JPH0649623B2 - Method of joining ceramics and metal - Google Patents

Method of joining ceramics and metal

Info

Publication number
JPH0649623B2
JPH0649623B2 JP1172567A JP17256789A JPH0649623B2 JP H0649623 B2 JPH0649623 B2 JP H0649623B2 JP 1172567 A JP1172567 A JP 1172567A JP 17256789 A JP17256789 A JP 17256789A JP H0649623 B2 JPH0649623 B2 JP H0649623B2
Authority
JP
Japan
Prior art keywords
metal
melting point
ceramic
brazing
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1172567A
Other languages
Japanese (ja)
Other versions
JPH0337165A (en
Inventor
芳博 手嶋
彰治 片山
晴裕 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP1172567A priority Critical patent/JPH0649623B2/en
Publication of JPH0337165A publication Critical patent/JPH0337165A/en
Publication of JPH0649623B2 publication Critical patent/JPH0649623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックスと金属との接合方法に関し、更に
詳しくは残留応力が小さく、かつ、接合強度が大きいセ
ラミックス金属接合体を得るための方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for joining ceramics and a metal, and more particularly to a method for obtaining a ceramic-metal bonded body having a small residual stress and a large bonding strength. .

〔従来の技術〕[Conventional technology]

従来、セラミックスと金属とを接合する方法としては、
活性金属法、高融点金属法等の金属ソルダー法が知られ
ている。
Conventionally, as a method of joining ceramics and metal,
A metal solder method such as an active metal method or a high melting point metal method is known.

これらの方法の中で活性金属法は、Ti、Zr、Be等
の金属単体またはそれらの合金の活性金属をセラミック
スと接合する金属との間に介在させ、それによりセラミ
ックス表面の濡れ性を向上させ、セラミックスと金属と
を接合する方法である。
Among these methods, the active metal method is one in which an active metal such as a simple metal such as Ti, Zr, or Be or an alloy thereof is interposed between a ceramic and a metal to be bonded, thereby improving the wettability of the ceramic surface. A method of joining ceramics and metal.

この活性金属法を使用した例として、活性金属のTiと
共にAg−Cuロウ材を、セラミックスであるSiCと
金属であるステンレス鋼との間に介在させて、両者を接
合する方法が提案されている。〔矢野豊彦他;窯業協会
誌、95(3)(1987)、P357〜362〕 ところで、上記のように熱膨張係数差の大きいセラミッ
クスと金属とを接合する場合、接合後の冷却過程におい
て、両者の熱膨張の差に起因する残留応力のうち引張応
力が接合面近傍のセラミックス自由表面に働き、セラミ
ックスにクラックが入る問題がある。
As an example of using this active metal method, a method has been proposed in which an Ag-Cu brazing material is intervened between SiC, which is ceramics, and stainless steel, which is metal, together with Ti, which is an active metal, to join them. . [Toyohiko Yano et al .; Ceramic Industry Journal, 95 (3) (1987), P357-362] By the way, in the case of joining a ceramic and a metal having a large difference in thermal expansion coefficient to each other in the cooling process after joining, Among the residual stresses caused by the difference in the thermal expansion of, the tensile stress acts on the ceramic free surface in the vicinity of the joint surface, and there is a problem that the ceramic is cracked.

上記残留応力を緩和する方法として、第1にAl、Cu
等の軟質金属をセラミックスと金属との間に挿入し、軟
質金属の塑性変形によってセラミックスと金属との間の
熱膨張差を吸収する方法、第2に前記軟質金属が一般に
熱膨張係数が大きいため、この軟質金属と金属又はセラ
ミックスとの間に、W、WC、Mo等の低熱膨張率の材
料を挿入し、前記軟質金属の収縮を抑制し、熱膨張差の
低減を図る方法〔岩本信也;工学材料、36(9)(1
988)、P54〜P57〕があるが、前記両者の方法
においても強固な接合が実現できなかった。
As a method for relaxing the residual stress, firstly, Al and Cu are used.
A soft metal such as a soft metal is inserted between the ceramic and the metal, and the difference in thermal expansion between the ceramic and the metal is absorbed by plastic deformation of the soft metal. Secondly, since the soft metal generally has a large coefficient of thermal expansion. A method of inserting a material having a low coefficient of thermal expansion such as W, WC, or Mo between the soft metal and the metal or ceramics to suppress the contraction of the soft metal to reduce the difference in thermal expansion [Shinya Iwamoto; Engineering Materials, 36 (9) (1
988), P54 to P57], but strong joining could not be realized even by the both methods.

また、活性金属法と応力緩和材とを用いてセラミックス
と金属とを接合する前記矢野豊彦他の報告〔窯業協会
誌、95(3)(1987)、P357〜362〕によ
れば、セラミックスであるSiCと金属であるステンレ
ス鋼とを接合するため、第2図に示すように、接合する
セラミックス(SiC)21と金属(ステンレス鋼)2
5との間に、3層のAg−Cuロウ23、23、23を
配設するとともに、セラミックス21側のAg−Cuロ
ウ23、23間にTi22をインサートし、金属22側
のAg−Cuロウ23、23間に応力緩和層(Mo)2
4をインサートして、810℃の温度の熱処理により接
合している。
In addition, according to the report of Toyohiko Yano et al. [Ceramics Association Journal, 95 (3) (1987), P357-362], which joins ceramics and metal using an active metal method and a stress relaxation material, it is a ceramic. Since SiC and metal stainless steel are bonded together, as shown in FIG. 2, ceramics (SiC) 21 and metal (stainless steel) 2 to be bonded together.
5 and 5, three layers of Ag-Cu brazes 23, 23, 23 are arranged, Ti22 is inserted between the Ag-Cu braces 23, 23 on the ceramics 21 side, and the Ag-Cu braze on the metal 22 side is inserted. A stress relaxation layer (Mo) 2 between 23 and 23
4 is inserted and joined by heat treatment at a temperature of 810 ° C.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、前記の方法においては、ろう付け温度が
高融点ろう材(Ag−Cu)の液相線の800℃以上で
行われるため、セラミックス21と金属25とを接合し
た場合、セラミックス21中に発生する残留応力の緩和
が未だ不充分であった。
However, in the above method, the brazing temperature is 800 ° C. or higher of the liquidus of the high melting point brazing filler metal (Ag—Cu), and therefore, when the ceramics 21 and the metal 25 are joined, the brazing occurs in the ceramics 21. The relaxation of residual stress was still insufficient.

本発明の目的は、上記した従来技術の課題を解決し、セ
ラミックスと金属との接合に際して、両者間の熱膨張の
差に起因する残留応力を抑制し、セラミックスにクラッ
クが発生するのを防止し、健全で強固な接合体を得るこ
とができるセラミックスと金属との接合方法を提供する
ことにある。
The object of the present invention is to solve the above-mentioned problems of the prior art, suppress the residual stress due to the difference in thermal expansion between the ceramic and the metal at the time of bonding, and prevent the occurrence of cracks in the ceramic. Another object of the present invention is to provide a method for joining a ceramic and a metal, which can obtain a sound and strong joined body.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記した目的は、セラミックス部材とを金属部材と接合
する方法において、前記セラミックス部材を高融点ろう
材を介して活性金属板と第1の熱処理工程により接合
し、次いで、前記活性金属板と前記金属部材との間に、
応力緩和材層を挟んだ前記高融点ろう材よりも低い融点
を有する低融点ろう材を挿入し、前記第1の熱処理工程
よりも低い温度の第2の熱処理工程により接合すること
によって達成される。
In the method for joining a ceramic member to a metal member, the above-mentioned object is to join the ceramic member to the active metal plate through the high melting point brazing material in the first heat treatment step, and then to join the active metal plate and the metal. Between the members,
This is achieved by inserting a low melting point brazing material having a melting point lower than that of the high melting point brazing material sandwiching the stress relaxation material layer, and joining by a second heat treatment step at a temperature lower than the first heat treatment step. .

〔作用〕[Action]

本発明は上記の手段を採用したことにより、第1の熱処
理工程では、活性金属板が高融点ろう材中に拡散して高
融点ろう材のセラミックス部材に対する濡れ性が向上す
るとともに、活性金属板に塑性変形が起こり、熱膨張差
がほとんど吸収され、セラミックス部材に発生する残留
応力はセラミックス強度に対して無視し得る程度に小さ
いものとなり、次の低融点ろう材のろう付け温度で加熱
処理される第2の熱処理工程では、加熱温度が低くセラ
ミックス部材側と金属部材側との熱膨張差が少なく、か
つ応力緩和材層の介在によって残留応力の発生も低減
し、また、前記第1の熱処理工程における残留応力を焼
鈍し効果により緩和できることとなる。
According to the present invention, by adopting the above means, in the first heat treatment step, the active metal plate is diffused into the high melting point brazing material to improve the wettability of the high melting point brazing material with respect to the ceramic member, and the active metal plate is also improved. Plastic deformation occurs, most of the difference in thermal expansion is absorbed, and the residual stress generated in the ceramic member becomes negligibly small relative to the ceramic strength, and heat treatment is performed at the brazing temperature of the next low melting point brazing material. In the second heat treatment step, the heating temperature is low, the difference in thermal expansion between the ceramic member side and the metal member side is small, and the occurrence of residual stress is reduced due to the interposition of the stress relaxation material layer. The residual stress in the process can be relaxed by the effect of annealing.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(A)(B)(C)(D)は本発明のセラミック
スと金属との接合方法の一実施例を示す工程図である。
FIGS. 1 (A), (B), (C), and (D) are process diagrams showing an embodiment of the method for joining ceramics and metal according to the present invention.

第1図(A)において、まず、セラミックス部材1と活
性金属板2との間に高融点ろう材3を挿入して第1の熱
処理工程を施す。
In FIG. 1 (A), first, a high melting point brazing material 3 is inserted between the ceramic member 1 and the active metal plate 2, and a first heat treatment step is performed.

セラミックス部材1としては、SiC、SiN等の炭化
物,窒化物等を採用することができる。
As the ceramic member 1, carbides such as SiC and SiN, nitrides and the like can be adopted.

また、活性金属板2としては、Ti、Zr、Be等を挙
げることができる。
Examples of the active metal plate 2 include Ti, Zr, Be and the like.

ここで活性金属板2の厚みは、厚すぎるとセラミックス
部材1中に強度以上の応力(引張応力)が発生するので
50μm以下とすることが望ましく、また第1の熱処理
工程において拡散消失しない程度の厚み、例えば5μ
m以上が望ましい。
Here, if the thickness of the active metal plate 2 is too thick, stress (tensile stress) of strength or more is generated in the ceramic member 1, so it is desirable that the thickness is 50 μm or less, and the active metal plate 2 does not diffuse and disappear in the first heat treatment step. Thickness, for example 5μ
m or more is desirable.

また、高融点ろう材3としては、後段の工程第1図
(C)で使用されるろう材よりも高い融点を有するろう
材、例えば融点750℃以上のろう材が使用される。こ
のような高融点ろう材としては、Ag−Cuロウ、Ag
ロウ、Niロウ、Pdロウ等が挙げられる。
Further, as the high melting point brazing material 3, a brazing material having a melting point higher than that of the brazing material used in the subsequent step FIG. 1C, for example, a brazing material having a melting point of 750 ° C. or higher is used. As such a high melting point brazing material, Ag-Cu wax, Ag
Examples thereof include wax, Ni wax, and Pd wax.

上記第1の熱処理工程では、前記高融点ろう材3の液
相線よりも高い温度でろう付に必要な雰囲気で所定時間
加熱される。
In the first heat treatment step, the high melting point brazing filler metal 3 is heated at a temperature higher than the liquidus of the high melting point brazing filler metal 3 in an atmosphere necessary for brazing for a predetermined time.

この第1の熱処理工程によって、活性金属板2に塑性
変形が起こり、セラミックス部材1との間の熱膨張差が
ほとんど吸収されるとともに、この活性金属板2中に残
る弾性変形によるエネルギーは小さいため、セラミック
ス部材1に発生する残留応力は小さく、セラミックスの
強度に対して残留応力は無視できる程度である。
By this first heat treatment step, plastic deformation occurs in the active metal plate 2, almost all the difference in thermal expansion between the active metal plate 2 and the ceramic member 1 is absorbed, and the energy due to elastic deformation remaining in the active metal plate 2 is small. The residual stress generated in the ceramic member 1 is small, and the residual stress is negligible with respect to the strength of the ceramic.

この第1の熱処理工程によって、第1図(B)に示す
ようなセラミックス部材1と活性金属板2との間に反応
層4が形成されて、両者が接合したセラミックス活性金
属複合体5が形成される。
By this first heat treatment step, the reaction layer 4 is formed between the ceramic member 1 and the active metal plate 2 as shown in FIG. 1 (B), and the ceramic active metal composite body 5 in which both are joined is formed. To be done.

次に第1図(C)に示すようにセラミックス活性金属複
合体5とステンレス鋼等の金属部材6との間に、前記第
1図(A)におけるろう材よりも融点の低い2層の低融
点ろう材7a、7b間に応力緩和材層8を挟持したもの
を挿入し、第2の熱処理工程を施す。
Next, as shown in FIG. 1 (C), between the ceramic active metal composite 5 and the metal member 6 such as stainless steel, two layers of low melting point lower than the brazing material in FIG. 1 (A) are used. A material in which the stress relaxation material layer 8 is sandwiched between the melting point brazing materials 7a and 7b is inserted, and a second heat treatment step is performed.

上記の低融点ろう材7a、7bとしては、例えば融点7
00℃以下のAg−Cu−Zn−Cdロウ等が挙げられ
る。
Examples of the low melting point brazing materials 7a and 7b include a melting point of 7
Examples thereof include Ag-Cu-Zn-Cd waxes at 00 ° C or lower.

前記応力緩和材層8としては、前記金属部材6および活
性金属板2より熱処理による塑性変形が大きいCu、A
l等の軟質金属板の単体を用いることができ、また、前
記金属部材6の熱膨張率よりも小さい熱膨張率、望まし
くは熱膨張係数8×10−6/℃以下の、例えば、W、
WC、Mo等の低熱膨張係数の材料の単体を用いること
ができ、さらに、セラミックス側に前記金属部材6およ
び活性金属板2より熱処理による塑性変形が大きいC
u、Al等の軟質金属板を有し、前記金属部材側に前記
金属部材6の熱膨張率よりも小さい熱膨張率、望ましく
は熱膨張係数8×10−6/℃以下の、例えば、W、W
C、Mo等の低熱膨張係数の材料からなる板を有し、両
板間に前記低融点ろう材を挟持したものを用いることが
できる。
As the stress relaxation material layer 8, Cu, A, which is larger in plastic deformation due to heat treatment than the metal member 6 and the active metal plate 2, is used.
A single soft metal plate such as 1 can be used, and the coefficient of thermal expansion is smaller than the coefficient of thermal expansion of the metal member 6, preferably a coefficient of thermal expansion of 8 × 10 −6 / ° C. or less, for example, W,
It is possible to use a simple substance of a material having a low coefficient of thermal expansion such as WC or Mo, and further, C which has a larger plastic deformation due to heat treatment than the metal member 6 and the active metal plate 2 on the ceramic side.
u, a soft metal plate such as Al, and a coefficient of thermal expansion smaller than the coefficient of thermal expansion of the metal member 6 on the metal member side, desirably a coefficient of thermal expansion of 8 × 10 −6 / ° C. or less, for example, W , W
It is possible to use a plate which has a plate made of a material having a low coefficient of thermal expansion such as C or Mo and in which the low melting point brazing material is sandwiched between the plates.

上記第2の熱処理工程では、前記低融点ろう材7a、
7bの液相線付近の温度でろう付けに必要な雰囲気で所
定時間加熱される。
In the second heat treatment step, the low melting point brazing material 7a,
It is heated for a predetermined time in an atmosphere necessary for brazing at a temperature near the liquidus line of 7b.

この第2の熱処理工程においては、必要に応じてフラ
ックスを用いることが望ましい。
In the second heat treatment step, it is desirable to use a flux if necessary.

フラックスを使用することによって、フラックスの酸化
膜除去作用により、前記応力緩和材層8およびステンレ
ス鋼等の金属部材6のろう付けする面を活性化させ、こ
れらの金属に対する低融点ろう材7a、7bの濡れを良
好にすることができる。
By using the flux, the oxide film removing action of the flux activates the brazing surface of the stress relaxation material layer 8 and the metal member 6 such as stainless steel, and the low melting point brazing materials 7a and 7b for these metals are activated. It is possible to improve the wettability of.

また、この第2の熱処理工程においては、前記第1の
熱処理工程の熱処理温度に比べて低くできるので、第
1の熱処理工程でセラミックス部材1と活性金属板2
との間に発生した残留応力を焼鈍の作用により緩和でき
るとともに、前記セラミックス活性金属複合体5と金属
部材6との間の熱膨張の差を応力緩和材層8で吸収して
減少でき、従来法の如く、高融点ろう材のろう付け温度
に加熱して一度にセラミックス部材とステンレス鋼等の
金属部材とを接合する方法の場合に比べて、セラミック
ス部材中に発生する最大主応力を最大50%程度まで減
少させることができる。
In addition, in the second heat treatment step, the temperature can be lower than the heat treatment temperature of the first heat treatment step, so that the ceramic member 1 and the active metal plate 2 can be processed in the first heat treatment step.
The residual stress generated between the ceramic active metal composite 5 and the metal member 6 can be absorbed and reduced by the stress relaxation material layer 8 while the residual stress generated between the ceramic active metal composite 5 and the metal member 6 can be reduced. As compared with the method in which the ceramic member and the metal member such as stainless steel are joined at once by heating to the brazing temperature of the high melting point brazing material as in the method, the maximum principal stress generated in the ceramic member is 50 at maximum. % Can be reduced.

したがって、第1の熱処理工程および第2の熱処理工
程を経てセラミックス部材1とステンレス鋼等の金属
部材6との間が、上記のような2段階の熱処理で種々の
金属が溶融混合されて形成される挿入金属層9を介して
強固に接合されるとともに、セラミックス部材1側に
は、残留応力によるクラックの発生もないものとなる。
Therefore, after the first heat treatment step and the second heat treatment step, between the ceramic member 1 and the metal member 6 made of stainless steel or the like, various metals are melt-mixed by the two-step heat treatment as described above. In addition to being firmly bonded via the inserted metal layer 9, no cracks due to residual stress are generated on the ceramic member 1 side.

以下、さらに具体例で説明する。Hereinafter, a more specific example will be described.

実施例−1 第1図(A)において、 セラミックス部材1:SiC 活性金属板2:チタン(Ti)板 30μm 高融点ろう材3:BAg8ロウ板 10μm 液相線 780℃ を用い、真空炉にてろう付温度820℃、保持時間3分
の条件で第1の熱処理工程を施した。
Example-1 In FIG. 1 (A), ceramic member 1: SiC active metal plate 2: titanium (Ti) plate 30 μm high melting point brazing material 3: BAg8 brazing plate 10 μm liquidus line 780 ° C. in a vacuum furnace. The first heat treatment step was performed under the conditions of a brazing temperature of 820 ° C. and a holding time of 3 minutes.

次に第1図(C)において、 低融点ろう材7a,7b:BAg1ロウ板 10μm 液相線 620℃ 応力緩和材層8:銅(Cu)板 500μm を用い、フラックスを使用して高周波加熱によりろう付
け温度620℃、保持時間3分で第2の熱処理工程を
施した。
Next, referring to FIG. 1 (C), low melting point brazing filler metal 7a, 7b: BAg1 brazing plate 10 μm liquidus line 620 ° C. stress relaxation material layer 8: copper (Cu) plate 500 μm is used by high frequency heating using flux. A second heat treatment step was performed at a brazing temperature of 620 ° C. and a holding time of 3 minutes.

この結果、セラミックス部材1にクラックのない健全で
強固なセラミックスと金属との接合体が得られた。
As a result, a sound and strong bonded body of ceramics and metal having no cracks in the ceramics member 1 was obtained.

実施例−2 第1図(A)において、 セラミックス部材1:SiC 活性金属板2:チタン(Ti)板 30μm 高融点ろう材3:BAg8ロウ板 10μm 液相線 780℃ を用い、真空炉にてろう付温度820℃、保持時間3分
の条件で第1の熱処理工程を施した。
Example-2 In FIG. 1 (A), ceramic member 1: SiC active metal plate 2: titanium (Ti) plate 30 μm high melting point brazing material 3: BAg8 brazing plate 10 μm liquidus line 780 ° C. in a vacuum furnace. The first heat treatment step was performed under the conditions of a brazing temperature of 820 ° C. and a holding time of 3 minutes.

次に第1図(C)において、 低融点ろう材7a,7b:BAg1ロウ板 10μm 液相線 620℃ 応力緩和材層8:タングステン(W) 板 500μm を用い、フラックスを使用して高周波加熱によりろう付
け温度620℃、保持時間3分で第2の熱処理工程を
施した。
Next, in FIG. 1 (C), low melting point brazing filler metal 7a, 7b: BAg1 brazing plate 10 μm liquidus line 620 ° C. stress relaxation material layer 8: tungsten (W) plate 500 μm was used, and high frequency heating was performed using flux. A second heat treatment step was performed at a brazing temperature of 620 ° C. and a holding time of 3 minutes.

この結果、前記実施例−1と同様にセラミックス部材1
にクラックのない健全で強固なセラミックスと金属との
接合体が得られた。
As a result, as in the case of Example 1, the ceramic member 1
A sound and strong ceramic-metal bonded body without cracks was obtained.

実施例−3 第1図(A)において、 セラミックス部材:SiC 活性金属板2:チタン(Ti)板 30μm 高融点ろう材3:BAg8ロウ板 10μm 液相線 780℃ を用い、真空炉にてろう付温度820℃、保持時間3分
の条件で第1の熱処理工程を施した。
Example-3 In FIG. 1 (A), ceramic member: SiC active metal plate 2: titanium (Ti) plate 30 μm high melting point brazing material 3: BAg8 brazing plate 10 μm liquidus line 780 ° C. and brazing in a vacuum furnace The first heat treatment step was performed under conditions of an attachment temperature of 820 ° C. and a holding time of 3 minutes.

次に第1図(C)において、 低融点ろう材7a,7b:BAg1ロウ板 10μm 液相線 620℃ 応力緩和材層8 :セラミックス側に銅(Cu)板500μm 中間にBAg1ロウ板 10μm 金属部材側にタングステン(W) 板500μm を用い、フラックスを使用して高周波加熱によりろう付
け温度620℃、保持時間3分で第2の熱処理工程を
施した。
Next, in FIG. 1 (C), low melting point brazing filler metals 7a and 7b: BAg1 brazing plate 10 μm liquidus line 620 ° C. stress relaxation material layer 8: copper (Cu) plate 500 μm on ceramic side, BAg1 brazing plate 10 μm in the middle A second heat treatment step was performed at a brazing temperature of 620 ° C. and a holding time of 3 minutes by high frequency heating using a flux using a tungsten (W) plate of 500 μm on the side.

この結果、前記実施例−1および実施例−2と同様にセ
ラミックス部材1にクラックのない健全で強固なセラミ
ックスと金属との接合体が得られた。
As a result, a sound and strong bonded body of ceramic and metal having no cracks in the ceramic member 1 was obtained as in the case of Example-1 and Example-2.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、セラミックス部材を高融
点ろう材を介して活性金属板と第1の熱処理工程により
接合し、次いで、前記活性金属板と金属部材との間に、
応力緩和材層を挟んだ前記高融点ろう材よりも低い融点
を有する低融点ろう材を挿入し、前記第1の熱処理工程
よりも低い温度の第2の熱処理工程により接合するの
で、熱膨張係数差の大きいセラミックスと金属とを接合
する際、セラミックス部材に熱膨張差に起因する残留応
力の発生を確実に抑制することができるとともに、健全
で強固なセラミックス金属接合体を製造することができ
るものである。
As described above, according to the present invention, the ceramic member is joined to the active metal plate through the high melting point brazing material in the first heat treatment step, and then, between the active metal plate and the metal member,
A low-melting-point brazing material having a lower melting point than the high-melting-point brazing material sandwiching the stress relaxation material layer is inserted and bonded by the second heat treatment step at a temperature lower than the first heat treatment step. What is capable of reliably suppressing the generation of residual stress in a ceramic member due to a difference in thermal expansion when joining a ceramic and a metal having a large difference and manufacturing a sound and strong ceramic-metal joined body Is.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)(B)(C)(D)は本発明のセラミック
スと金属との接合方法の一実施例を示す工程図、第2図
は従来の接合方法の一例を示す説明図である。 1……セラミックス部材 2……活性金属板 3……高融点ろう材 4……反応層 5……セラミックス活性金属複合体 6……金属部材(ステンレス鋼) 7a、7b……低融点ろう材 8……応力緩和材層 9……挿入金属層
1 (A), (B), (C), and (D) are process drawings showing an embodiment of a method for joining ceramics and metal of the present invention, and FIG. 2 is an explanatory view showing an example of a conventional joining method. is there. 1 ... Ceramics member 2 ... Active metal plate 3 ... High melting point brazing material 4 ... Reaction layer 5 ... Ceramics active metal composite 6 ... Metal member (stainless steel) 7a, 7b ... Low melting point brazing material 8 ...... Stress relaxation material layer 9 …… Insert metal layer

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】セラミックス部材と金属部材とを接合する
方法において、前記セラミックス部材を高融点ろう材を
介して活性金属板と第1の熱処理工程により接合し、次
いで、前記活性金属板と前記金属部材との間に、応力緩
和材層を挟んだ前記高融点ろう材よりも低い融点を有す
る低融点ろう材を挿入し、前記第1の熱処理工程よりも
低い温度の第2の熱処理工程により接合することを特徴
とするセラミックスと金属との接合方法。
1. A method of joining a ceramic member and a metal member, wherein the ceramic member is joined to an active metal plate via a high melting point brazing material in a first heat treatment step, and then the active metal plate and the metal are joined. A low melting point brazing material having a melting point lower than that of the high melting point brazing material sandwiching a stress relaxation material layer is inserted between the members, and joined by a second heat treatment step at a temperature lower than the first heat treatment step. A method for joining ceramics and metal, which comprises:
【請求項2】前記活性金属板の厚みが5〜50μmであ
る請求項1記載のセラミックスと金属との接合方法。
2. The method for joining ceramics and metal according to claim 1, wherein the thickness of the active metal plate is 5 to 50 μm.
【請求項3】前記応力緩和材層が、前記金属部材よりも
熱膨張係数が小さい材料の板からなる請求項1記載のセ
ラミックスと金属との接合方法。
3. The method for joining ceramics and metal according to claim 1, wherein the stress relaxation material layer is made of a plate made of a material having a thermal expansion coefficient smaller than that of the metal member.
【請求項4】前記応力緩和材層が、前記金属部材および
活性金属板よりも熱処理による塑性変形が大きい軟質金
属板からなる請求項1記載のセラミックスと金属との接
合方法。
4. The method for joining ceramics and a metal according to claim 1, wherein the stress relaxation material layer is made of a soft metal plate which is larger in plastic deformation due to heat treatment than the metal member and the active metal plate.
【請求項5】前記応力緩和材層が、セラミックス側に前
記金属部材および活性金属板よりも熱処理による塑性変
形が大きい軟質金属板を有し、前記金属部材側に前記金
属部材よりも熱膨張係数が小さい金属板を有し、両金属
板間に前記低融点ろう材を配設したものである請求項1
記載のセラミックスと金属との接合方法。
5. The stress relieving material layer has a soft metal plate on the ceramic side that is larger in plastic deformation due to heat treatment than the metal member and the active metal plate, and has a thermal expansion coefficient on the metal member side than the metal member. 2. A metal plate having a small size, and the low melting point brazing material disposed between the metal plates.
A method of joining the described ceramics and metal.
【請求項6】前記高融点ろう材が、融点750℃以上の
ろう材であり、前記低融点ろう材が融点700℃以下の
ろう材である請求項1記載のセラミックスと金属との接
合方法。
6. The method for joining ceramics and metal according to claim 1, wherein the high melting point brazing material is a brazing material having a melting point of 750 ° C. or higher, and the low melting point brazing material is a melting point of 700 ° C. or lower.
【請求項7】前記金属部材よりも熱膨張係数が小さい材
料の板が、熱膨張係数8×10−6/℃以下の材料から
なる請求項3記載のセラミックスと金属との接合方法。
7. The method for joining ceramics and metal according to claim 3, wherein the plate made of a material having a thermal expansion coefficient smaller than that of the metal member is made of a material having a thermal expansion coefficient of 8 × 10 −6 / ° C. or less.
【請求項8】前記軟質金属板が、CuまたはAlである
請求項4記載のセラミックスと金属との接合方法。
8. The method for joining a ceramic and a metal according to claim 4, wherein the soft metal plate is Cu or Al.
【請求項9】前記融点750℃以上のろう材が、Ag−
Cuロウ、Agロウ・NiロウおよびPdロウから選ば
れる少なくとも1種であり、前記融点700以下のろう
材が、Ag−Cu−Zn−Cdロウである請求項5記載
のセラミックスと金属との接合方法。
9. A brazing material having a melting point of 750 ° C. or higher is Ag-
Bonding of a ceramic and a metal according to claim 5, wherein the brazing filler metal which is at least one selected from Cu brazing, Ag brazing / Ni brazing and Pd brazing and has a melting point of 700 or less is Ag-Cu-Zn-Cd brazing. Method.
【請求項10】前記セラミックス部材がSiC系セラミ
ックスからなり、前記金属部材がステンレス鋼である請
求項1記載のセラミックスと金属との接合方法。
10. The method for joining a ceramic and a metal according to claim 1, wherein the ceramic member is made of SiC ceramics, and the metal member is stainless steel.
【請求項11】前記活性金属板がTi、ZrおよびBe
から選ばれる少なくとも1種である請求項1記載のセラ
ミックスと金属との接合方法。
11. The active metal plate is made of Ti, Zr and Be.
The method for joining a ceramic and a metal according to claim 1, which is at least one selected from the group consisting of:
【請求項12】前記熱膨張係数8×10−6/℃以下の
材料が、W、WCおよびMoから選ばれる少なくとも1
種である請求項7記載のセラミックスと金属との接合方
法。
12. The material having a thermal expansion coefficient of 8 × 10 −6 / ° C. or less is at least 1 selected from W, WC and Mo.
The method for joining ceramics and metal according to claim 7, which is a seed.
JP1172567A 1989-07-04 1989-07-04 Method of joining ceramics and metal Expired - Fee Related JPH0649623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172567A JPH0649623B2 (en) 1989-07-04 1989-07-04 Method of joining ceramics and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172567A JPH0649623B2 (en) 1989-07-04 1989-07-04 Method of joining ceramics and metal

Publications (2)

Publication Number Publication Date
JPH0337165A JPH0337165A (en) 1991-02-18
JPH0649623B2 true JPH0649623B2 (en) 1994-06-29

Family

ID=15944232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172567A Expired - Fee Related JPH0649623B2 (en) 1989-07-04 1989-07-04 Method of joining ceramics and metal

Country Status (1)

Country Link
JP (1) JPH0649623B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001286742A (en) * 2000-04-10 2001-10-16 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane
JP6694301B2 (en) 2016-03-23 2020-05-13 日本碍子株式会社 Joined body and method for manufacturing joined body
DE102019126954A1 (en) * 2019-10-08 2021-04-08 Rogers Germany Gmbh Process for the production of a metal-ceramic substrate, soldering system and metal-ceramic substrate produced with such a process
CN113909613A (en) * 2021-11-05 2022-01-11 北京航空航天大学 SiCfMethod for brazing/SiC ceramic matrix composite and nickel-based superalloy
CN114043026B (en) * 2021-11-12 2023-08-29 哈尔滨工业大学 Stress relieving method in ceramic-metal

Also Published As

Publication number Publication date
JPH0337165A (en) 1991-02-18

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPS6140624B2 (en)
JPH0649623B2 (en) Method of joining ceramics and metal
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPS61227971A (en) Method of joining silicon nitride or sialon and metal
JPH0520392B2 (en)
JPH0547513B2 (en)
JPH01308884A (en) Material-bonding process and bonded product
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
CN110683855A (en) Biocompatible Al2O3Method for diffusion bonding of Ti
JP3290258B2 (en) Manufacturing method of bonded body of ceramics and metal
JP3352823B2 (en) Joining method between silicon carbide ceramics and silicon
JPH0142914B2 (en)
JP2507614B2 (en) Pressure joining method for ceramic parts and metal parts
JPH08119760A (en) Soldering of sic
JP2940030B2 (en) Joining method of ceramics and metal
JP3685630B2 (en) Ceramics-metal joint
JPS60166275A (en) Bonding of ceramic and metal
JPH0829989B2 (en) Ceramics-metal joint
JPS6081070A (en) Bonded structure of sic sintered body and metal member
JP3445461B2 (en) Solder joining method and ultrasonic sensor
JP2522124B2 (en) Method of joining ceramics to ceramics
JPS60155577A (en) Bonded axial body of ceramic and metal
JPS61215273A (en) Method of bonding ceramic and metal
JPH0317793B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees