 1994-03-15 Solid oxide fuel cell Expired - Lifetime JP3548772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04401094A JP3548772B2 (en) 1994-03-15 1994-03-15 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04401094A JP3548772B2 (en) 1994-03-15 1994-03-15 Solid oxide fuel cell

Publications (2)

Publication Number Publication Date
JPH07254417A true JPH07254417A (en) 1995-10-03
JP3548772B2 JP3548772B2 (en) 2004-07-28

Family

ID=12679727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04401094A Expired - Lifetime JP3548772B2 (en) 1994-03-15 1994-03-15 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP3548772B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019454A1 (en) * 2000-08-30 2002-03-07 Sanyo Electric Co., Ltd. Fuel cell unit and its manufacturing method
EP1284520A2 (en) 2001-08-13 2003-02-19 Nissan Motor Co., Ltd. Cell plate structure for solid electrolyte fuel cell, solid electrolyte fuel cell and related manufacturing method
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007087746A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007103077A (en) * 2005-09-30 2007-04-19 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode of solid oxide fuel cell, material powder for fuel electrode, and solid oxide fuel cell
JP2007220731A (en) * 2006-02-14 2007-08-30 Sekisui Chem Co Ltd Porous material for cell, method for manufacturing same, solid-state electrolytic capacitor, electric double-layer capacitor, and solid-state oxide fuel cell
JP2010015835A (en) * 2008-07-03 2010-01-21 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
JP2011129290A (en) * 2009-12-16 2011-06-30 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
JP2012119316A (en) * 2010-12-01 2012-06-21 Samsung Electro-Mechanics Co Ltd Electrode material for fuel cell, fuel cell including the same and method of manufacturing the fuel cell
WO2014148109A1 (en) * 2013-03-19 2014-09-25 日本碍子株式会社 Solid-oxide fuel cell
WO2014148108A1 (en) * 2013-03-19 2014-09-25 日本碍子株式会社 Solid-oxide fuel cell
WO2014148110A1 (en) * 2013-03-19 2014-09-25 日本碍子株式会社 Solid-oxide fuel cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
WO2002019454A1 (en) * 2000-08-30 2002-03-07 Sanyo Electric Co., Ltd. Fuel cell unit and its manufacturing method
EP1284520B1 (en) * 2001-08-13 2018-11-28 Nissan Motor Co., Ltd. Manufacturing method for cell plate structure for solid electrolyte fuel cell
EP1284520A2 (en) 2001-08-13 2003-02-19 Nissan Motor Co., Ltd. Cell plate structure for solid electrolyte fuel cell, solid electrolyte fuel cell and related manufacturing method
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007087746A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007103077A (en) * 2005-09-30 2007-04-19 Hosokawa Funtai Gijutsu Kenkyusho:Kk Fuel electrode of solid oxide fuel cell, material powder for fuel electrode, and solid oxide fuel cell
JP2007220731A (en) * 2006-02-14 2007-08-30 Sekisui Chem Co Ltd Porous material for cell, method for manufacturing same, solid-state electrolytic capacitor, electric double-layer capacitor, and solid-state oxide fuel cell
JP2010015835A (en) * 2008-07-03 2010-01-21 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
JP2011129290A (en) * 2009-12-16 2011-06-30 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
JP2012119316A (en) * 2010-12-01 2012-06-21 Samsung Electro-Mechanics Co Ltd Electrode material for fuel cell, fuel cell including the same and method of manufacturing the fuel cell
WO2014148109A1 (en) * 2013-03-19 2014-09-25 日本碍子株式会社 Solid-oxide fuel cell
WO2014148110A1 (en) * 2013-03-19 2014-09-25 日本碍子株式会社 Solid-oxide fuel cell
JP5605889B1 (en) * 2013-03-19 2014-10-15 日本碍子株式会社 Solid oxide fuel cell
JP5605888B1 (en) * 2013-03-19 2014-10-15 日本碍子株式会社 Solid oxide fuel cell
JP5605890B1 (en) * 2013-03-19 2014-10-15 日本碍子株式会社 Solid oxide fuel cell
US9882221B2 (en) 2013-03-19 2018-01-30 Ngk Insulators, Ltd. Solid oxide fuel cell
US9882220B2 (en) 2013-03-19 2018-01-30 Ngk Insulators, Ltd. Solid oxide fuel cell
US9887424B2 (en) 2013-03-19 2018-02-06 Ngk Insulators, Ltd. Solid oxide fuel cell
WO2014148108A1 (en) * 2013-03-19 2014-09-25 日本碍子株式会社 Solid-oxide fuel cell

Also Published As

Publication number Publication date
JP3548772B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP5076221B2 (en) Solid oxide fuel cell
JP5242909B2 (en) Solid oxide fuel cell
JPH09223507A (en) Solid polymer fuel cell
JP3548772B2 (en) Solid oxide fuel cell
JP6734723B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6760865B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6804868B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JPH04298964A (en) Solid electrolyte type fuel cell and manufacture thereof
JP5107509B2 (en) Method for producing solid oxide fuel cell
JP2017123240A (en) Electrochemical reaction single cell, interconnector-electrochemical reaction single cell composite body, and electrochemical reaction cell stack
JP5373668B2 (en) Single cell for solid oxide fuel cell and solid oxide fuel cell
CN108701838B (en) Fuel cell power generation unit and fuel cell stack
JP7152142B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
JP7082456B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6841663B2 (en) How to manufacture an electrochemical reaction cell stack
JP3533694B2 (en) Porous conductive material powder, method for producing the same, and method for producing fuel cell
JP6539179B2 (en) Electrochemical reaction unit cell and electrochemical reaction cell stack
JP2004063460A (en) Solid-state electrolyte fuel cell and its manufacturing method
JPH0644981A (en) Flat plate-shaped solid electrolyte fuel cell
JP6780920B2 (en) Fuel cell single cell and fuel cell stack
JP2012253035A (en) Solid oxide fuel cell
JPH07282835A (en) Sealing material for solid electrolyte fuel cell, sealing method for solid electrolyte fuel cell using this material, and solid electrolyte fuel cell
JP3297609B2 (en) Method for manufacturing fuel cell stack
JPH07245107A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

EXPY Cancellation because of completion of term