JPS60166275A - Bonding of ceramic and metal - Google Patents

Bonding of ceramic and metal

Info

Publication number
JPS60166275A
JPS60166275A JP2153984A JP2153984A JPS60166275A JP S60166275 A JPS60166275 A JP S60166275A JP 2153984 A JP2153984 A JP 2153984A JP 2153984 A JP2153984 A JP 2153984A JP S60166275 A JPS60166275 A JP S60166275A
Authority
JP
Japan
Prior art keywords
metal
base material
joint
alloy
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2153984A
Other languages
Japanese (ja)
Inventor
白兼 誠
中橋 昌子
山崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2153984A priority Critical patent/JPS60166275A/en
Publication of JPS60166275A publication Critical patent/JPS60166275A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は金属とセラミックとを接合する方法の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in methods for joining metals and ceramics.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

金属とセラミックとは夫々異なった原子結合状態を有し
、このため金属とセラミックとを接合する場合、それら
の反応性などの化学的性質、熱膨張率、電気伝導度など
の物理的性質は大きく異なる。したがって、両部材を良
好に濡らし、信頼性の高い冶金的な接合を行なうことは
相当困難である。
Metals and ceramics each have different atomic bonding states, and therefore, when joining metals and ceramics, their chemical properties such as reactivity, and physical properties such as thermal expansion coefficient and electrical conductivity vary greatly. different. Therefore, it is quite difficult to properly wet both members and perform a reliable metallurgical bond.

ところで、従来よ〕金属とセラミックとの冶金的接合方
法としては以下に示す種々の方法が知られている。
By the way, various methods shown below have been known as methods for metallurgically joining metals and ceramics.

■ セラミック母材の接合面にMo −T−Wを主成分
とする粉末と有機バインダの混合物を塗布し、加湿した
雰囲気中で1400〜1700℃に加熱して反応させる
。これは通常、メタライジングと呼ばれる方法である。
(2) A mixture of a powder containing Mo-T-W as a main component and an organic binder is applied to the joint surface of the ceramic base material, and the mixture is heated to 1400 to 1700°C in a humid atmosphere to cause a reaction. This method is usually called metallizing.

次いで、前記メタライジング上にN1メッキを施した後
、該Niメッキに金属母材(例えばCu母拐)をPb 
−Sn系半田などによシ接合する。こうした接合方法は
エレクトロニクス部品において、絶縁体としてのセラミ
ック母材と導体としてのCu部材を接合する場合に多用
されている。
Next, after applying N1 plating on the metallizing, a metal base material (for example, Cu matrix) is applied to the Ni plating.
- Join using Sn-based solder or the like. Such a joining method is often used in electronic parts when joining a ceramic base material as an insulator and a Cu member as a conductor.

■ 金属母材とセラミック母材とをAu 、 P tの
ような貴金属、つまシ酸素との親和力の小さい金属を主
成分とする合金を用いて接合する方法。
■ A method of bonding a metal base material and a ceramic base material using an alloy whose main component is a noble metal such as Au or Pt, or a metal that has a low affinity for oxygen.

■ 金属母材とセラミック母材との接合部にTI 、 
Nb 、 Zrなどの活性金属又は熱処理によって活性
金属に変換される活性金属水素化物を介在させた後、高
温、高圧下で接合する方法。
■ TI at the joint between metal base material and ceramic base material,
A method in which active metals such as Nb and Zr or active metal hydrides that are converted to active metals by heat treatment are interposed and then bonded at high temperature and high pressure.

しかしながら、上記■の方法は工程数が多く煩雑である
という欠点を有する。上記■の方法は簡単な工程で接合
できるものの、高価な貴金属を使用するため経済的では
なく、しがも金属母材とセラミック母材が十分に接触す
るように高い圧力を必要として、変形を嫌うエレクトロ
部品などの接合には好ましくない。上記■の方法では活
性金属によシ強固な接合を行なえるものの、高い接合圧
力を必要とするため前記■の方法と同様、変形を嫌うエ
レクトロ部品などの接合には好ましくない。
However, the above method (1) has the disadvantage that it requires a large number of steps and is complicated. Although the above method (■) can be joined in a simple process, it is not economical because it uses expensive precious metals, and it also requires high pressure to ensure sufficient contact between the metal base material and ceramic base material, causing deformation. It is not suitable for joining unwanted electronic parts. Although the above method (2) allows for strong bonding of active metals, it requires high bonding pressure, and therefore, like the above method (2), it is not suitable for bonding electronic parts and the like that are sensitive to deformation.

このようなことから、Ti、Zrなどの活性金属はCu
 、 Nl 、 Feなどの遷移金属との合金において
、その共晶組成領域で活性金属の単体の融点(Ti;1
720℃、Zr ; 1860℃)及びCu 、 Ni
 、 Fe単体の融点(夫々1083℃、 1453℃
、 1534℃)と比較して融点を数100℃低下させ
ることに着目し、遷移金属母材とセラミック母材との接
合部に活性金属を介在させ、該接合部を遷移金属および
活性金属の合金の融点よシ高く、遷移金属の融点呟シ低
い温度に加熱し、遷移金属と活性金属との原子を相互に
拡散させて合金化し、この合金によって遷移金属母材と
セラミック母材とを接合する方法が米国特許第2,85
7,663号明細書に開示されている。かかる方法によ
れば、接合時において接合部に遷移金属と活性金属との
合金の融液によシ満たされ、金属母材とセラミック母材
とを濡すので、各母材を十分接触させるための接合時の
加圧をほとんど必要とせず、かつ活性金属の効果によシ
それら母材を強固に接合できる。しがしながら、得られ
た金属−セラミックの接合部材に熱衝撃を加えると、セ
ラミック母材にクラックが発生する欠点があった。
For this reason, active metals such as Ti and Zr are
In alloys with transition metals such as , Nl, and Fe, the melting point of the active metal alone (Ti; 1
720°C, Zr; 1860°C) and Cu, Ni
, melting point of Fe alone (1083℃, 1453℃ respectively)
Focusing on lowering the melting point by several hundred degrees Celsius compared to 1,534°C), an active metal is interposed in the joint between the transition metal base material and the ceramic base material, and the joint is made of an alloy of the transition metal and active metal. The metal is heated to a temperature higher than the melting point of the active metal and lower than the melting point of the transition metal, atoms of the transition metal and the active metal are diffused into an alloy, and this alloy joins the transition metal base material and the ceramic base material. The method is U.S. Patent No. 2,85
No. 7,663. According to this method, at the time of joining, the joint is filled with a melt of the alloy of transition metal and active metal, which wets the metal base material and the ceramic base material, so that the base materials can be brought into sufficient contact with each other. There is almost no need for pressure during bonding, and the active metal's effect allows these base materials to be firmly bonded. However, when a thermal shock is applied to the obtained metal-ceramic bonded member, there is a drawback that cracks occur in the ceramic base material.

〔発明の目的〕[Purpose of the invention]

本発明は金属母材とセラミック母材とを簡単な工程で加
圧せずに強固に接合できると共に、それら接合部材に熱
衝撃を加えてもセラミック母材のクラック発生を防止し
得る接合方法を提供しようとするものである。
The present invention provides a joining method that can firmly join a metal base material and a ceramic base material in a simple process without applying pressure, and that can prevent cracks from occurring in the ceramic base material even if a thermal shock is applied to the joined members. This is what we are trying to provide.

〔発明の概要〕[Summary of the invention]

本発明者らは前述した米国特許の方法により作られた接
合部材への熱衝撃によるセラミック母材のクラック発生
について種々検討した結果、遷移金属母材とセラミック
母材との接合部における遷移金属と活性金属との合金の
接合分布、つまシ合金層の接合部と非接合部の分布比が
セラミック母材のクラックに密接に相関することを究明
した。
The present inventors have conducted various studies on the occurrence of cracks in the ceramic base material due to thermal shock in bonded members made by the method disclosed in the above-mentioned U.S. patent. It was found that the bonding distribution of the alloy with the active metal and the distribution ratio of the bonded and non-bonded areas of the toothed alloy layer are closely correlated to cracks in the ceramic base material.

こうした相関関係は次のような機構によるものと考えら
れる。即ち、遷移金属或いは活性金属などの金属とセラ
ミックとは熱膨張係数が大きく異なるため、接合部の温
度が上昇したシ、下降したシすると、その接合部に大き
な応力が生じる。この場合、Cu、Ni或いは全律固溶
体としてのCu −N i合金などの金属はその硬度が
低く、柔らかいため、前記応力によシ容易に変形して応
力を緩和し易い。
This correlation is thought to be due to the following mechanism. That is, since metals such as transition metals or active metals and ceramics have significantly different coefficients of thermal expansion, when the temperature of the joint increases or decreases, a large stress is generated at the joint. In this case, metals such as Cu, Ni, or a Cu-Ni alloy as a wholly solid solution have low hardness and are soft, so they are easily deformed by the stress and ease the stress.

これに対し、遷移金属(Cu、Ni等)と活性金属(T
I、Zr等)との合金は硬く、変形し難いため、接合部
にこれら合金層が多量に存在すると、応力の緩和現象が
小さく、セラミック母材に応力が加わってクラックが発
生するものと考えられる。
On the other hand, transition metals (Cu, Ni, etc.) and active metals (T
Since alloys with I, Zr, etc.) are hard and difficult to deform, it is thought that if a large amount of these alloy layers exists in the joint, the stress relaxation phenomenon will be small and stress will be applied to the ceramic base material, causing cracks. It will be done.

このようなことから、本発明者らは上記究明結果を踏え
て、更に鋭意研究したところ、金属母材とセラミック母
材との接合面に接合部と非接合部とを設けることによシ
、応力が緩和することを見い出した。つまシ、金属母材
とセラミック母材との接合面に貫通孔を有する活性金属
層或いはいずれかが貫通孔を有する活性金属層および金
属層を介在させ、該金属と活性金属の合金を生成した接
合部と合金を生成していない非接合部を設けることによ
シ実質的にそれら母材の接合部に多量の合金層が存在し
ないようにすることによって、既述の如く各母材を加圧
せずに強固に接合できると共に、接合後、熱衝撃を与え
てもセラミック母材のクランク発生を防止し得る接合方
法を見い出したものである。
Based on the above findings, the present inventors conducted further intensive research and found that by providing a bonded portion and a non-bonded portion on the bonding surface between the metal base material and the ceramic base material, It was found that stress is relieved. An active metal layer having through holes on the bonding surface of the metal base material and the ceramic base material, or an active metal layer having through holes and a metal layer interposed therebetween to produce an alloy of the metal and the active metal. By providing a non-joint part where no alloy is formed with the joint part, substantially no large amount of alloy layer is present at the joint part of these base materials, so that each base material can be processed as described above. We have discovered a joining method that can be firmly joined without applying pressure, and can also prevent cranking of the ceramic base material even if thermal shock is applied after joining.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

まず、金属母材と七ラミック母材との接合部(″−貫通
孔を有する活性金属層又はいずれかが貫通孔を有する活
性金属層および金属層を介在させる。
First, the joint between the metal base material and the heptadramic base material ("-active metal layer with through holes, or either active metal layer with through holes and metal layer is interposed.

ここに用いる金属としては、例えばCu 、 Nl 、
 Fe又はこれらの合金等を挙げることができる。また
、セラミックとしては窒化物(AAN 、 5t3N4
. BNなど)、炭化物(sicなど)、酸化物(Aj
t、03など)をはじめとする各種のセラミックを用い
ることができる。更に、活性金属としては、例えばTi
或いはZr等を挙げることができる。こうした活性金属
層の貫通孔の大きさは、目標とする接合部と非接合部と
の分布比によシ決定される、接合部と非接合部との分布
比は接合部の面積が20〜70%を占める範囲が望まし
く20%未満では接合強度が充分でなく、70%を超え
ると応力の緩和現象が充分でなくなる。かかる活性金属
層を前記接合部に介在させる手段としては、例えば活性
金属箔を用いて介在させる方法が採用し得る。
Examples of metals used here include Cu, Nl,
Examples include Fe or alloys thereof. In addition, as a ceramic, nitride (AAN, 5t3N4
.. BN, etc.), carbides (SIC, etc.), oxides (Aj
Various types of ceramics can be used, including ceramics such as t, 03, etc.). Furthermore, as the active metal, for example, Ti
Alternatively, Zr etc. can be mentioned. The size of the through-holes in the active metal layer is determined by the target distribution ratio of bonded and non-bonded areas. A range that accounts for 70% is desirable; if it is less than 20%, the bonding strength will not be sufficient, and if it exceeds 70%, the stress relaxation phenomenon will not be sufficient. As a means for interposing such an active metal layer in the joint portion, for example, a method of interposing the active metal layer using an active metal foil can be employed.

次いで、金属母材とセラミック母材の接合部を真空雰囲
気、或いは不活性ガス雰囲気中にて加熱して保持する。
Next, the joint between the metal base material and the ceramic base material is heated and held in a vacuum atmosphere or an inert gas atmosphere.

この工程において、基本的には圧力を加えなくともよい
が、必要に応じて0.01〜1kg/am の低圧力を
加えて加熱してもよい。加熱温度は金属母材と活性金属
の合金の融点より高く、金属母材の融点よシ低いことが
必要である。具体的には金属母材をCu 、 Ni 、
 Fe又はその合金で形成し、 TI又はwrの活性金
属層を用いる場合には872〜1085℃の範囲で加熱
する。こうした熱処理によシ各母材にその母性金属と活
性金属の合金融液が生成される。つづいて、合金の拡散
が終了し、接合面に合金層の接合部と非接合部が存在す
る状態になった時点で酸化を防止しつつ冷却して金属−
セラミックの接合材を形成する。
In this step, it is basically not necessary to apply pressure, but if necessary, a low pressure of 0.01 to 1 kg/am may be applied for heating. The heating temperature needs to be higher than the melting point of the alloy of the metal base material and the active metal and lower than the melting point of the metal base material. Specifically, the metal base material is Cu, Ni,
When a TI or wr active metal layer made of Fe or its alloy is used, it is heated in the range of 872 to 1085°C. This heat treatment produces a liquid mixture of the parent metal and the active metal in each parent metal. Next, when the diffusion of the alloy is completed and the bonded area of the alloy layer and the non-bonded area exist on the bonding surface, the metal is cooled while preventing oxidation.
Forms a ceramic bonding material.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例を第1区を用いて説明する。 Next, an embodiment of the present invention will be described using the first section.

実施例1 まず、15朋角、厚さ2朋のA−IN板状体1と15j
lll角、厚さ30011mの無酸素銅板状体2を各々
1枚用意した。つづいて、これら板状体をトリクレン及
びアセトンで洗浄して脱脂処理した後、それら板状体の
接合部に厚さ20μmの貫通孔率90%のTi箔3を介
在させ、2 X 10 ” Torrの真空度に保持し
たホットプレス中1ニセソトした。ひきつづき板状体間
に上下方向から0,1kg7mm”の圧力を加え、高周
波加熱によシ接合部を930°Cζ二10分間保持して
Co −Tiの合金層を無酸素銅板状体に格子縞状に拡
散せしめた。
Example 1 First, A-IN plate-shaped bodies 1 and 15j of 15 mm square and 2 mm thick
One oxygen-free copper plate-shaped body 2 having a square size of 30011 m and a thickness of 30011 m was prepared. Subsequently, these plate-like bodies were cleaned and degreased with trichloride and acetone, and then a Ti foil 3 with a thickness of 20 μm and a through-porosity of 90% was interposed at the joint portion of these plate-like bodies, and the plate was heated to 2×10” Torr. The pressure of 0.1 kg 7 mm was applied from above and below between the plate-like bodies, and the joint was heated at 930°C for 10 minutes to form a Co - A Ti alloy layer was diffused into an oxygen-free copper plate in a checkered pattern.

しかして、接合部を100倍の光学顕微鏡で観察した結
果、接合部面積が約40%であpAJIN板状体のクラ
ック発生も無く、良好なCu −AA+N接合材を得る
ことができた。
As a result of observing the joint using an optical microscope with a magnification of 100 times, it was found that the joint area was about 40% and no cracks occurred in the pAJIN plate, and a good Cu-AA+N joint material could be obtained.

実施例2 まず、15朋角、厚さ3朋の8i、N、板状体と10鳳
萬角、厚さ1順のNi板状体を各々1枚用意した。つづ
いて、これら板状体をトリクレン及びアセトンで洗浄し
て脱脂処理を施した後、これら板状体の接合部に厚さ2
0μm1貫通孔率95%のZr箔と厚さ50μmのCo
箔を介在させ、2X10 Torrの真空度に保持され
たホットプレス中にセットした。
Example 2 First, one 8i N plate-shaped body of 15 mm square and 3 mm thick and one Ni plate-shaped body of 10 mm square and one thickness were prepared. Subsequently, after cleaning these plate-like bodies with trichlene and acetone and degreasing them, the joints of these plate-like bodies are coated with a thickness of 2
Zr foil with 0μm1 through-hole ratio of 95% and Co with thickness of 50μm
A foil was interposed and the sample was placed in a hot press maintained at a vacuum level of 2×10 Torr.

ひきつづき、板状体間に上下方向からQ、1 kg/i
+i+’の圧力を加え、高周波加熱によシ接合部を98
0℃に加熱し、10分間保持した。次いで圧力を解除し
てCu−Zrの合金層をNi板状体に格子縞状に拡散せ
しめた。しかして、接合部を実施例1と同様に観察した
結果、接合部面積が約50%でありがつ8i、N4板状
体のクラック発生もなく良好なNl −81、N、接合
体を得ることができた。
Continuing, Q, 1 kg/i from above and below between the plate-like bodies
+i+' pressure is applied and the joint is heated to 98 degrees by high frequency heating.
Heat to 0°C and hold for 10 minutes. Next, the pressure was released, and the Cu--Zr alloy layer was diffused into the Ni plate in a checkered pattern. As a result of observing the joint in the same manner as in Example 1, a good Nl -81,N joint was obtained with a joint area of approximately 50% and no cracking of the 8i, N4 plate. I was able to do that.

実施例3 まず15jlII角、厚さ311r1xのllN5N、
板状体と10n角、厚さ3 amステンレス鋼(JIS
 SU8304 )板状体を各々1枚用意した。つづい
てこれら板状体をトリクレン及びアセトンで洗浄して脱
脂処理を施した後、これら板状体の接合面に厚さ15皿
、貫連射率90%のTI箔と厚さ20μmのNi箔を介
在させ、2×IQ Torrの真空度に保持されたホッ
トプレス中にてセットした。ひきつづき板状体間に上下
方向から(12kg/am”の浮力を加え、高周波加熱
により、接合部を1000°Cに加熱し10分間保持し
た。次いで圧力を解除してTl−Niの合金層をステン
レス鋼板状体に格子縞状に拡散せしめた。
Example 3 First, 15jlII square and 311r1x thick llN5N,
Plate body and 10n square, 3am thick stainless steel (JIS
SU8304) One plate-like body was prepared for each. Subsequently, these plate-like bodies were cleaned with trichlene and acetone and degreased, and then a 15-plate thick TI foil with a firing rate of 90% and a 20 μm thick Ni foil were applied to the joint surfaces of these plate-like bodies. It was set in a hot press maintained at a vacuum level of 2×IQ Torr. Subsequently, a buoyant force (12 kg/am") was applied from above and below between the plate-like bodies, and the joint was heated to 1000°C by high frequency heating and held for 10 minutes.Then, the pressure was released and the Tl-Ni alloy layer was heated. It was spread in a checkered pattern on a stainless steel plate.

しかして接合部を実施例1と同様に観察した結果、接合
部面積が約60%であり、かつSi3N4板状体のクラ
ック発生もなく良好なステンレス鋼−813N、接合体
を得ることができた。
However, as a result of observing the joint in the same manner as in Example 1, it was possible to obtain a good stainless steel-813N joint with a joint area of approximately 60% and no cracks in the Si3N4 plate. .

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば金属母材とセラミッ
ク母材を簡単な工程で加圧せずに強固に一合できると共
に、形成工程或いは接合後に熱衝撃を受けてもセラミッ
ク母材のクラック発生を防止し得る接合方法を提供でき
る。
As described in detail above, according to the present invention, it is possible to firmly join the metal base material and the ceramic base material without applying pressure in a simple process, and the ceramic base material can be bonded even if subjected to thermal shock during the forming process or after joining. A joining method that can prevent crack generation can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る接合方法を示すt章斜視図である
。 1:AJN板状体 2 : Cu板状体 3:貫通孔を
有するTl箔
FIG. 1 is a perspective view of chapter t showing the joining method according to the present invention. 1: AJN plate-like body 2: Cu plate-like body 3: Tl foil with through holes

Claims (3)

【特許請求の範囲】[Claims] (1)金属母材とセラミック母材との接合面に、貫通孔
を有する活性金属層或いは、いずれかが貫通孔を有する
活性金属層および金属層を介在させた後、この接合部を
前記金属母材と活性金属の合金、或いは前記金属と活性
金属の合金の融点よ)高く、前記金属母材の融点より低
い温度に保持して接合面に前記合金の生成部と非生成部
を設けたことを特徴とした金属とセラミックとの接合方
法。
(1) After interposing an active metal layer having a through hole or an active metal layer and a metal layer having a through hole on the bonding surface between the metal base material and the ceramic base material, this joint portion is bonded to the metal layer. (the melting point of the alloy of the base metal and the active metal, or the alloy of the metal and the active metal) is maintained at a temperature higher than the melting point of the metal base material and lower than the melting point of the metal base material to provide a forming area and a non-generating area of the alloy on the joint surface. A method for joining metal and ceramic.
(2)金属母材及び金属層がCu 、 Ni 、 Fe
或いはその合金であることを特徴とする特許請求の範囲
第1項記載の金属とセラミックとの接合方法。
(2) Metal base material and metal layer are Cu, Ni, Fe
2. The method of joining metal and ceramic according to claim 1, wherein the bonding method is a metal or an alloy thereof.
(3)活性金属がT1或いはZrであることを特徴とす
る特許請求の範囲第1項記載の金属とセラミックとの接
合方法。
(3) The method for joining metal and ceramic according to claim 1, wherein the active metal is T1 or Zr.
JP2153984A 1984-02-10 1984-02-10 Bonding of ceramic and metal Pending JPS60166275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153984A JPS60166275A (en) 1984-02-10 1984-02-10 Bonding of ceramic and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153984A JPS60166275A (en) 1984-02-10 1984-02-10 Bonding of ceramic and metal

Publications (1)

Publication Number Publication Date
JPS60166275A true JPS60166275A (en) 1985-08-29

Family

ID=12057771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153984A Pending JPS60166275A (en) 1984-02-10 1984-02-10 Bonding of ceramic and metal

Country Status (1)

Country Link
JP (1) JPS60166275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901904A (en) * 1985-07-22 1990-02-20 Ngk Insulators, Ltd. Method of producing brazing metals
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901904A (en) * 1985-07-22 1990-02-20 Ngk Insulators, Ltd. Method of producing brazing metals
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board

Similar Documents

Publication Publication Date Title
JPH0249267B2 (en)
JPS60131874A (en) Method of bonding ceramic and metal
JPS60166165A (en) Joining method of metal and ceramics
JPH0520392B2 (en)
Qiao et al. Thermal cyclic test of alumina/kovar joint brazed by Ni–Ti active filler
JP3095490B2 (en) Ceramic-metal joint
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JP3495051B2 (en) Ceramic-metal joint
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
JPS60166275A (en) Bonding of ceramic and metal
JPS62182166A (en) Method of joining ceramics to metal
JPH0729859B2 (en) Ceramics-Metal bonding material
JP6908173B2 (en) Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method
JP3302714B2 (en) Ceramic-metal joint
JP3370060B2 (en) Ceramic-metal joint
JPH0337165A (en) Adhesion between ceramics and metal
JPH05319946A (en) Ceramic substrate joined to metallic plate
JPH0662342B2 (en) Method for joining silicon nitride ceramics and metal
JPH0672779A (en) Method for joining carbon member
JPS6256378A (en) Silicon carbide-metal bonded structure
JP2000119072A (en) Joining of silicon nitride to carbon steel
JPH0337166A (en) Adhesion between ceramics and metal
JPS6246975A (en) Method of joining ti to ceramic
JPH0649620B2 (en) Method for joining ceramic member and metal member