JP2680863B2 - Vapor growth method of metal oxide film - Google Patents

Vapor growth method of metal oxide film

Info

Publication number
JP2680863B2
JP2680863B2 JP63282712A JP28271288A JP2680863B2 JP 2680863 B2 JP2680863 B2 JP 2680863B2 JP 63282712 A JP63282712 A JP 63282712A JP 28271288 A JP28271288 A JP 28271288A JP 2680863 B2 JP2680863 B2 JP 2680863B2
Authority
JP
Japan
Prior art keywords
metal oxide
oxide film
film
phase growth
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63282712A
Other languages
Japanese (ja)
Other versions
JPH02128460A (en
Inventor
昌伸 善家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63282712A priority Critical patent/JP2680863B2/en
Publication of JPH02128460A publication Critical patent/JPH02128460A/en
Application granted granted Critical
Publication of JP2680863B2 publication Critical patent/JP2680863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容量絶縁膜に用いる金属酸化膜を形成する
方法に関し、特に段差被覆性が優れリーク電流の少ない
良質な金属酸化膜を低温で気相成長する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for forming a metal oxide film used for a capacitive insulating film, and particularly, to a high-quality metal oxide film having excellent step coverage and low leakage current at low temperature. Regarding the method of vapor growth.

〔従来の技術〕[Conventional technology]

従来、容量絶縁膜用金属酸化膜の形成方法には以下に
述べる二つの方法がある。そのひとつとして、スパッタ
を用いる方法がある。スパッタを用いる方法では、金属
をスパッタ法により半導体基板上,電極上や絶縁膜上に
形成し、熱酸化により金属酸化膜を形成する場合及び反
応性スパッタ法により金属酸化膜を直接形成する場合が
ある。またCVD(化学気相成長)を用いる方法がある。C
VDを用いる方法では、アルコキシド等の金属有機化合物
と酸素ガスを原料として熱CVDあるいは光CVDで金属酸化
膜を形成する場合、及び金属ハロゲン化物,水素ガス及
び二酸化炭素ガスを原料として熱CVDあるいは金属ハロ
ゲン化物及び酸素ガスを原料として光CVDで金属酸化膜
を形成する方法がある。
Conventionally, there are the following two methods for forming a metal oxide film for a capacitive insulating film. One of them is a method using sputtering. In the method using sputtering, a metal is formed on a semiconductor substrate, an electrode, or an insulating film by a sputtering method, and a metal oxide film is formed by thermal oxidation, or a metal oxide film is directly formed by a reactive sputtering method. is there. There is also a method using CVD (chemical vapor deposition). C
In the method using VD, when a metal oxide film is formed by thermal CVD or optical CVD using a metal organic compound such as an alkoxide and oxygen gas as raw materials, and when a metal halide, hydrogen gas and carbon dioxide gas are used as raw materials, thermal CVD or metal There is a method of forming a metal oxide film by photo CVD using a halide and oxygen gas as raw materials.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来の金属酸化膜の形成方法では、以下に述
べる問題点がある。
The above-described conventional method for forming a metal oxide film has the following problems.

まず、スパッタを用いて形成する方法では、スタック
容量あるいはトレンチ容量の様に凹凸のある半導体基板
上や電極上に金属酸化膜を形成する場合に、金属酸化膜
の段差被覆性が悪く側壁部の金属酸化膜が薄くなり、リ
ーク電流が増加するという欠点がある。
First, in the method of forming by using sputtering, when a metal oxide film is formed on a semiconductor substrate or an electrode having irregularities such as stack capacitance or trench capacitance, the step coverage of the metal oxide film is poor and the side wall There is a drawback that the metal oxide film becomes thin and leak current increases.

またCVDを用いる方法ではアルコキシド等のような有
機化合物と酸素ガスを原料とした熱CVDでは、形成され
た膜中に不純物として炭素がとり込まれリーク電流が多
く信頼性が悪いという欠点がある。光CVDを用いると熱C
VDに比較して、膜中の炭素の量は少ないが、窓くもりや
スルプット等の問題があり、量産性が悪いという欠点が
ある。
Further, in the method using CVD, thermal CVD using an organic compound such as an alkoxide and oxygen gas as raw materials has a drawback that carbon is taken into the formed film as an impurity and a leak current is large and reliability is poor. Thermal C using photo CVD
Compared to VD, the amount of carbon in the film is small, but there are problems such as window fog and throughput, which is a drawback of poor mass productivity.

また金属ハロゲン化物,水素及び二酸化炭素を原料と
して熱CVDを用いると成長温度が800〜1000℃必要とな
り、形成された金属酸化膜は成長中に多結晶化し、リー
ク電流が流れやすい欠点がある。ここで光CVDを用いる
と、低温で形成されるので上記の多結晶化の問題は起こ
らないが、窓くもりやスループットの問題があり、量産
性が悪い。
Further, when using thermal CVD with metal halides, hydrogen and carbon dioxide as raw materials, the growth temperature is required to be 800 to 1000 ° C., and the formed metal oxide film is polycrystallized during the growth, so that a leak current easily flows. If photo-CVD is used here, the above problem of polycrystallization does not occur because it is formed at a low temperature, but there is a problem of window clouding and throughput, and mass productivity is poor.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の金属酸化膜の形成方法は、半導体基板上、電
極上もしくは絶縁膜上に金属酸化膜を気相成長する方法
において、Ta,Ti,Hf,Nb,Zr及びYのうち少なくともいず
れか一つの金属を含む有機金属化合物を原料とし、当該
原料を加熱し気体状態にして、当該原料気体とオゾンを
混合して、Ta2O5,TiO2,HfO2,Nb2O5,ZrO2及びY2O3のうち
少なくともいずれか一つの金属酸化膜を形成することを
特徴とする。
The method for forming a metal oxide film of the present invention is a method of vapor-depositing a metal oxide film on a semiconductor substrate, an electrode or an insulating film, wherein at least one of Ta, Ti, Hf, Nb, Zr and Y is used. Using an organic metal compound containing one metal as a raw material, heating the raw material into a gas state, mixing the raw material gas and ozone, Ta 2 O 5 , TiO 2 , HfO 2 , Nb 2 O 5 , ZrO 2 and It is characterized in that at least one metal oxide film of Y 2 O 3 is formed.

本発明により、炭素等の不純物が少なくリーク電流の
少ない、段差被覆性が優れ、良質な金属酸化膜を低温で
形成できる。低温で形成できるので、気相成長中に金属
酸化膜が多結晶化するのを防止できる。また有機金属化
合物の気体とオゾンとを混合して気相成長するので、量
産性のある装置を作ることが容易である。
According to the present invention, it is possible to form a high-quality metal oxide film having a small amount of impurities such as carbon, a small leak current, excellent step coverage and a low temperature. Since it can be formed at a low temperature, it is possible to prevent the metal oxide film from being polycrystallized during vapor phase growth. In addition, since a gas of an organometallic compound and ozone are mixed to perform vapor phase growth, it is easy to manufacture a mass-produced device.

有機金属化合物としては、Ta(OCH35,Ti(OC
2H54,Hf(OCH34,Ta(OC4H9(OC2H5),Y(C5H7O
2等のように金属原子と酸素原子と炭素原子及び水
素原子とからなる有機金属化合物を用いることができ
る。また、有機金属化合物としては、Ta(CH35,Y(C2
H5等のように金属原子と炭素原子及び水素原子から
なる有機金属化合物を用いることもできる。さらには、
有機金属化合物としては、TaCl2(OC2H5(C5H
7O2),Hf(C5H4F3O2のような金属原子とハロゲン原
子と酸素原子と炭素原子及び水素原子とからなる有機金
属化合物を用いることもできる。
Organometallic compounds include Ta (OCH 3 ) 5 , Ti (OC
2 H 5 ) 4 ,, Hf (OCH 3 ) 4 , Ta (OC 4 H 9 ) 4 (OC 2 H 5 ), Y (C 5 H 7 O
2 ) An organometallic compound composed of a metal atom, an oxygen atom, a carbon atom and a hydrogen atom, such as 3 can be used. Further, as the organometallic compound, Ta (CH 3 ) 5 , Y (C 2
It is also possible to use an organometallic compound composed of a metal atom, a carbon atom and a hydrogen atom, such as H 5 ) 3 . Moreover,
As the organometallic compound, TaCl 2 (OC 2 H 5 ) 2 (C 5 H
It is also possible to use an organometallic compound composed of a metal atom, a halogen atom, an oxygen atom, a carbon atom and a hydrogen atom, such as 7 O 2 ), Hf (C 5 H 4 F 3 O 2 ) 4 .

また、気相成長を、Ta(OC2H5とTi(OCH35,Ta
(OC2H5とHf(OC2H5等のように複数の有機金属
化合物とオゾンを混合させて複数種の金属からなる金属
酸化膜を気相成長させることもできる。
In addition, vapor phase growth was performed using Ta (OC 2 H 5 ) 5 and Ti (OCH 3 ) 5 , Ta
It is also possible to mix a plurality of organometallic compounds such as (OC 2 H 5 ) 5 and Hf (OC 2 H 5 ) 5 with ozone to vapor-deposit a metal oxide film made of a plurality of metals.

気相成長は、200〜600℃の温度範囲内で行なわれるこ
とが好ましい。
The vapor phase growth is preferably performed within a temperature range of 200 to 600 ° C.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

本発明の第1の実施例として、シリコン基板上にTa
(OCH3を原料にし、Ta2O5膜を形成する方法につい
て説明する。
As a first embodiment of the present invention, Ta on a silicon substrate
A method of forming a Ta 2 O 5 film using (OCH 3 ) 5 as a raw material will be described.

第1図は本発明の第1実施例に用いる気相成長装置の
模式的構造図である。図において、11はArガスの導入
管、12はO2ガスの導入管、13はキャリヤーガスArの導入
管、15はオゾン発生器、16は真空ポンプ、17は排気口、
21,22,23,25はバルブ、5は反応炉、6,71はヒータ、8
はウェハー、91は原料Ta(OCH3を充てんした気化室
である。
FIG. 1 is a schematic structural diagram of a vapor phase growth apparatus used in the first embodiment of the present invention. In the figure, 11 is an Ar gas introduction pipe, 12 is an O 2 gas introduction pipe, 13 is a carrier gas Ar introduction pipe, 15 is an ozone generator, 16 is a vacuum pump, 17 is an exhaust port,
21,22,23,25 valves, 5 reactors, 671 heaters, 8
Is a wafer, and 91 is a vaporization chamber filled with Ta (OCH 3 ) 5 as a raw material.

本実施例の形成方法によりTa2O5膜をシリコン基板上
に気相成長させる手順を説明する。まず、気化室91に充
てんされた原料のTa(OCH3をヒータ7で50〜200℃
に加熱し蒸気圧を高くする。また、反応炉内のウェハー
8をヒータ6で200〜600℃に加熱する。原料Ta(OCH3
及びウェハー8が充分に加熱されたならば、原料を運
ぶキャリヤーガスとしてArを用い、ガス導入管13から気
化室91内に10〜200cc/分のArを吹き込み、Ta(OCH3
を含むガス(以下、原料ガスと略す)を反応炉5内に導
入する。また同時にO2ガス導入管12から1〜5/分の
O2ガスをオゾン発生器15に導入して、オゾン発生器15よ
り発生させたオゾン濃度1000〜10000ppmのオゾンを含む
酸素ガスを反応炉5に導入し、ウェハー8上にTa2O5
を成長させる。さらに膜成長時の反応炉5内の圧力を調
節するために、ベースガスArをガス導入管11から反応炉
5内に導入しても良い。圧力は0.1〜10torrにベースAr
ガス流量で調節する。
A procedure for vapor-depositing a Ta 2 O 5 film on a silicon substrate by the forming method of this embodiment will be described. First, the raw material Ta (OCH 3 ) 5 filled in the vaporization chamber 91 is heated by the heater 7 at 50 to 200 ° C.
To increase the vapor pressure. Further, the wafer 8 in the reaction furnace is heated to 200 to 600 ° C. by the heater 6. Raw material Ta (OCH 3 )
5 and the wafer 8 are sufficiently heated, Ar is used as a carrier gas for carrying the raw material, 10 to 200 cc / min of Ar is blown into the vaporization chamber 91 from the gas introduction pipe 13, and Ta (OCH 3 ) 5
A gas containing (hereinafter abbreviated as raw material gas) is introduced into the reaction furnace 5. At the same time, 1 to 5 / min from the O 2 gas introduction pipe 12
O 2 gas is introduced into the ozone generator 15, and oxygen gas containing ozone having an ozone concentration of 1000 to 10000 ppm generated from the ozone generator 15 is introduced into the reaction furnace 5, and a Ta 2 O 5 film is formed on the wafer 8. Grow. Further, the base gas Ar may be introduced into the reaction furnace 5 through the gas introduction pipe 11 in order to adjust the pressure in the reaction furnace 5 during the film growth. Pressure is 0.1-10 torr based on Ar
Adjust by gas flow rate.

以上説明したように、本実施例の気相成長法で形成さ
れたTa2O5膜のリーク電流特性を、Ta(OCH3と酸素
ガスとによる従来の熱CVD法で形成されたTa2O5膜のリー
ク電流特性と合わせて、第2図に示す。図において、横
軸はTa2O5膜に印加されている電界強度を、縦軸はTa2O5
膜中を流れるリーク電流密度を示す。本発明の気相成長
法により形成されたTa2O5膜は、従来法により形成され
たTa2O5膜に比較してリーク電流を数桁以上大巾に低減
できる。これは、本発明の気相成長法は、原料ガスとオ
ゾンを混合させて気相成長させるので、従来の原料ガス
と酸素ガスとを混合させて気相成長する方法に比較して
炭素等の不純物が少ないためである。また本発明の気相
成長法の成長温度が600℃以下のため、気相成長中にTa2
O5膜の結晶化してリーク電流が増えるという問題も起こ
らない。
As described above, the leakage current characteristics of the Ta 2 O 5 film formed by the vapor phase epitaxy method of the present embodiment are shown by the Ta formed by the conventional thermal CVD method using Ta (OCH 3 ) 5 and oxygen gas. It is shown in FIG. 2 together with the leakage current characteristics of the 2 O 5 film. In the figure, the horizontal axis represents the electric field strength applied to the Ta 2 O 5 film and the vertical axis represents Ta 2 O 5
The leakage current density flowing in the film is shown. The Ta 2 O 5 film formed by the vapor phase epitaxy method of the present invention can greatly reduce the leakage current by several orders of magnitude or more as compared with the Ta 2 O 5 film formed by the conventional method. This is because the vapor phase growth method of the present invention mixes a source gas and ozone for vapor phase growth, and therefore, compared with a conventional method of mixing a source gas and oxygen gas for vapor phase growth This is because there are few impurities. Further, since the growth temperature of the vapor phase growth method of the present invention is 600 ° C. or lower, Ta 2 is
There is no problem that the leakage current increases due to crystallization of the O 5 film.

また本発明で形成されたTa2O5膜の比誘電率は20〜25
で従来法によるTa2O5膜の比誘電率とほぼ同じである。
The relative dielectric constant of the Ta 2 O 5 film formed by the present invention is 20 to 25.
Therefore, it is almost the same as the relative permittivity of the Ta 2 O 5 film by the conventional method.

さらに本発明では気相成長法を用いるため、凸凹のあ
る基板上にも段差被覆性のいいTa2O5膜を形成できる。
Furthermore, since the vapor phase growth method is used in the present invention, a Ta 2 O 5 film having good step coverage can be formed even on a substrate having irregularities.

次に、本発明の第2の実施例として、Ta(OCH3
Ti(OC2H5とオゾンから、Tiを含んだTa2O5膜をシリ
コン基板上に気相成長する方法について説明する。
Next, as a second embodiment of the present invention, Ta (OCH 3 ) 5 and
A method of vapor-depositing a Ta 2 O 5 film containing Ti from Ti (OC 2 H 5 ) 4 and ozone on a silicon substrate will be described.

第3図は、本発明の第2の実施例に用いる気相成長装
置の模式的構造図である。図において91は原料Ta(OC
H3を充てんした気化室、92は原料Ti(OC2H5
充てんした気化室、13は気化室9に導入されるキャリヤ
ーガスArの導入管、14は気化室91に導入されるキャリヤ
ーガスArの導入管、24,26はバルブ、72はヒーターで、
他の番号は第1図の気相成長装置と同じである。
FIG. 3 is a schematic structural diagram of a vapor phase growth apparatus used in the second embodiment of the present invention. In the figure, 91 is the raw material Ta (OC
Vaporization chamber filled with H 3 ) 5 , 92 is a vaporization chamber filled with Ti (OC 2 H 5 ) 4 as a raw material, 13 is an inlet pipe for the carrier gas Ar introduced into the vaporization chamber 9, 14 is introduced into the vaporization chamber 91 Carrier gas Ar introduction pipe to be used, 24 and 26 are valves, 72 is a heater,
Other numbers are the same as those of the vapor phase growth apparatus of FIG.

本発明の形成方法によりTiを含んだTa2O5膜をシリコ
ン基板上に気相成長する手順を説明する。まず、気化室
91に充てんされた原料のTa(OCH3をヒータ71で50〜
200℃に加熱し、蒸気圧を高くする。また気化室92に充
てんされたTi(OC2H5をヒータ72で50〜200℃に加熱
し、蒸気圧を高くする。また、反応炉内のウェハー8を
ヒータ6で200〜600℃に加熱する。原料Ta(OCH3
びTi(CO2H5とウェハー8が充分に加熱されたなら
ば、原料を運ぶキャリヤーガスとしてArを用い、ガス導
入管13から気化室91内に10〜200cc/分のArを吹き込み、
Ta(OC2H5を含むガスを、また同様にギャリヤーガ
ス導入管14から気化室92内に10〜200cc/分のArを吹き込
み、Ta(OCH3を含むガスを反応炉5内に導入する。
また同時にO2ガス導入管12から、1〜5/分のガスを
オゾン発生器15に導入して、オゾン発生器15より発生さ
せたオゾン濃度1000〜10000ppmのオゾンを含む酸素ガス
を反応炉5に導入し、ウェハー8上にTiを含むTa2O5
を成長させる。この時、Ta2O5膜中に含まれるTiの量はT
iとTaの原子数の比(Ti/Ta)で10%以下が望ましい。Ti
/Taの量は、Ta(OCH3を含むキャリヤーガス流量とT
i(OC2H5を含むキャリヤーガスの流量とを調節した
り、あるいは、気化室91に充てんされているTa(OCH3
の加熱温度及び気化室92に充てんされているTi(OC2H
5の加熱温度をヒーター71及び72で調整して、Ta(O
CH3及びTi(OC2H5の蒸気圧を異なる圧力にして
調節したりする。また圧力は0.1〜10torrに、ベースAr
ガスを反応炉5内に導入して調節する。
A procedure for vapor-depositing a Ta 2 O 5 film containing Ti on the silicon substrate by the forming method of the present invention will be described. First, the vaporization room
The raw material Ta (OCH 3 ) 5 filled in 91 is heated to 50 by the heater 71.
Heat to 200 ° C and increase vapor pressure. Further, Ti (OC 2 H 5 ) 4 filled in the vaporization chamber 92 is heated to 50 to 200 ° C. by the heater 72 to increase the vapor pressure. Further, the wafer 8 in the reaction furnace is heated to 200 to 600 ° C. by the heater 6. When the raw materials Ta (OCH 3 ) 5 and Ti (CO 2 H 5 ) 4 and the wafer 8 are sufficiently heated, Ar is used as a carrier gas for carrying the raw materials, and 10 to 10 Blow Ar of 200cc / min,
A gas containing Ta (OC 2 H 5 ) 4 and a gas containing Ta (OCH 3 ) 5 are blown into the vaporization chamber 92 from the Gallier gas introduction pipe 14 in the same manner, and a gas containing Ta (OCH 3 ) 5 is supplied into the reaction furnace 5. To introduce.
At the same time, 1 to 5 / min of gas is introduced into the ozone generator 15 from the O 2 gas introduction pipe 12, and the oxygen gas containing ozone having an ozone concentration of 1000 to 10000 ppm generated by the ozone generator 15 is supplied to the reactor 5. Then, a Ta 2 O 5 film containing Ti is grown on the wafer 8. At this time, the amount of Ti contained in the Ta 2 O 5 film is T
The ratio of the number of atoms of i and Ta (Ti / Ta) is preferably 10% or less. Ti
The amount of / Ta depends on the carrier gas flow rate including Ta (OCH 3 ) 5 and T
The flow rate of the carrier gas containing i (OC 2 H 5 ) 4 is adjusted, or Ta (OCH 3 ) filled in the vaporization chamber 91 is adjusted.
5 and the Ti (OC 2 H 2 ) filled in the vaporization chamber 92.
5 ) Adjust the heating temperature of 5 with heaters 71 and 72, and
CH 3 ) 5 and Ti (OC 2 H 5 ) 5 vapor pressures are adjusted to different pressures. Also, the pressure is 0.1 to 10 torr and the base Ar
The gas is introduced into the reaction furnace 5 and adjusted.

本発明で形成されたTiを含むTa2O5膜は、Ti/Ta量が多
くなるとTa2O5膜中のTiO2の量が増えると、TiO2の比誘
電率Ta2O5膜のそれより大きいため、比誘電率が大きく
なる。また、TiO2の方がTa2O5膜よりリーク電流が流れ
やすいので、Ta2O5膜中に含まれるTi量は、Ti/Ta量で10
%以下が望ましい。このように本発明の気相成長法によ
り、高誘電率かつリーク電流の少ないTa2O5膜が形成で
きる。
The Ta 2 O 5 film containing Ti which is formed in the present invention, the amount of TiO 2 in the Ta 2 O 5 film in the Ti / Ta amount is increased is increased, the TiO 2 dielectric constant the Ta 2 O 5 film of Since it is larger than that, the relative dielectric constant becomes large. Further, since the direction of TiO 2 is Ta 2 O 5 is the leakage current easily flows from the film, Ti content in the Ta 2 O 5 film is a Ti / Ta of 10
% Is desirable. Thus, by the vapor phase growth method of the present invention, a Ta 2 O 5 film having a high dielectric constant and a small leak current can be formed.

以上、第1及び第2の実施例ではTa2O5膜,Tiを含むTa
2O5膜をシリコン基板上に形成する方法について説明し
たが、シリコン基板以外の他の半導体基板上,ポリシリ
コン上,タングステンシリサイド等のシリサイド電極
上,ポリシリコンとシリサイドを積層したポリサイド電
極上,窒素チタン等の窒化金属電極上,もしくはタング
ステン等の高融点金属電極上にも本発明は適用できる。
また第1及び第2の実施例ではTa2O5膜及びTiを含むTa2
O5膜について説明したが、HfO2,TiO2,Nb2O5,Y2O3等の他
の金属酸化膜や、Hfを含むTa2O5,Nbを含むHfO2等の他の
金属が含まれる金属酸化膜にも本発明は適用できる。第
1及び第2の実施例では、Ta(OCH3及びTi(OC
2H5の原料を用いた例を説明したが、Ta(OC4H9
(OC2H5),Y(C5H7O2等のような金属原子と酸素原
子及び水素原子からなる有機金属化合物,Y(C2H5
のような金属原子と炭素原子及び水素原子からなる有機
金属化合物,TaCl2(OC2H5(C5H7O2)等のような金
属原子とハロゲン原子と炭素原子及び水素原子からなる
有機金属化合物を原料に用いてもよい。
As described above, in the first and second embodiments, the Ta 2 O 5 film and the Ta containing Ti are used.
The method of forming the 2 O 5 film on the silicon substrate has been described. However, on a semiconductor substrate other than the silicon substrate, on polysilicon, on a silicide electrode such as tungsten silicide, on a polycide electrode in which polysilicon and silicide are laminated, The present invention can be applied to a metal nitride electrode such as titanium nitride, or a refractory metal electrode such as tungsten.
In the first and second embodiments, the Ta 2 O 5 film and Ta 2 containing Ti
Although the O 5 film has been described, other metal oxide films such as HfO 2 , TiO 2 , Nb 2 O 5 and Y 2 O 3 and other metals such as Ta 2 O 5 containing Hf and HfO 2 containing Nb. The present invention can also be applied to a metal oxide film containing In the first and second embodiments, Ta (OCH 3 ) 5 and Ti (OC
An example using 2 H 5 ) 4 raw material was explained, but Ta (OC 4 H 9 ) 4
(OC 2 H 5 ), Y (C 5 H 7 O 2 ) 3 and other metal atoms, and organometallic compounds consisting of oxygen and hydrogen atoms, Y (C 2 H 5 ) 3 and other metal atoms Organometallic compound consisting of carbon atom and hydrogen atom, metal atom such as TaCl 2 (OC 2 H 5 ) 2 (C 5 H 7 O 2 ) and halogen atom, organometallic compound consisting of carbon atom and hydrogen atom as a raw material May be used for.

また実施例では、シリコン基板上に形成する例につい
て説明したが、SiO2やSi3N4等の他の絶縁膜上に形成し
て、SiO2/Ta2O5膜,Si3N4/Ta2O5膜、またSi3N4/Ta2O5/Si
3N4膜等の積層膜にする場合にも本発明も適用できる。
Further, in the embodiment, the example of forming on the silicon substrate has been described, but it is formed on another insulating film such as SiO 2 or Si 3 N 4 , and the SiO 2 / Ta 2 O 5 film, Si 3 N 4 / Ta 2 O 5 film, also Si 3 N 4 / Ta 2 O 5 / Si
The present invention can also be applied to the case of forming a laminated film such as a 3 N 4 film.

また第1及び第2の実施例に用いる気相成長装置は、
第1図及び第3図に示すように汎用的な装置であり、光
CVD装置を用いるのに比較して、量産性がはるかに優れ
る。
The vapor phase growth apparatus used in the first and second embodiments is
It is a general-purpose device as shown in FIG. 1 and FIG.
Mass productivity is far superior to using CVD equipment.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、Ta(OCH35,Hf(CO2H
54,Y(C2H5等の有機金属化合物を原料として、当
該原料を加熱して気体状態にして、当該原料気体のオゾ
ンとを混合して200〜600℃の成長温度で、Ta2O5,TiO2,H
fO2,Y2O3,N2O5等の金属酸化膜を半導体基板上,電極上
もしくは絶縁膜上に気相成長することで、炭素等の不純
物が少なくリーク電流の少ない段差被覆性のいい良質な
金属酸化膜を低温で形成できる効果がある。低温で形成
できることで、気相成長中に金属酸化膜が多結晶化する
のを防止でき、多結晶化によるリーク電流の増加を防げ
る効果もある。また有機金属化合物の気体とオゾンを混
合して気相成長するので、使用する気相成長装置は量産
性のある装置を用いることができる利点もある。
As described above, according to the present invention, Ta (OCH 3 ) 5 , Hf (CO 2 H
5 ) Organometallic compounds such as 4 , Y (C 2 H 5 ) 3 are used as raw materials, and the raw materials are heated to a gas state and mixed with ozone of the raw material gas at a growth temperature of 200 to 600 ° C. , Ta 2 O 5 , TiO 2 , H
By vapor-depositing a metal oxide film such as fO 2 , Y 2 O 3 , and N 2 O 5 on a semiconductor substrate, an electrode, or an insulating film, a step coverage property with less impurities such as carbon and less leakage current can be obtained. It has the effect of forming a good quality metal oxide film at a low temperature. By being formed at a low temperature, it is possible to prevent the metal oxide film from being polycrystallized during vapor phase growth, and to prevent an increase in leak current due to polycrystallization. Further, since a gas of an organometallic compound and ozone are mixed to perform vapor phase growth, there is an advantage that a vapor phase growth apparatus to be used can be an apparatus having mass productivity.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例に用いる気相成長装置の
模式図、第2図は本発明の第1の実施例により形成した
Ta2O5膜のリーク電流特性図で、横軸は膜に印加されて
いる電界強度(MV/cm)、縦軸は膜を流れるリーク電流
密度(A/cm2)を示す。第3図は本発明の第2の実施例
に用いる気相成長装置の模式図である。 11……Arガスの導入管、12……O2ガスの導入管、13,14
……キャリヤーガスArの導入管、15……オゾン発生器、
16……真空ポンプ、、17……排気口、21,22,23,24,25,2
6……バルブ、5……反応炉、6,71,72……ヒーター、8
……ウェハー、91……原料Ta(OCH3を充てんした気
化室、92……原料Ti(C2H5を充てんした気化室。
FIG. 1 is a schematic diagram of a vapor phase growth apparatus used in the first embodiment of the present invention, and FIG. 2 is formed by the first embodiment of the present invention.
In the leakage current characteristic diagram of the Ta 2 O 5 film, the horizontal axis shows the electric field strength (MV / cm) applied to the film, and the vertical axis shows the leakage current density (A / cm 2 ) flowing through the film. FIG. 3 is a schematic diagram of a vapor phase growth apparatus used in the second embodiment of the present invention. 11 …… Ar gas inlet pipe, 12 …… O 2 gas inlet pipe, 13,14
...... Carrier gas Ar inlet tube, 15 …… Ozone generator,
16 ... Vacuum pump, 17 ... Exhaust port, 21,22,23,24,25,2
6 …… Valve, 5 …… Reactor, 6,71,72 …… Heater, 8
…… Wafer, 91 …… Vaporization chamber filled with Ta (OCH 3 ) 5 raw material, 92 …… Vaporization chamber filled with Ti (C 2 H 5 ) 4 raw material.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上、電極上もしくは絶縁膜上に
金属酸化膜を気相成長する方法において、Ta,Ti,Hf,Nb,
Zr及びYのうち少なくともいずれか一つの金属を含む有
機金属化合物を原料とし、当該原料を加熱し気体状態に
して、当該原料気体とオゾンを混合して、Ta2O5,TiO2,H
fO2,Nb2O5,ZrO2及びY2O3のうち少なくともいずれか一つ
の金属酸化膜を形成することを特徴とする金属酸化膜の
気相成長法。
1. A method of vapor-depositing a metal oxide film on a semiconductor substrate, an electrode or an insulating film, comprising the steps of Ta, Ti, Hf, Nb,
Using an organometallic compound containing at least one of Zr and Y as a raw material, heating the raw material into a gas state, mixing the raw material gas with ozone, and Ta 2 O 5 , TiO 2 , H
A vapor phase growth method for a metal oxide film, which comprises forming at least one metal oxide film of fO 2 , Nb 2 O 5 , ZrO 2 and Y 2 O 3 .
【請求項2】前記有機金属化合物が、Ta(OCH35,Ti
(OC2H54,Hf(OCH34,Ta(OC4H3(OC2H5),Y(C
5H7O2等のように金属原子と酸素原子と炭素原子及
び水素原子からなる有機金属化合物であることを特徴と
する請求項1記載の金属酸化膜の気相成長法。
2. The organometallic compound is Ta (OCH 3 ) 5 , Ti
(OC 2 H 5) 4, Hf (OCH 3) 4, Ta (OC 4 H 3) 4 (OC 2 H 5), Y (C
5. The vapor phase growth method for a metal oxide film according to claim 1, which is an organometallic compound composed of a metal atom, an oxygen atom, a carbon atom and a hydrogen atom, such as 5 H 7 O 2 ) 3 .
【請求項3】前記有機金属化合物が、Ta(CH35,Y(C2
H5等のように金属原子と炭素原子及び水素原子とか
らなる有機金属化合物であることを特徴とする請求項1
記載の金属酸化膜の気相成長法。
3. The organometallic compound is Ta (CH 3 ) 5 , Y (C 2
H 5 ) 3 etc., which is an organometallic compound composed of a metal atom and a carbon atom and a hydrogen atom.
A vapor-phase growth method of the described metal oxide film.
【請求項4】前記有機金属化合物が、TaCl2(OC2H5
(C5H7O2),Hf(C5H4F3O2のような金属原子とハロ
ゲン原子と酸素原子と炭素原子及び水素原子からなる有
機金属化合物であることを特徴とする請求項1記載の金
属酸化膜の気相成長法。
4. The organometallic compound is TaCl 2 (OC 2 H 5 ) 2
Characterized by being an organometallic compound composed of a metal atom such as (C 5 H 7 O 2 ), Hf (C 5 H 4 F 3 O 2 ) 4 , a halogen atom, an oxygen atom, a carbon atom and a hydrogen atom. The vapor phase growth method for a metal oxide film according to claim 1.
【請求項5】前記気相成長が、Ta(OC2H55,Ti(OC
H35,Ta(OC2H5とHf(OC2H5等のように複数の
有機金属化合物とオゾンを混合させて複数種の金属から
なる金属酸化膜を気相成長させることを特徴とする請求
項1記載の金属酸化膜の気相成長法。
5. The vapor phase growth includes Ta (OC 2 H 5 ) 5 , Ti (OC
H 3) 5, Ta (OC 2 H 5) 5 and Hf (OC 2 H 5) 5 metal oxide film vapor phase growth by mixing a plurality of organic metal compounds and ozone comprising a plurality of metals as such The vapor phase growth method for a metal oxide film according to claim 1, wherein
JP63282712A 1988-11-08 1988-11-08 Vapor growth method of metal oxide film Expired - Lifetime JP2680863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282712A JP2680863B2 (en) 1988-11-08 1988-11-08 Vapor growth method of metal oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282712A JP2680863B2 (en) 1988-11-08 1988-11-08 Vapor growth method of metal oxide film

Publications (2)

Publication Number Publication Date
JPH02128460A JPH02128460A (en) 1990-05-16
JP2680863B2 true JP2680863B2 (en) 1997-11-19

Family

ID=17656066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282712A Expired - Lifetime JP2680863B2 (en) 1988-11-08 1988-11-08 Vapor growth method of metal oxide film

Country Status (1)

Country Link
JP (1) JP2680863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145623A (en) * 1990-10-08 1992-05-19 Handotai Process Kenkyusho:Kk Manufacture of semiconductor device
US5387546A (en) * 1992-06-22 1995-02-07 Canon Sales Co., Inc. Method for manufacturing a semiconductor device
EP1167296A4 (en) * 1999-02-04 2005-03-16 Kawasaki Heavy Ind Ltd Method for producing anatase type titanium dioxide and titanium dioxide coating material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195743A (en) * 1975-02-20 1976-08-21
JPS61191018A (en) * 1985-02-20 1986-08-25 Canon Inc Formation of deposited film
JPS61193435A (en) * 1985-02-21 1986-08-27 Canon Inc Formation of deposited film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195743A (en) * 1975-02-20 1976-08-21
JPS61191018A (en) * 1985-02-20 1986-08-25 Canon Inc Formation of deposited film
JPS61193435A (en) * 1985-02-21 1986-08-27 Canon Inc Formation of deposited film

Also Published As

Publication number Publication date
JPH02128460A (en) 1990-05-16

Similar Documents

Publication Publication Date Title
US6544900B2 (en) In situ dielectric stacks
US4851295A (en) Low resistivity tungsten silicon composite film
JP3611392B2 (en) Capacitor and high-capacitance capacitor manufacturing method
JP2003332333A (en) Low-temperature deposition method of insulation film
US20080072819A1 (en) Metal oxide films
US20080038486A1 (en) Radical Assisted Batch Film Deposition
JP2001355070A (en) Method for depositing oxide thin film
JP2005314713A (en) Method for manufacturing ruthenium film or ruthenium oxide film
JP2004529489A (en) Method of forming high dielectric constant gate insulating layer
JP2005536064A (en) Atomic layer deposition of high-k metal silicates
WO2005093126A1 (en) Method for forming dielectric or metallic films
EP0212691A1 (en) Low temperature chemical vapor deposition of silicon dioxide films
JP2680863B2 (en) Vapor growth method of metal oxide film
US5677235A (en) Method for forming silicon film
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JPS5884111A (en) Improved plasma deposition for silicon
JP2018131661A (en) FILM DEPOSITION METHOD OF Si-CONTAINING FILM
US6537924B2 (en) Method of chemically growing a thin film in a gas phase on a silicon semiconductor substrate
JP2003335791A (en) Organometal complex and method for depositing metal silicate thin layer using the same
JPH0660406B2 (en) Vapor growth method of hafnium oxide film
JP2568224B2 (en) Gas-phase chemical reaction material supply method
JPH02196427A (en) Vapor growth method of metal oxide film
JPH0327565A (en) Method for forming capacitance insulating film
JP4212013B2 (en) Dielectric film fabrication method
KR102343186B1 (en) Method of depositing niobium nitride thin films