JPH065081B2 - Cylinder device - Google Patents

Cylinder device

Info

Publication number
JPH065081B2
JPH065081B2 JP61129864A JP12986486A JPH065081B2 JP H065081 B2 JPH065081 B2 JP H065081B2 JP 61129864 A JP61129864 A JP 61129864A JP 12986486 A JP12986486 A JP 12986486A JP H065081 B2 JPH065081 B2 JP H065081B2
Authority
JP
Japan
Prior art keywords
tube
cylinder
fiber material
winding
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61129864A
Other languages
Japanese (ja)
Other versions
JPS62288703A (en
Inventor
久儀 橋本
盛雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Arisawa Mfg Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Arisawa Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Arisawa Mfg Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP61129864A priority Critical patent/JPH065081B2/en
Publication of JPS62288703A publication Critical patent/JPS62288703A/en
Publication of JPH065081B2 publication Critical patent/JPH065081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2215/00Fluid-actuated devices for displacing a member from one position to another
    • F15B2215/30Constructional details thereof
    • F15B2215/305Constructional details thereof characterised by the use of special materials

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油圧シリンダ、空圧シリンダ更にはサーボ弁
或いはバルブのシリンダとして用いられるシリンダ装置
に関するものである。
The present invention relates to a hydraulic cylinder, a pneumatic cylinder, and a cylinder device used as a servo valve or a cylinder of a valve.

〔従来技術〕[Prior art]

従来、油圧シリンダ、空圧シリンダとして使用されるシ
リンダ装置は、両端を施蓋したチューブと、該チューブ
内に摺動可能に設けられ、この内部を2つの室に画成す
るピストンと、一端が該ピストンに固着され他端がチュ
ーブ外に突出したピストンロッドとから構成され、前記
各室に流体を給排するとき、当該流体によってチューブ
が受ける軸方向、周方向の応力は、該チューブの肉厚に
よって受承するようになっていた。
Conventionally, a cylinder device used as a hydraulic cylinder or a pneumatic cylinder has a tube with both ends covered, a piston slidably provided in the tube, and a piston defining the inside into two chambers, and one end When a fluid is supplied to or discharged from the chambers, the axial and circumferential stresses applied to the tube by the fluid are fixed to the piston and the other end of the piston rod protrudes out of the tube. It was accepted by the thickness.

このような従来技術によるシリンダ装置として、第4図
および第5図に示すものが知られている。
As such a cylinder device according to the prior art, those shown in FIGS. 4 and 5 are known.

即ち、図面において、1は等方性材料である例えば金属
製の筒体からなるチューブで、該チューブ1の両端はヘ
ッドカバー2、ロッドカバー3によって施蓋され、該ヘ
ッドカバー2、ロッドカバー3にはそれぞれ給排ポート
4,5が形成されている。6はチューブ1内に摺動可能
に挿嵌されたピストンで、該ピストン6によりチューブ
1内は2つの室A,Bに画成されている。7はピストン
ロッドで、該ピストンロッド7の一端はピストン6に固
着され、その他端はロッドカバー3から外部に突出して
いる。
That is, in the drawings, reference numeral 1 denotes a tube made of an isotropic material, for example, a metal cylindrical body, and both ends of the tube 1 are covered with a head cover 2 and a rod cover 3, and the head cover 2 and the rod cover 3 have Supply / discharge ports 4 and 5 are formed, respectively. Reference numeral 6 denotes a piston slidably fitted in the tube 1, and the interior of the tube 1 is divided into two chambers A and B by the piston 6. Reference numeral 7 denotes a piston rod. One end of the piston rod 7 is fixed to the piston 6, and the other end thereof projects from the rod cover 3 to the outside.

そして、給排ポート4,5のうち一方の給排ポート4に
流体を供給すると、室A側が高圧となってピストン6は
図中左方に変位し、室B内の流体は給排ポート5から排
出され、逆に給排ポート5に流体を供給すると、ピスト
ン6は図中右方に変位するようになっており、このとき
高圧側の室内の圧力は負荷によって定められる。
Then, when fluid is supplied to one of the supply / discharge ports 4 and 5, the chamber A side has a high pressure and the piston 6 is displaced leftward in the drawing, and the fluid in the chamber B is supplied to the supply / discharge port 5. When the fluid is discharged from the chamber, and conversely the fluid is supplied to the supply / discharge port 5, the piston 6 is displaced to the right in the figure, and at this time, the pressure in the chamber on the high pressure side is determined by the load.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

然るに、前述した従来技術によるシリンダ装置にあって
は、チューブ1を等方性材料の代表例である金属製の円
筒体として構成しているため、次のような問題点があっ
た。
However, in the above-described conventional cylinder device, the tube 1 is configured as a metal cylindrical body that is a typical example of an isotropic material, and therefore has the following problems.

即ち、薄肉円筒理論によれば、室A,B内の流体圧によ
ってチューブ1に生じる軸方向応力をσ、周方向応力
をσとすると、軸方向応力σは周方向応力σの1/
2である。
That is, according to the thin-walled cylinder theory, assuming that the axial stress generated in the tube 1 by the fluid pressure in the chambers A and B is σ l and the circumferential stress is σ r , the axial stress σ l is equal to the circumferential stress σ r . 1 /
Is 2.

この結果、第1のチューブ1の設計に際しては、周方向
応力σを基準に設計しなくてはならないから、軸方向
に対して過剰設計となってしまう欠点がある。第2に、
シリンダ装置の高圧化をめざす場合には、チューブ1の
肉厚を該チューブ1の周方向応力σに合せて大きくし
なければならず、シリンダ装置全体の重量が大きくなっ
てしまう欠点がある。第3に、チューブ1を構成する鉄
系材料は振動吸収性が悪く、衝撃吸収性に劣るという問
題や低温脆性の問題があり、更に、僅かな切欠きから急
激に破損する恐れがあるという欠点がある。
As a result, when designing the first tube 1, it is necessary to design it based on the circumferential stress σ r, which is a drawback that it is overdesigned in the axial direction. Second,
In order to increase the pressure of the cylinder device, it is necessary to increase the wall thickness of the tube 1 in accordance with the circumferential stress σ r of the tube 1, which has a disadvantage of increasing the weight of the entire cylinder device. Thirdly, the iron-based material constituting the tube 1 has poor vibration absorption, poor shock absorption, low-temperature brittleness, and the possibility of rapid breakage from a slight notch. There is.

また、本発明者等は上記欠点を解消するために、先に特
開昭61−70275号公報(以下、他の従来技術とい
う)において、シリンダ装置のチューブを、例えば金属
材、セラミック材、高性能樹脂材等の等方性材料で形成
した内筒部と、樹脂を含浸させた繊維材料を該内筒部に
巻回することにより形成した外筒部とから構成すること
を提案した。
Further, in order to solve the above-mentioned drawbacks, the present inventors have previously described in Japanese Patent Laid-Open No. 61-70275 (hereinafter referred to as other conventional technology) a tube of a cylinder device, for example, a metal material, a ceramic material, It has been proposed that the inner cylinder portion is formed of an isotropic material such as a performance resin material, and the outer cylinder portion is formed by winding a resin-impregnated fiber material around the inner cylinder portion.

しかし、この他の従来技術では、チューブの内筒部を金
属材、セラミック材、高性能樹脂等の等方性材料により
形成する場合に、引抜き加工や切削加工を施す必要があ
り、引抜き加工で内筒部を長尺の円筒管として形成した
ときには、引抜き加工時の熱影響によって内筒部に曲げ
変形やうねり等が発生し易く、内筒部が僅かでも曲がる
と、ピストンとの摺動性が悪くなるという問題がある。
However, in other conventional techniques, when forming the inner tube portion of the tube with an isotropic material such as a metal material, a ceramic material, or a high-performance resin, it is necessary to perform a drawing process or a cutting process. When the inner cylinder is formed as a long cylindrical tube, bending deformation or undulation is likely to occur in the inner cylinder due to the heat effect during drawing, and if the inner cylinder bends even slightly, the slidability with the piston There is a problem that becomes worse.

また、内筒部を切削加工等により形成する場合でも、ピ
ストンとの摺動性を高めるためには内筒部の内周面を高
精度に仕上げる必要があり、製造時の作業性が悪く、コ
ストダウンを図るのが難しいという問題がある。
Further, even when the inner cylinder portion is formed by cutting or the like, it is necessary to finish the inner peripheral surface of the inner cylinder portion with high accuracy in order to improve slidability with the piston, and workability during manufacturing is poor, There is a problem that it is difficult to reduce costs.

本発明は上述した従来技術の問題に鑑みなされたもの
で、本発明はチューブの重量を大幅に軽減でき、衝撃吸
収性や耐疲労性を高めることができる上に、ピストンと
の摺動性や耐摩耗性を効果的に向上できるようにしたシ
リンダ装置を提供することを目的としている。
The present invention has been made in view of the above-described problems of the prior art, and the present invention can significantly reduce the weight of the tube, improve shock absorption and fatigue resistance, and slidability with a piston and An object of the present invention is to provide a cylinder device capable of effectively improving wear resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上述した問題点を解決するために本発明は、両端を施蓋
されたチューブ内には、該チューブ内を2室に画成する
ピストンを摺動可能に設けてなるシリンダ装置におい
て、前記チューブは、多量の熱硬化性樹脂を含浸させた
不織布状繊維材料により形成され、前記ピストンの摺動
面となる内周面が該不織布状繊維材料から浸み出した熱
硬化性樹脂により覆われた内筒と、熱硬化性樹脂を含浸
させた長繊維材料を該内筒の外周側に巻回することによ
り形成され、内層側と外層側とで前期長繊維材料の巻角
が異なる2層以上の巻回層からなる外筒とから構成し、
該外筒を構成する2層以上の巻回層は、前記長繊維材料
を内層側で巻角が大きく、外層側で小さくするように巻
回して形成したことを特徴としてなる構成を採用してい
る。
In order to solve the above-mentioned problems, the present invention provides a cylinder device in which a piston defining two chambers inside the tube is slidably provided in the tube whose both ends are covered. An inner peripheral surface which is formed of a non-woven fiber material impregnated with a large amount of thermosetting resin and whose inner peripheral surface serving as the sliding surface of the piston is covered with the thermosetting resin leached from the non-woven fiber material. It is formed by winding a tube and a long fiber material impregnated with a thermosetting resin around the outer peripheral side of the inner tube, and the inner layer side and the outer layer side have different winding angles of the previous long fiber material. Consists of an outer cylinder consisting of a winding layer,
The two or more winding layers constituting the outer cylinder are formed by winding the long fiber material so that the winding angle is large on the inner layer side and small on the outer layer side. There is.

ここで、上記不織布状繊維材料及び長繊維材料として用
いられる繊維材料には、ガラス繊維、炭素繊維、アラミ
ド繊維、セラミック繊維等があり、該繊維材料に含浸さ
せる樹脂には、熱硬化性と接着性を有するポリイミド樹
脂、エポキシ樹脂、ポリエステル樹脂等がある。また、
前記繊維材料の巻回方法としては、糸状繊維材料を用い
るフィラメントワインディング法と、テープ状繊維材料
または織布状繊維材料を用いるテープワインディング法
とがある。
Here, the fiber material used as the above-mentioned non-woven fiber material and long fiber material includes glass fiber, carbon fiber, aramid fiber, ceramic fiber, etc., and the resin impregnated into the fiber material is thermosetting and adhesive. There are polyimide resin, epoxy resin, polyester resin and the like having properties. Also,
As the winding method of the fiber material, there are a filament winding method using a thread fiber material and a tape winding method using a tape fiber material or a woven cloth fiber material.

〔作用〕[Action]

上記構成により、例えば型材を用いてチューブの内筒を
形成する場合に、型材の外径を製造すべきチューブの内
径に等しくして高精度に形成しておけば、多量の熱硬化
性樹脂を含浸させた不織布状繊維材料を型材の外周に巻
付けたときに、この不織布状繊維材料から熱硬化性樹脂
が内側に浸み出して型材の外周を覆うようになり、熱硬
化時にはこの樹脂により内筒の内周面を型材に対応させ
て高精度に形成でき、表面精度を高めることができ、成
型時に内筒が曲げ変形したりすることはなくなる。
With the above configuration, for example, when forming the inner cylinder of the tube by using the mold material, if the outer diameter of the mold material is made equal to the inner diameter of the tube to be manufactured with high accuracy, a large amount of thermosetting resin When the impregnated non-woven fiber material is wound around the outer periphery of the mold material, the thermosetting resin leaches inward from the non-woven fiber material to cover the outer periphery of the mold material. The inner peripheral surface of the inner cylinder can be formed with high precision corresponding to the mold material, the surface accuracy can be improved, and the inner cylinder does not bend and deform during molding.

また、チューブの外筒を、内層側と外層側の巻角が異な
るように2層以上の巻回層から形成し、内層側の巻角を
大きくし、外層側の巻角を小さくすることにより、外筒
の内層側でチューブに作用する周方向の内圧を受承で
き、外層側でチューブに作用する軸方向の曲げ応力等を
受承できる。そして、シリンダ装置のチューブとして要
求される強度を、2層以上の巻回層からなる外筒によっ
て確保することができ、内筒を薄肉に形成することが可
能になる。
Further, by forming the outer cylinder of the tube from two or more winding layers so that the winding angles on the inner layer side and the outer layer side are different, the winding angle on the inner layer side is increased, and the winding angle on the outer layer side is decreased. The inner layer side of the outer cylinder can receive the circumferential inner pressure acting on the tube, and the outer layer side can receive the axial bending stress acting on the tube. The strength required for the tube of the cylinder device can be ensured by the outer cylinder composed of two or more winding layers, and the inner cylinder can be formed thin.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図ないし第3図に基づき
詳述する。なお、前述した従来技術の構成要素と同一の
構成要素には同一符号を付し、その説明を省略する。
An embodiment of the present invention will be described below in detail with reference to FIGS. The same components as those of the conventional technique described above are designated by the same reference numerals, and the description thereof will be omitted.

而して、図中11は本実施例による円筒状のチューブを
示す。12は該チューブ11を構成する内筒で、該内筒
12は、例えばポリイミド樹脂、エポキシ樹脂等のよう
に熱硬化性及び接着性を有する樹脂を多量に含浸させた
不織布又は長さ30mm以下の短繊維を樹脂で固形化し
た不織布状繊維材料13(以下、不織布13という)に
よって円筒状に形成されている。そして、該内筒12は
不織布13に多量の熱硬化性樹脂を含浸させ、これを型
材(図示せず)の外周に円筒状に巻き付けて形成するこ
とにより、内周面を凹凸が非常に少ない滑面とすること
ができ、ピストン6の摺動性、シール性を高める優れた
特性を有している。
Reference numeral 11 in the drawing shows a cylindrical tube according to this embodiment. Reference numeral 12 denotes an inner cylinder constituting the tube 11. The inner cylinder 12 is a non-woven fabric impregnated with a large amount of a resin having thermosetting property and adhesive property such as polyimide resin or epoxy resin, or has a length of 30 mm or less. It is formed in a cylindrical shape by a non-woven fiber material 13 (hereinafter referred to as non-woven fabric 13) obtained by solidifying short fibers with a resin. The inner cylinder 12 is formed by impregnating the nonwoven fabric 13 with a large amount of thermosetting resin and winding it around the outer periphery of a mold material (not shown) in a cylindrical shape, so that the inner peripheral surface has very few irregularities. It can be a smooth surface, and has excellent characteristics of enhancing the slidability and sealability of the piston 6.

一方、14は第2図(イ)に示すように、前記内筒12
の外周側に形成された内層14Aと、該内層14Aの外
周側に形成された外層14Bとの2層の巻回層からなる
外筒で、該外筒14の内層14A及び外層14Bは共
に、熱硬化性樹脂を含浸させた長繊維材料からなる糸状
繊維材料15を内筒12の外周側にフィラメントワイン
ディング法によって一定の巻角θ,θで交差巻付け
し、所定の厚みの筒体状に形成したものからなってい
る。そして、第2図(ロ)に示すように、該内層14A
を形成する糸状繊維材料15の巻角θは巻角θ=9
0°に近くなるように例えば巻角θ=70°に設定さ
れている。一方、外層14Bの巻角θは同図(ハ)に
示すように、内層14Aの巻角θとは異なって巻角θ
=0°に近くなるように例えば巻角θ=20°に設
定されている。
On the other hand, 14 is the inner cylinder 12 as shown in FIG.
Is an outer cylinder composed of two winding layers of an inner layer 14A formed on the outer peripheral side of the inner layer 14A and an outer layer 14B formed on the outer peripheral side of the inner layer 14A, and the inner layer 14A and the outer layer 14B of the outer cylinder 14 are both A filamentous fiber material 15 made of a long fiber material impregnated with a thermosetting resin is cross-wound around the outer peripheral side of the inner cylinder 12 at a constant winding angle θ 1 , θ 2 by a filament winding method to form a tubular body having a predetermined thickness. It is composed of the shape. Then, as shown in FIG. 2B, the inner layer 14A
The winding angle θ 1 of the filamentous fiber material 15 that forms the winding angle θ 1 = 9
For example, the winding angle θ 1 = 70 ° is set so as to be close to 0 °. On the other hand, the winding angle θ 2 of the outer layer 14B is different from the winding angle θ 1 of the inner layer 14A as shown in FIG.
For example, the winding angle θ 2 = 20 ° is set so as to approach 2 = 0 °.

なお、図中16はシリンダヘッドで、該シリンダヘッド
16と前記チューブ11とはボルト17を介して固着さ
れている。18は該シリンダヘッド16とチューブ11
との間に介装されたOリングである。
Reference numeral 16 in the drawing denotes a cylinder head, and the cylinder head 16 and the tube 11 are fixed to each other via bolts 17. 18 is the cylinder head 16 and the tube 11
It is an O-ring interposed between and.

実施例のシリンダ装置は上述の構成からなるが、次にフ
ィラメントワインディング法による前記チューブ11の
製造法について説明する。
The cylinder device of the embodiment has the above-mentioned structure. Next, a method of manufacturing the tube 11 by the filament winding method will be described.

まず、製造すべきチューブ11の内径に等しい外径を精
度高く形成した型材(マンドレル)を予め製作してお
く。次に、該型材の外周に多量の樹脂を含浸させた不織
布13を巻付け、該不織布13から内側に浸み出した樹
脂により型材の外周を覆わせるようにして円筒状物を形
成する。なお、当該巻付けの際には巻回した不織布13
の継目に隙間が生じたり、隣接し或いは層状になった不
織布13間に気泡が入らないように十分注意を払うと共
に、該不織布13が切断しないように注意深く巻付け
る。上述の如く型材に不織布13を円筒状に巻付けたら
硬化炉内に入れ、型材と共に回転させながら不織布13
に含浸されている熱硬化性樹脂を熱硬化させることによ
り、内筒12が形成される。このようにして形成された
内筒12の外周面には、外筒14の接着性を高めるため
の機械加工、例けばブラスト加工を必要に応じて軽く施
こしておくとよい。
First, a mold material (mandrel) in which an outer diameter equal to the inner diameter of the tube 11 to be manufactured is formed with high precision is manufactured in advance. Next, a non-woven fabric 13 impregnated with a large amount of resin is wound around the outer periphery of the mold material, and the outer periphery of the mold material is covered with the resin leached inward from the non-woven fabric 13 to form a cylindrical object. In addition, at the time of the said winding, the wound non-woven fabric 13
Careful attention should be paid not to create a gap at the seam and to prevent air bubbles from entering between the adjacent or layered non-woven fabrics 13, and carefully wind the non-woven fabrics 13 so as not to cut. As described above, the non-woven fabric 13 is wound around the mold material in a cylindrical shape, and then the non-woven fabric 13 is put into a curing oven and rotated together with the mold material.
The inner cylinder 12 is formed by thermosetting the thermosetting resin impregnated in the. The outer peripheral surface of the inner cylinder 12 formed in this way may be lightly subjected to mechanical processing for enhancing the adhesiveness of the outer cylinder 14, for example, blast processing, if necessary.

次に、上述した内筒12の外周面に、熱硬化性樹脂を含
浸させた糸状繊維材料15を引張力を掛けた状態で所定
の巻角θ、例えばθ=70°で所定の厚さまで交差
巻付けし、内層14Aを形成する。このようにして内層
14Aを形成したら、内筒12と同様に硬化炉内に入れ
て熱硬化性樹脂を熱硬化させた後、外層14Bの接着性
を高めて層間剥離を防止するための機械加工を施してお
く。
Next, the filamentous fiber material 15 impregnated with the thermosetting resin is applied to the outer peripheral surface of the inner cylinder 12 with a tensile force at a predetermined winding angle θ 1 , for example, θ 1 = 70 ° and a predetermined thickness. The inner layer 14A is formed by cross winding. After the inner layer 14A is formed in this manner, the thermosetting resin is placed in a curing furnace in the same manner as the inner cylinder 12 to thermally cure the thermosetting resin, and then the outer layer 14B is subjected to a mechanical processing for enhancing the adhesiveness and preventing delamination. To give.

上述の如くして内層14Aを形成したら、該内層14A
の外周側に、熱硬化性樹脂を含浸させた糸状繊維材料1
5を引張力を掛けた状態で前記内層14Aの巻角θ
は異る巻角θ、例えばθ=20°で所定の厚さにな
るまで交差巻付けし、外層14Bを形成する。そして、
叙上の如く形成した内筒12と外筒14からなるチュー
ブ11は型材に巻付けた状態のままで硬化炉内に入れ、
チューブ11全体を熱硬化させた後、型材を引抜くこと
により、内面精度が高く、軸方向及び周方向に十分な強
度を備えたチューブ11が完成する。
After the inner layer 14A is formed as described above, the inner layer 14A
Filamentous fiber material 1 in which thermosetting resin is impregnated on the outer peripheral side of
5 is cross-wound with a wrapping angle θ 2 different from the wrapping angle θ 1 of the inner layer 14A, for example, θ 2 = 20 °, until a predetermined thickness is obtained, while the outer layer 14B is formed. . And
The tube 11 composed of the inner cylinder 12 and the outer cylinder 14 formed as described above is placed in the curing furnace while being wound around the mold material,
After thermosetting the entire tube 11, the mold material is pulled out to complete the tube 11 having high inner surface accuracy and sufficient strength in the axial direction and the circumferential direction.

なお、内筒12、外筒14の内層14A、同じく外筒1
4の外層14Bを前述のように段階的に成形、熱硬化を
繰り返す方法のほかに、上記各層を順次成形した後に、
同時に熱硬化させてもよい。
The inner cylinder 12 and the inner layer 14A of the outer cylinder 14 and the outer cylinder 1 are the same.
In addition to the stepwise molding of the outer layer 14B of No. 4 as described above and the repeated thermosetting, after the above layers are sequentially molded,
You may heat-cure simultaneously.

本実施例によるチューブ11は上述の如く製造される
が、該チューブ11を構成する内筒12は不織布13に
多量の樹脂を含浸させて熱硬化することにより、その内
周面は不織布13から内側に浸み出して硬化した樹脂に
よって実質上形成された状態になっているため、ピスト
ン6の摺動性が極めて優れている。しかも、内筒12の
内周面は型材の外周面の精度そのままに形成できるか
ら、内周面は粗さ、うねりの少ない優れた摺接面にする
ことができ、ピストン6に対するシール性や摺動性を確
実に向上できる。そして、当該シリンダ装置のチューブ
11は後述の如く外筒14の内層14Aと外層14Bと
によって十分な強度が与えられるので、内筒12を例え
ば0.5mm以下程度まで薄肉に形成できる。
The tube 11 according to the present embodiment is manufactured as described above, but the inner cylinder 12 constituting the tube 11 is formed by impregnating the nonwoven fabric 13 with a large amount of resin and thermosetting, so that the inner peripheral surface of the inner cylinder 12 is inside the nonwoven fabric 13. The piston 6 is extremely excellent in slidability because it is in a state in which it is substantially formed by the resin that has leached out into and cured. Moreover, the inner peripheral surface of the inner cylinder 12 can be formed with the same precision as the outer peripheral surface of the mold material, so that the inner peripheral surface can be an excellent sliding contact surface with less roughness and undulation, and the sealing performance and sliding property for the piston 6 can be improved. The motility can be surely improved. Since the tube 11 of the cylinder device is given sufficient strength by the inner layer 14A and the outer layer 14B of the outer cylinder 14 as described later, the inner cylinder 12 can be formed to be thin, for example, to about 0.5 mm or less.

一方、チューブ11を構成する外筒14の内層14Aと
外層14Bは糸状繊維材料15の巻角θ,θをそれ
ぞれ異らせて形成してあるが、該糸状繊維材料15の巻
角θ,θと、チューブ11の周方向の内圧に対する
強度F及び軸方向の強度Eの関係は第3図に示す如くで
あるから、巻角θ,θを変えることにより、これら
の強度F,Eを適宜設定することができる。
On the other hand, the inner layer 14A and the outer layer 14B of the outer cylinder 14 constituting the tube 11 are formed by making the winding angles θ 1 and θ 2 of the filamentous fiber material 15 different from each other. Since the relationship between 1 , 1 and θ 2 and the strength F and the axial strength E with respect to the inner pressure in the circumferential direction of the tube 11 is as shown in FIG. 3, these strengths can be changed by changing the winding angles θ 1 and θ 2. F and E can be set appropriately.

そこで、本実施例では外筒14の内層14Aは周方向の
内圧を受承するのに最も適した巻角θ=90°に近い
巻角θ=70°で糸状繊維材料15を巻回し、外層1
4Bは軸方向の曲げ応力を受承するのに最も適した巻角
θ=0°に近い巻角θ=20°で糸状繊維材料15
を巻回してある。
Therefore, in this embodiment, the inner layer 14A of the outer cylinder 14 is wound with the filamentous fiber material 15 at a winding angle θ 1 = 70 ° which is close to the winding angle θ 1 = 90 ° most suitable for receiving the inner pressure in the circumferential direction. , Outer layer 1
4B is a filamentous fiber material 15 with a winding angle θ 2 = 20 ° that is close to the winding angle θ 2 = 0 °, which is most suitable for receiving bending stress in the axial direction.
Is wound.

この結果、チューブ11は最小の肉厚及び巻回数の筒体
に形成でき、しかもピストンの摺動性に優れ、かつ周方
向及び軸方向の各応力に対応できる強度を与えることが
できる。しかも、チューブ11の全体を金属材料に比較
して比重の小さい不織布13、糸状繊維材料15と樹脂
で形成したから、従来技術によるものと同等以上の強度
を有しながら、その重量を大幅に軽減することができ
る。そして、内筒12及び外筒14に同一の熱硬化性樹
脂を用いることにより、内筒12と外筒14との密着性
を高めることができ、両者の間で層間剥離等が生じるの
を確実に防止できる。
As a result, the tube 11 can be formed into a tubular body having the minimum wall thickness and the number of windings, and further, the sliding property of the piston is excellent and the strength capable of coping with each stress in the circumferential direction and the axial direction can be provided. Moreover, since the entire tube 11 is made of the non-woven fabric 13 having a smaller specific gravity than the metal material, the filamentous fiber material 15 and the resin, the tube 11 has the strength equal to or higher than that of the prior art, but the weight thereof is significantly reduced. can do. Then, by using the same thermosetting resin for the inner cylinder 12 and the outer cylinder 14, the adhesion between the inner cylinder 12 and the outer cylinder 14 can be enhanced, and interlayer peeling or the like is surely caused between the both. Can be prevented.

更に、前述の如くチューブ11の外筒14を形成する内
層14A側と外層14B側の巻角θ,θを変えるこ
とにより、チューブ11には必要な部分に必要な強度を
持たせることができ、しかも内筒12の摺動性能も向上
したから、チューブ11の肉厚等も含めて設計の自由度
が増し、限界設計が可能になる。更にまた、外筒14を
形成する糸状繊維材料15は鉄系材料に比較して衝撃吸
収性が良く、かつ、耐疲労性に優れているから、高品質
なシリンダ装置を製造することができる。
Further, as described above, by changing the winding angles θ 1 and θ 2 on the inner layer 14A side and the outer layer 14B side that form the outer cylinder 14 of the tube 11, the tube 11 can have the necessary strength in the necessary portions. In addition, since the sliding performance of the inner cylinder 12 is improved, the degree of freedom in design including the wall thickness of the tube 11 is increased, and the limit design is possible. Furthermore, since the filamentous fiber material 15 forming the outer cylinder 14 has better shock absorption and fatigue resistance than iron-based materials, it is possible to manufacture a high-quality cylinder device.

しかも、チューブ11は短繊維と長繊維の繊維材料を用
いた多層構造に構成したから、仮に強い内圧を受けた場
合でも切欠きからチューブ全体が一度に破壊することは
防止でき、シリンダ装置の信頼性を向上できる。
Moreover, since the tube 11 has a multi-layered structure using short and long fiber materials, it is possible to prevent the entire tube from being broken at once from the cutout even if a strong internal pressure is applied, and the reliability of the cylinder device is improved. You can improve the property.

なお、本実施例では、糸状繊維材料15の巻角θ,θ
はθ=70°,θ=20°の2種類に設定した
が、巻角θ,θを内層14A側から外層14B側に
滑らかに変化させながら糸状繊維材料15を巻回しても
よく、このように構成することにより、チューブ11の
周方向及び軸方向の強度F,Eに対する機械的特性を緩
やかに変化させることができる。また、内筒12には低
廉なガラス繊維からなる短繊維材料を用い、外筒14の
うちの内層14A側にはガラス繊維からなる長繊維材料
を、外層14B側には高張力の炭素繊維からなる長繊維
材料を用いることにより、低廉、かつ、軽量なシリンダ
装置を製造することができる。
In this embodiment, the winding angles θ 1 , θ of the filamentous fiber material 15 are
Although 2 was set to two kinds of θ 1 = 70 ° and θ 2 = 20 °, the filamentous fiber material 15 was wound while smoothly changing the winding angles θ 1 and θ 2 from the inner layer 14A side to the outer layer 14B side. Of course, with this configuration, the mechanical characteristics of the tube 11 with respect to the strengths F and E in the circumferential direction and the axial direction can be gently changed. In addition, a short fiber material made of inexpensive glass fiber is used for the inner cylinder 12, a long fiber material made of glass fiber is used for the inner layer 14A side of the outer cylinder 14, and a high tensile carbon fiber is used for the outer layer 14B side. By using the long fiber material, it is possible to manufacture an inexpensive and lightweight cylinder device.

更に、本実施例のチューブ11を構成する外筒14は糸
状繊維材料15の巻角θ,θが異る内層14Aと外
層14Bから形成するものとして述べたが、3種類の巻
角θ,θ,θによって巻回層を3層に形成しても
よいものである。更にまた、実施例のチューブ11の成
形方法として糸状繊維材料15を用いたフィラメントワ
インディング法を例に挙げたが、テープ状或いは織布状
の繊維材料を用いるテープワインディング法で成形して
もよい。なお、実施例ではチューブ11とシリンダヘッ
ド16の接合にはボルト17を用いたが、更に接着剤を
併用してもよい。
Further, the outer cylinder 14 constituting the tube 11 of the present embodiment is described as being formed from the inner layer 14A and the outer layer 14B of the filamentous fiber material 15 having different winding angles θ 1 and θ 2, but three types of winding angles θ. The winding layer may be formed into three layers by using 1 , θ 2 and θ 3 . Furthermore, although the filament winding method using the filamentous fiber material 15 has been described as an example of the method for molding the tube 11 of the embodiment, the tube winding method may be performed using a tape-shaped or woven cloth-shaped fiber material. Although the bolt 17 is used for joining the tube 11 and the cylinder head 16 in the embodiment, an adhesive may be used together.

〔発明の効果〕〔The invention's effect〕

本発明は以上詳述した如く構成したから、下記の諸効果
を奏する。
Since the present invention is configured as described above in detail, it has the following effects.

シリンダ装置のチューブ全体は金属材料より比重の
小さい不織布状繊維材料および長繊維材料と熱硬化性樹
脂とで成形したから、シリンダ装置の重量を従来技術に
比較して大幅に軽減することができる。
Since the whole tube of the cylinder device is formed of the non-woven fiber material and the long fiber material having a specific gravity smaller than that of the metal material and the thermosetting resin, the weight of the cylinder device can be significantly reduced as compared with the conventional technique.

チューブの内周面側を形成する内筒は多量の熱硬化
性樹脂を含浸させた不織布状繊維材料で形成したから、
該チューブの内周面は不織布状繊維材料から内側に浸み
出した熱硬化性樹脂で覆われた状態で高精度に形成でき
る結果、チューブとピストンの摺動性能を向上でき、機
械効率を高めることができる。また、型材の外周面の精
度を予め高めておけば、チューブの内周面に対する後加
工は不要にできるから、チューブの製造工程を減少で
き、加工費を低減できる。
Since the inner cylinder forming the inner peripheral surface side of the tube is formed of a non-woven fiber material impregnated with a large amount of thermosetting resin,
The inner peripheral surface of the tube can be formed with high precision while being covered with a thermosetting resin leached from the non-woven fiber material to the inside, and as a result, the sliding performance between the tube and the piston can be improved and the mechanical efficiency can be improved. be able to. Further, if the accuracy of the outer peripheral surface of the mold material is increased in advance, post-processing on the inner peripheral surface of the tube can be eliminated, so that the tube manufacturing process can be reduced and the processing cost can be reduced.

チューブを構成する外筒を、内層側と外層側の巻角
が異なるように2層以上の巻回層から形成し、内層側は
周方向の内圧を受けるのに最も適した巻角で形成し、外
層側は軸方向応力を受けるのに最も適した巻角で形成す
るようにすれば、チューブは最小の巻回数及び肉厚でも
って周方向及び軸方向の各応力にそれぞれ対応する強度
を持つことができるので、ピストンとの良好な摺動性を
得るための内筒を薄肉に形成でき、チューブ全体の肉厚
を薄くできると共に、シリンダ装置全体を小型化するこ
とができる。
The outer cylinder forming the tube is made up of two or more winding layers so that the inner layer side and the outer layer side have different winding angles, and the inner layer side is formed with the most suitable winding angle for receiving the internal pressure in the circumferential direction. If the outer layer side is formed with the winding angle most suitable for receiving the axial stress, the tube has the strength corresponding to each stress in the circumferential direction and the axial direction with the minimum number of windings and the wall thickness. Therefore, the inner cylinder for obtaining good slidability with the piston can be formed thin, the thickness of the entire tube can be reduced, and the entire cylinder device can be downsized.

繊維材料の巻角、巻数及び積層数は任意に設定する
ことができるから、設計の自由度が高く限界設計が可能
であるし、所望の強度のチューブを製造することができ
る。
Since the winding angle, the number of windings, and the number of layers of the fiber material can be arbitrarily set, there is a high degree of freedom in design, a limit design is possible, and a tube having a desired strength can be manufactured.

チューブは金属材料に比べて衝撃吸収性、耐疲労性
に優れた繊維材料で形成したから、シリンダ装置の耐久
性、信頼性を向上できる。
Since the tube is made of a fiber material that is more excellent in shock absorption and fatigue resistance than a metal material, the durability and reliability of the cylinder device can be improved.

チューブは繊維材料を用いて多層構造に構成したか
ら、内圧によって一度で破壊されるのを確実に防止でき
ると共に破壊の予知が可能になるから、安全性の高いシ
リンダ装置にすることができる。
Since the tube is made of a multi-layered structure using a fiber material, it is possible to reliably prevent the tube from being broken at one time due to internal pressure, and it is possible to predict the breakage, so that a highly safe cylinder device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は本発明の一実施例に係り、第1図
はシリンダ装置の要部拡大断面図、第2図(イ)は第1
図中の部分拡大図、同図(ロ)はフィラメントワインデ
ィング法によって形成されたチューブ外筒の内層側を示
す説明図、同図(ハ)は該チューブ外筒の外層側を示す
説明図、第3図は巻角に対する内圧及び軸方向の強度を
示す特性線図、第4図及び第5図は従来技術に係り、第
4図はシリンダ装置の縦断面図、第5図は第4図中の要
部拡大断面図である。 6…ピストン、11…チューブ、12…内筒、13…不
織布(不織布状繊維材料)、14…外筒、14A…内
層、14B…外層、15…糸状繊維材料(長繊維材
料)。
1 to 3 relate to an embodiment of the present invention. FIG. 1 is an enlarged cross-sectional view of a main part of a cylinder device, and FIG.
Partial enlarged view in the figure, (b) is an explanatory view showing the inner layer side of the tube outer cylinder formed by the filament winding method, and (c) is an explanatory view showing the outer layer side of the tube outer cylinder, FIG. 3 is a characteristic diagram showing the internal pressure and axial strength with respect to the winding angle, FIGS. 4 and 5 are related to the prior art, FIG. 4 is a longitudinal sectional view of a cylinder device, and FIG. 5 is in FIG. FIG. 6 ... Piston, 11 ... Tube, 12 ... Inner cylinder, 13 ... Nonwoven fabric (nonwoven fiber material), 14 ... Outer cylinder, 14A ... Inner layer, 14B ... Outer layer, 15 ... Filamentary fiber material (long fiber material).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 盛雄 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 (56)参考文献 特開 昭61−70275(JP,A) 実開 昭48−29249(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Morio Tamura 650 Jinrachi-cho, Tsuchiura-shi, Ibaraki Hitachi Construction Machinery Co., Ltd. Tsuchiura factory (56) References JP 61-70275 (JP, A) 48-29249 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】両端を施蓋されたチューブ内には、該チュ
ーブ内を2室に画成するピストンを摺動可能に設けてな
るシリンダ装置において、前記チューブは、多量の熱硬
化性樹脂を含浸させた不織布状繊維材料により形成さ
れ、前記ピストンの摺動面となる内周面が該不織布状繊
維材料から浸み出した熱硬化性樹脂により覆われた内筒
と、熱硬化性樹脂を含浸させた長繊維材料を該内筒の外
周側に巻回することにより形成され、内層側と外層側と
で前期長繊維材料の巻角が異なる2層以上の巻回層から
なる外筒とから構成し、該外筒を構成する2層以上の巻
回層は、前記長繊維材料を内層側で巻角が大きく、外層
側で小さくなるように巻回して形成したことを特徴とす
るシリンダ装置。
1. A cylinder device comprising a tube having both ends covered with a slidable piston defining two chambers in the tube, wherein the tube contains a large amount of thermosetting resin. An inner cylinder formed of an impregnated non-woven fiber material, the inner peripheral surface of which serves as a sliding surface of the piston is covered with a thermosetting resin leached from the non-woven fiber material; and a thermosetting resin. An outer cylinder formed by winding the impregnated long fiber material around the outer circumference of the inner cylinder, the outer cylinder including two or more winding layers in which the winding angle of the long fiber material is different between the inner layer side and the outer layer side. A cylinder characterized in that two or more winding layers constituting the outer cylinder are formed by winding the long fiber material such that the winding angle is large on the inner layer side and small on the outer layer side. apparatus.
JP61129864A 1986-06-04 1986-06-04 Cylinder device Expired - Fee Related JPH065081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61129864A JPH065081B2 (en) 1986-06-04 1986-06-04 Cylinder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61129864A JPH065081B2 (en) 1986-06-04 1986-06-04 Cylinder device

Publications (2)

Publication Number Publication Date
JPS62288703A JPS62288703A (en) 1987-12-15
JPH065081B2 true JPH065081B2 (en) 1994-01-19

Family

ID=15020164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129864A Expired - Fee Related JPH065081B2 (en) 1986-06-04 1986-06-04 Cylinder device

Country Status (1)

Country Link
JP (1) JPH065081B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036775A1 (en) * 2008-09-25 2010-04-01 Utilequip, Inc. Fabric fluid-powered cylinder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262351A (en) * 1988-04-11 1989-10-19 Isuzu Motors Ltd Piston for internal combustion engine
JPH11255567A (en) * 1998-03-09 1999-09-21 Toshiba Corp Ceramic fiber-combined material part and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170275A (en) * 1984-09-11 1986-04-11 Hitachi Constr Mach Co Ltd Cylinder device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010036775A1 (en) * 2008-09-25 2010-04-01 Utilequip, Inc. Fabric fluid-powered cylinder

Also Published As

Publication number Publication date
JPS62288703A (en) 1987-12-15

Similar Documents

Publication Publication Date Title
US5579809A (en) Reinforced composite pipe construction
US5722908A (en) Composite bat with metal barrel area and method of fabrication
US5837083A (en) Method of forming a rigid tubular body
US6056655A (en) Composite bat with metal barrel area and method of fabrication
US4351364A (en) Steel reinforced pipe
FI67440B (en) ROERFOERBINDNING
RU2598936C1 (en) Cylindrical casing and method of making cylindrical casing
US3886024A (en) Thick-walled, fiber-reinforced composite structures and method of making same
GB2112700A (en) Method of manufacturing continous fiber reinforced plastic rims
JP3043273B2 (en) Method for producing fiber reinforced resin tube
IL27800A (en) Composite reinforced plastic pipe and method for fabricating this pipe
GB2056615A (en) Fiber-reinforced coil spring
JPS6149492B2 (en)
US5191165A (en) Ordnance barrels
GB2280889A (en) Hollow elongated or tubular bodies and their manufacture
JPH065081B2 (en) Cylinder device
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
JPH03236946A (en) Manufacturer of fiber reinforced cylinder tube
JPS62215104A (en) Cylinder device
US5248361A (en) Method of manufacturing laminated flexible bearings, in particular for engine nozzle joints
JP2001263590A (en) Method of manufacturing pressure vessel
US3295558A (en) Filament wound structure
JPH07329196A (en) Synthetic resin tube reinforced by fiber
JPS5949352A (en) Cylinder liner of internal-combustion engine and manufacture thereof
JPS60109628A (en) Hollow helical spring

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees