JPH0657432A - Formation of tantalum oxide thin film - Google Patents

Formation of tantalum oxide thin film

Info

Publication number
JPH0657432A
JPH0657432A JP21247192A JP21247192A JPH0657432A JP H0657432 A JPH0657432 A JP H0657432A JP 21247192 A JP21247192 A JP 21247192A JP 21247192 A JP21247192 A JP 21247192A JP H0657432 A JPH0657432 A JP H0657432A
Authority
JP
Japan
Prior art keywords
thin film
tantalum oxide
oxide thin
vacuum chamber
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21247192A
Other languages
Japanese (ja)
Inventor
Munehiro Shibuya
宗裕 澁谷
Masatoshi Kitagawa
雅俊 北川
Takeshi Kamata
健 鎌田
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21247192A priority Critical patent/JPH0657432A/en
Publication of JPH0657432A publication Critical patent/JPH0657432A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a tantalum oxide thin film capable of being utilized as the capacitative insulating film of a DRAM and low in leakage current while untreated. CONSTITUTION:A raw gas is introduced into a vacuum chamber 1 and thermally decomposed to form a tantalum oxide thin film by CVD. In this case, at least Ta(OC2H5)5 and TiCl4 or SiH4 are introduced into the vacuum chamber as the raw gases and thermally decomposed to deposit a tantalum oxide thin film contg. Ti or Si on a substrate 5. Si or Ti is incorporated into the thin film to compensate the lattice defect or to relieve stress, and hence a tantalum oxide thin film low in leakage current is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はDRAM(ダイナミック
ラム)等の容量性絶縁膜などとして有用な酸化タンタル
薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a tantalum oxide thin film useful as a capacitive insulating film such as DRAM (dynamic ram).

【0002】[0002]

【従来の技術】近年、原料ガスを真空室内で加熱分解反
応させて基板上に薄膜を形成するCVD法(化学気相成
長法)は半導体や誘電体等の薄膜形成の有用な手段とし
て注目されており、容量性絶縁膜などとして有用な酸化
タンタル薄膜の形成方法においてもCVD装置をもちい
て化学気相成長法により薄膜を製造することが試みられ
ている。この場合には通常加熱し得る真空室を有するい
わゆる熱CVD装置が用いられている。
2. Description of the Related Art In recent years, a CVD method (chemical vapor deposition method) in which a raw material gas is heated and decomposed in a vacuum chamber to form a thin film on a substrate has attracted attention as a useful means for forming a thin film of a semiconductor or a dielectric. Therefore, in the method of forming a tantalum oxide thin film useful as a capacitive insulating film, it has been attempted to manufacture a thin film by a chemical vapor deposition method using a CVD device. In this case, a so-called thermal CVD apparatus having a vacuum chamber that can normally be heated is used.

【0003】以下、図面を参照しながら従来の酸化タン
タル薄膜の製造方法について説明する。図2は従来のC
VD法による酸化タンタル薄膜形成法に用いられている
酸化タンタル薄膜製造装置(CVD装置)の構成を示す
概略図である。
A conventional method for manufacturing a tantalum oxide thin film will be described below with reference to the drawings. Figure 2 shows the conventional C
It is a schematic diagram showing the composition of the tantalum oxide thin film manufacturing device (CVD device) used for the tantalum oxide thin film formation method by the VD method.

【0004】従来CVD装置による酸化タンタル薄膜の
製造は、原料として液体のTa(OC255等で代表
される液体有機タンタル化合物と酸素ガス等を用いて形
成されてきた。
Conventionally, a tantalum oxide thin film has been produced by a CVD apparatus using a liquid organic tantalum compound typified by liquid Ta (OC 2 H 5 ) 5 and oxygen gas as raw materials.

【0005】図2において、真空室31は真空排気装置
32によっておよそ0.5〜10Torr程度の真空に
排気される。33は真空室内に設置された基板であり、
通常ポリシリコンからなる基板が用いられる。また、真
空室31はヒータ34によって約450℃に加熱されて
いる。アンプル36内のTa(OC255は流量制御
装置38によって流量制御された不活性ガス39によっ
てバブリングされヒータ40によって約150℃に加熱
されたガス導入管41を通って真空室31に導入され
る。流量制御装置42によって流量制御された酸素ガス
43も加熱されたガス導入管41を通って真空室31に
導入される。真空室内に導入されたこれらの原料ガスは
熱分解反応して、約450℃に加熱されている基板33
上に酸化タンタル薄膜が堆積される。堆積された、酸化
タンタル薄膜は、通常O2またはO3中で450から80
0℃の温度で熱処理される。
In FIG. 2, the vacuum chamber 31 is evacuated to a vacuum of about 0.5 to 10 Torr by a vacuum evacuation device 32. 33 is a substrate installed in the vacuum chamber,
A substrate made of polysilicon is usually used. The vacuum chamber 31 is heated to about 450 ° C. by the heater 34. Ta (OC 2 H 5 ) 5 in the ampoule 36 is bubbled into the vacuum chamber 31 by an inert gas 39 whose flow rate is controlled by a flow rate control device 38 and heated by a heater 40 to about 150 ° C. be introduced. The oxygen gas 43 whose flow rate is controlled by the flow rate control device 42 is also introduced into the vacuum chamber 31 through the heated gas introduction pipe 41. These raw material gases introduced into the vacuum chamber undergo a thermal decomposition reaction to heat the substrate 33 heated to about 450 ° C.
A tantalum oxide thin film is deposited on top. The deposited tantalum oxide thin film is typically 450 to 80 in O 2 or O 3.
It is heat treated at a temperature of 0 ° C.

【0006】[0006]

【発明が解決しようとする課題】しかしながらこのよう
な方法で形成された酸化タンタル薄膜は未処理の状態で
はリーク電流が大きいためオゾン中での熱処理、紫外線
の照射等の複雑な工程が必要になる。
However, since the tantalum oxide thin film formed by such a method has a large leak current in an untreated state, it requires complicated steps such as heat treatment in ozone and irradiation with ultraviolet rays. .

【0007】本発明は未処理の状態でリーク電流の小さ
い酸化タンタル薄膜を形成することを目的とする。
An object of the present invention is to form a tantalum oxide thin film having a small leak current in an untreated state.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の酸化タンタル薄膜の形成方法においては、
真空室内にTa(OC255、TiCl4、O2、Ar
を導入しTiを混入した酸化タンタル薄膜を堆積する。
In order to achieve the above object, in the method for forming a tantalum oxide thin film of the present invention,
Ta (OC 2 H 5 ) 5 , TiCl 4 , O 2 , Ar in the vacuum chamber
Is introduced to deposit a tantalum oxide thin film mixed with Ti.

【0009】また、真空室内にTa(OC255、S
iH4、O2、Arを導入しSiを混入した酸化タンタル
薄膜を堆積する。
Further, Ta (OC 2 H 5 ) 5 , S is placed in the vacuum chamber.
A tantalum oxide thin film mixed with Si is deposited by introducing iH 4 , O 2 and Ar.

【0010】[0010]

【作用】本発明による酸化タンタル薄膜は、通常酸化タ
ンタル薄膜内に形成される格子欠陥、空位等をTiまた
はSiが補償するか、TiまたはSiが混入されている
ためにTa25格子にかかる応力が緩和されて格子欠陥
ができずらくなるために、リーク電流の小さい酸化タン
タル薄膜が形成できる。
In the tantalum oxide thin film according to the present invention, Ti or Si compensates for lattice defects, vacancies, etc., which are usually formed in the tantalum oxide thin film, or since Ti or Si is mixed, the Ta 2 O 5 lattice is formed. Since such stress is relaxed and it becomes difficult to form lattice defects, a tantalum oxide thin film with a small leak current can be formed.

【0011】[0011]

【実施例】図1は本発明の実施例で使用した酸化タンタ
ル薄膜形成装置の概略図である。1は真空室であり、真
空排気装置2によって真空に排気される。5は真空室内
に設置された基板であり本実施例ではポリシリコンを用
いた。基板5はヒータ6によって約600℃に加熱され
ている。
EXAMPLE FIG. 1 is a schematic view of a tantalum oxide thin film forming apparatus used in an example of the present invention. Reference numeral 1 denotes a vacuum chamber, which is evacuated to a vacuum by a vacuum exhaust device 2. Reference numeral 5 is a substrate installed in a vacuum chamber, and polysilicon was used in this embodiment. The substrate 5 is heated to about 600 ° C. by the heater 6.

【0012】アンプル3内のTa(OC255は高温
槽7によって120℃に温度制御され、流量制御装置8
によって流量制御されたArガス4(本実施例でのAr
流量は300sccm)によってバブリングされヒータ
9によって約150℃に加熱されたガス導入管10を通
って真空室1に導入される。流量制御装置11によって
流量制御されたO2ガス12(本実施例では500sc
cm)と流量制御装置14によって流量制御されたTi
Cl413またはSiH413も真空室内に導入される。
(但しTiCl4の場合は流量制御装置14およびガス
導入管15は約80℃に加熱されている)真空室内に導
入されたこれらの原料ガスは熱分解反応して、約600
℃に加熱されている基板5上にTiを含有する酸化タン
タル薄膜またはSiを含有する酸化タンタル薄膜が形成
される。(本実施例ではTiCl4流量5sccm、S
iH4流量3sccmとした)図3は原料としてTa
(OC255、Ar、O2を導入した場合、それに加え
TiCl4を導入した場合またはSiH4を導入した場合
の酸化タンタル薄膜のリーク電流を示したものである。
2のみを導入して形成した場合の酸化タンタル薄膜の
リーク電流は電界強度1MV/cmで1x10-3A/c
2程度の電流が流れている。しかしTiCl4またはS
iH4を導入して堆積した場合、未処理の状態でリーク
電流は約3x10-10A/cm2と小さく、絶縁耐圧も大
きくなっていることがわかる。
The temperature of Ta (OC 2 H 5 ) 5 in the ampoule 3 is controlled to 120 ° C. by the high temperature tank 7, and the flow rate controller 8
Ar gas 4 whose flow rate is controlled by (Ar in this embodiment)
The gas is introduced into the vacuum chamber 1 through the gas introduction pipe 10 which is bubbled at a flow rate of 300 sccm and heated to about 150 ° C. by the heater 9. The O 2 gas 12 whose flow rate is controlled by the flow rate control device 11 (500 sc in this embodiment)
cm) and Ti whose flow rate is controlled by the flow rate control device 14
Cl 4 13 or SiH 4 13 is also introduced into the vacuum chamber.
(However, in the case of TiCl 4 , the flow rate control device 14 and the gas introduction pipe 15 are heated to about 80 ° C.) These raw material gases introduced into the vacuum chamber undergo a thermal decomposition reaction to give about 600
A tantalum oxide thin film containing Ti or a tantalum oxide thin film containing Si is formed on the substrate 5 which has been heated to ° C. (In this embodiment, TiCl4 flow rate is 5 sccm, S
iH4 flow rate was 3 sccm).
It shows the leakage current of the tantalum oxide thin film when (OC 2 H 5 ) 5 , Ar, and O 2 were introduced, and when TiCl 4 was introduced in addition thereto or SiH 4 was introduced.
The leakage current of the tantalum oxide thin film formed by introducing only O 2 is 1 × 10 −3 A / c at an electric field strength of 1 MV / cm.
A current of about m 2 is flowing. However, TiCl 4 or S
It can be seen that, when iH 4 is introduced and deposited, the leak current is as small as about 3 × 10 −10 A / cm 2 and the dielectric strength voltage is high in the untreated state.

【0013】真空室内の圧力としては通常0.5〜10
Torr程度の範囲が一般的で、また不活性ガスとして
は特に限定するものではないが、通常ArやHeが用い
られ、N2も用いられることが多い。これらの不活性ガ
スの流量については特に限定するものではないが50〜
1000sccm程度の範囲が好適である。
The pressure in the vacuum chamber is usually 0.5 to 10
A range of about Torr is generally used, and the inert gas is not particularly limited, but Ar or He is usually used, and N 2 is also often used. The flow rate of these inert gases is not particularly limited, but is 50-
A range of about 1000 sccm is suitable.

【0014】[0014]

【発明の効果】本発明はTiまたはSiを含有する酸化
タンタル薄膜を形成することによって、従来法による酸
化タンタル薄膜内に形成されやすい格子欠陥等を補償ま
たは応力を緩和することでリーク電流の小さい酸化タン
タル薄膜を形成することができる。
According to the present invention, by forming a tantalum oxide thin film containing Ti or Si, a leak current is reduced by compensating for lattice defects and the like which are likely to be formed in the tantalum oxide thin film by the conventional method or relaxing stress. A tantalum oxide thin film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における酸化タンタル薄膜形
成装置の概略図
FIG. 1 is a schematic view of a tantalum oxide thin film forming apparatus according to an embodiment of the present invention.

【図2】従来例における酸化タンタル薄膜形成装置の概
略図
FIG. 2 is a schematic view of a tantalum oxide thin film forming apparatus in a conventional example.

【図3】本発明および従来例によって形成した酸化タン
タル薄膜のリーク電流特性を示す図
FIG. 3 is a diagram showing leakage current characteristics of a tantalum oxide thin film formed by the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1 真空室 2 真空排気装置 3 アンプル 4 Arガス 5 基板 6 ヒータ 7 恒温槽 8 流量制御装置 9 ヒータ 10 ガス導入管 11 流量制御装置 12 O2ガス 13 TiCl4またはSiH4 14 流量制御装置 15 ガス導入管 16 基板ホルダ 31 真空室 32 真空排気装置 33 基板 34 ヒータ 36 アンプル 37 ヒータ 38 流量制御装置 39 不活性ガス 40 ヒータ 41 ガス導入管 42 流量制御装置 43 酸素ガス1 Vacuum Chamber 2 Vacuum Exhaust Device 3 Ampoule 4 Ar Gas 5 Substrate 6 Heater 7 Constant Temperature Bath 8 Flow Control Device 9 Heater 10 Gas Inlet Pipe 11 Flow Control Device 12 O 2 Gas 13 TiCl 4 or SiH 4 14 Flow Control Device 15 Gas Introduction Tube 16 Substrate holder 31 Vacuum chamber 32 Vacuum exhaust device 33 Substrate 34 Heater 36 Ampoule 37 Heater 38 Flow rate control device 39 Inert gas 40 Heater 41 Gas introduction pipe 42 Flow rate control device 43 Oxygen gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空室内に原料ガスを導入し、熱分解反応
させる化学気相成長法による酸化タンタル薄膜の形成に
於て、前記真空室内に原料ガスとして少なくとも、Ta
(OC255とTiCl4を導入し、熱分解反応させ、
基板上にTiを含有した酸化タンタル薄膜を堆積させる
ことを特徴とする酸化タンタル薄膜の製造方法。
1. In forming a tantalum oxide thin film by a chemical vapor deposition method in which a raw material gas is introduced into a vacuum chamber to cause a thermal decomposition reaction, at least Ta as a raw material gas is contained in the vacuum chamber.
Introducing (OC 2 H 5 ) 5 and TiCl 4 to cause thermal decomposition reaction,
A method for producing a tantalum oxide thin film, which comprises depositing a tantalum oxide thin film containing Ti on a substrate.
【請求項2】真空室内に原料ガスを導入し、熱分解反応
させる化学気相成長法による酸化タンタル薄膜の形成に
於て、前記真空室内に原料ガスとして少なくとも、Ta
(OC255とSiH4を導入し、熱分解反応させ、基
板上にSiを含有した酸化タンタル薄膜を堆積させるこ
とを特徴とする酸化タンタル薄膜の製造方法。
2. In forming a tantalum oxide thin film by a chemical vapor deposition method in which a raw material gas is introduced into a vacuum chamber to cause a thermal decomposition reaction, at least Ta as a raw material gas is contained in the vacuum chamber.
A method for producing a tantalum oxide thin film, which comprises introducing (OC 2 H 5 ) 5 and SiH 4 and causing a thermal decomposition reaction to deposit a tantalum oxide thin film containing Si on a substrate.
JP21247192A 1992-08-10 1992-08-10 Formation of tantalum oxide thin film Pending JPH0657432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21247192A JPH0657432A (en) 1992-08-10 1992-08-10 Formation of tantalum oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21247192A JPH0657432A (en) 1992-08-10 1992-08-10 Formation of tantalum oxide thin film

Publications (1)

Publication Number Publication Date
JPH0657432A true JPH0657432A (en) 1994-03-01

Family

ID=16623197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21247192A Pending JPH0657432A (en) 1992-08-10 1992-08-10 Formation of tantalum oxide thin film

Country Status (1)

Country Link
JP (1) JPH0657432A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322784B1 (en) * 1998-04-29 2002-03-13 마이크로코팅 테크놀로지, 인크. Apparatus and process for controlled atmosphere chemical vapor deposition
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP2100677A1 (en) 2008-03-06 2009-09-16 Fujifilm Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate obtained thereby and lithographic printing plate support
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011037005A1 (en) 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
EP2434592A2 (en) 2010-09-24 2012-03-28 Fujifilm Corporation Anisotropically conductive member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322784B1 (en) * 1998-04-29 2002-03-13 마이크로코팅 테크놀로지, 인크. Apparatus and process for controlled atmosphere chemical vapor deposition
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP2100677A1 (en) 2008-03-06 2009-09-16 Fujifilm Corporation Method of manufacturing aluminum alloy plate for lithographic printing plate, aluminum alloy plate for lithographic printing plate obtained thereby and lithographic printing plate support
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011037005A1 (en) 2009-09-24 2011-03-31 富士フイルム株式会社 Lithographic printing original plate
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
EP2434592A2 (en) 2010-09-24 2012-03-28 Fujifilm Corporation Anisotropically conductive member

Similar Documents

Publication Publication Date Title
US6124158A (en) Method of reducing carbon contamination of a thin dielectric film by using gaseous organic precursors, inert gas, and ozone to react with carbon contaminants
JP4704618B2 (en) Method for producing zirconium oxide film
US20060228888A1 (en) Atomic layer deposition of high k metal silicates
KR100480500B1 (en) Process for depositing insulating film on substrate at low temperature
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
KR100860683B1 (en) Film forming method and heat treating device
JPH0657432A (en) Formation of tantalum oxide thin film
KR20020095194A (en) Method of forming a dielectric film
JPH05221644A (en) Production of thin tantalum oxide film
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JPS5884111A (en) Improved plasma deposition for silicon
JPH05102422A (en) Formation of tantalum oxide thin film
JPH06163519A (en) Formation of tantalum oxide thin film
JPH02102531A (en) Manufacture of silicon nitride and boron layer
US5221643A (en) Method for producing polycrystalline semiconductor material by plasma-induced vapor phase deposition using activated hydrogen
US4766007A (en) Process for forming deposited film
JPH06163527A (en) Formation of tantalum oxide thin film
JP2518406B2 (en) Method of forming capacitive insulating film
JPS61234531A (en) Formation of silicon oxide
JPH0661450A (en) Formation method of tantalum oxide thin film
JP2904958B2 (en) Tantalum oxide thin film manufacturing equipment
JPH0521749A (en) Dielectric thin film and manufacture thereof
JP2680863B2 (en) Vapor growth method of metal oxide film
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JPH05193952A (en) Production of thin tantalum oxide film