JP2507614B2 - Pressure joining method for ceramic parts and metal parts - Google Patents

Pressure joining method for ceramic parts and metal parts

Info

Publication number
JP2507614B2
JP2507614B2 JP1183185A JP18318589A JP2507614B2 JP 2507614 B2 JP2507614 B2 JP 2507614B2 JP 1183185 A JP1183185 A JP 1183185A JP 18318589 A JP18318589 A JP 18318589A JP 2507614 B2 JP2507614 B2 JP 2507614B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
component
thermal stress
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1183185A
Other languages
Japanese (ja)
Other versions
JPH0350167A (en
Inventor
伸夫 津野
良洋 藤原
博以 辻
孝志 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP1183185A priority Critical patent/JP2507614B2/en
Publication of JPH0350167A publication Critical patent/JPH0350167A/en
Application granted granted Critical
Publication of JP2507614B2 publication Critical patent/JP2507614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、セラミック部品と金属部品の接合構造に
関するものである。
TECHNICAL FIELD The present invention relates to a joint structure of a ceramic component and a metal component.

[従来の技術] 一般に、セラミックスは金属に比べて熱膨張係数が小
さいので、高温で使用したりあるいは熱サイクルを受け
るセラミック部品と金属部品の接合構造においては、両
者の接合界面に生じる熱応力を緩和することが必要とな
る。このための手段としては,両者の間の中間の熱膨張
係数を有する材料を介在させたり、両者の接合界面に軟
質金属を介在させたり、金属部品をアルミニウムのよう
な軟質金属で構成したりすることが知られている。ま
た、かかるセラミック部品と金属部品の接合構造は、エ
ンジン部品やナトリウムを熱媒体とする熱交換器のフラ
ンジ部に利用される。例えば、このフランジ部において
は、第5図に示すようにアルミナ製のリング1によりア
ルミニウム製配管側金具3とアルミニウム製熱交換器側
金具5とが電気的に絶縁状態で結合され、前記アルミナ
リング1と熱交換器側金具5及び配管側金具3とはAl製
ろう材としての中間接合リング2,4を介して接合され
る。この場合、前記配管側金具3の下側及び熱交換器側
金具5の上側には、熱応力緩衝を目的とした他部材は接
合されていなかった。
[Prior Art] In general, ceramics have a smaller coefficient of thermal expansion than metals. Therefore, in a joining structure between a ceramic part and a metal part that are used at high temperature or subjected to a thermal cycle, the thermal stress generated at the joining interface between them is It will need to be mitigated. As a means for this, a material having an intermediate coefficient of thermal expansion between the two is interposed, a soft metal is interposed at the joint interface between the two, or the metal part is made of a soft metal such as aluminum. It is known. Further, such a joint structure of a ceramic component and a metal component is used for an engine component and a flange portion of a heat exchanger using sodium as a heat medium. For example, in this flange portion, as shown in FIG. 5, the aluminum pipe side metal fitting 3 and the aluminum heat exchanger side metal fitting 5 are electrically connected to each other by an alumina ring 1 to form the alumina ring. 1, the heat exchanger side metal fitting 5 and the pipe side metal fitting 3 are joined via intermediate joining rings 2 and 4 as an Al brazing material. In this case, other members for the purpose of buffering thermal stress were not joined to the lower side of the pipe side metal fitting 3 and the upper side of the heat exchanger side metal fitting 5.

[発明が解決しようとする課題] ところが、上記従来のフランジ部の接合構造において
は、室温と例えば350℃の高温との間で繰り返し熱サイ
クルを受けると、前述したようにアルミナリング1と熱
交換器側金具5との熱膨張率の違いにより、両者の接合
界面付近に熱応力が発生し、この熱応力により接合界面
の局部的剥離が生じて、接合界面の気密性が低下し熱交
換器の耐久性が低下するという問題があった。
[Problems to be Solved by the Invention] However, in the above-described conventional flange joint structure, when repeatedly subjected to a thermal cycle between room temperature and a high temperature of, for example, 350 ° C., heat exchange with the alumina ring 1 occurs as described above. Due to the difference in the coefficient of thermal expansion from the equipment-side metal fitting 5, a thermal stress is generated in the vicinity of the joint interface between the two, and this thermal stress causes local peeling of the joint interface, reducing the airtightness of the joint interface and reducing the heat exchanger. There was a problem that the durability of the

この発明の目的は、セラミック部品と金属部品との間
の接合界面に熱サイクルが作用した場合に、接合界面に
発生する熱応力を緩和し、接合界面の耐剥離強度を向上
することができるセラミック部品と金属部品の接合構造
を提供することにある。
An object of the present invention is to reduce the thermal stress generated at the joint interface when a thermal cycle acts on the joint interface between the ceramic component and the metal component, and to improve the peel resistance of the joint interface. It is to provide a joint structure of a component and a metal component.

[課題を解決するための手段] この発明は上記目的を達成するため、セラミック部品
とアルミニウム又はアルミニウム合金からなる金属部品
との間に,AlにSiが添加されたろう材を介在させて加圧
接合を行うに際し、前記セラミック部品と金属部品との
ろう付面側とは反対側の前記金属部品の表面に、前記セ
ラミック部品とほぼ同材質の熱応力緩衝セラミック部品
を配置するとともに、前記熱応力緩衝セラミック部品と
金属部品との間にも前記ろう材と同質のろう材を介在さ
せ,前記ろう材の液相線温度と固相線温度との間で加圧
を開始し,固相線温度以下まで加圧を継続して接合する
という手段をとっている。
[Means for Solving the Problems] In order to achieve the above object, the present invention press-bonds a ceramic part and a metal part made of aluminum or an aluminum alloy with a brazing material containing Si added to Al interposed therebetween. When performing the, on the surface of the metal component on the side opposite to the brazing surface side of the ceramic component and the metal component, a thermal stress buffering ceramic component of substantially the same material as the ceramic component is arranged, and the thermal stress buffering is performed. A brazing material of the same quality as the brazing material is also interposed between the ceramic part and the metal part, and pressurization is started between the liquidus temperature and the solidus temperature of the brazing material, and the temperature is below the solidus temperature. It takes a means to continue applying pressure until joining.

この場合に、ろう材の焼鈍温度で所定時間保持すると
よい。又、前記熱応力緩衝セラミック部品の厚さを前記
金属部品の厚さと同じかそれ以上にするとよい。
In this case, the brazing material may be held at the annealing temperature for a predetermined time. The thickness of the thermal stress buffering ceramic component may be equal to or greater than the thickness of the metal component.

[作用] この発明は、金属部品のセラミック部品との接合面の
反対側表面に熱応力緩衝セラミック部品を接合して固定
したので、これらの部品が繰り返し熱サイクルを受けた
場合に、熱膨張の大きい金属部品の熱膨張を、熱膨張の
小さい熱応力緩衝セラミック部品で抑制する。このため
セラミック部品と金属部品との接合界面に発生する熱応
力が効果的に緩和され、セラミック部品と金属部品の接
合界面の接合強度ならびに接合界面の気密性が長期にわ
たり安定して保持される。
[Operation] According to the present invention, the thermal stress buffering ceramic parts are joined and fixed to the surface of the metal part opposite to the joining surface with the ceramic part. Therefore, when these parts are subjected to repeated thermal cycles, thermal expansion of the parts is suppressed. Thermal expansion of large metal parts is suppressed by thermal stress buffering ceramic parts with small thermal expansion. Therefore, the thermal stress generated at the joint interface between the ceramic component and the metal component is effectively relieved, and the joint strength and the airtightness of the joint interface between the ceramic component and the metal component are stably maintained for a long period of time.

[実施例] 以下、この発明を具体化した一実施例を第1〜第4図
に基づいて説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS.

第1,2図に示すようにセラミック部品としてのα−ア
ルミナよりなるリング1の下端面1aおよび上端面1bに
は、ろう材としてのAl−Si合金製の中間接合リング2及
び4を介して、金属部材としてのAl製配管側金具3及び
Al製熱交換器側金具5のフランジ部3a及び5aが後に詳述
する加圧接合方法で固定されている。前記配管側金具3
のフランジ部3a下面及び前記熱交換器側金具5のフラン
ジ部5a上部には、同じくろう材としてのAl合金製の中間
接合リング6,8を介して前記アルミナリング1を形成す
るα−アルミナと同材質の熱応力緩衝セラミック部品と
しての熱応力緩衝セラミックリング7,9が、後に詳述す
る加圧接合方法で固定されている。
As shown in FIGS. 1 and 2, the lower end surface 1a and the upper end surface 1b of the ring 1 made of α-alumina as a ceramic component are provided with intermediate joining rings 2 and 4 made of Al-Si alloy as a brazing material. , Al pipe side metal fitting 3 as a metal member and
The flange parts 3a and 5a of the Al heat exchanger side metal fitting 5 are fixed by a pressure joining method described in detail later. The pipe side fitting 3
On the lower surface of the flange portion 3a and the upper portion of the flange portion 5a of the heat exchanger side metal fitting 5, α-alumina forming the alumina ring 1 via intermediate joining rings 6 and 8 made of Al alloy, which are also brazing filler metals, Thermal stress buffering ceramic rings 7 and 9 as thermal stress buffering ceramic parts made of the same material are fixed by a pressure bonding method described in detail later.

この実施例では、アルミナリング1として純度99.9wt
%以上のα−アルミナを使用し、熱交換器側金具5及び
配管側金具3として、表1記載の組成を有するJIS−A30
03あるいはJIS−A6061を使用している。これらのAl合金
には、微量の不可避な不純物が含まれている。また、熱
応力緩衝セラミックリング7,9としては、前記アルミナ
リング1と同材質のα−アルミナを使用した。
In this embodiment, the alumina ring 1 has a purity of 99.9 wt.
% -Α-alumina is used, and the heat exchanger side metal fitting 5 and the piping side metal fitting 3 have the composition shown in Table 1 JIS-A30
03 or JIS-A6061 is used. These Al alloys contain a trace amount of unavoidable impurities. As the thermal stress buffering ceramic rings 7 and 9, α-alumina of the same material as the alumina ring 1 was used.

さらに、前記中間接合リング2,4,6,8は、Alを主成分
とし、Si:6〜13wt%、Mg:3.0wt%以下、その他不可避な
不純物を含む合金により形成されている。この中間接合
リング2,4,6,8の材料として、各種の市販アルミニウム
ろうが使用できるが、Al−Si−Mg系ろうであるJIS−BA4
004あるいはBA4004を皮材とし、A3003を芯材とするブレ
ージングシート(JIS−BA18PC)の使用が好ましい。
Further, the intermediate joining rings 2, 4, 6, 8 are made of an alloy containing Al as a main component, Si: 6 to 13 wt%, Mg: 3.0 wt% or less, and other inevitable impurities. Various commercially available aluminum brazes can be used as the material of the intermediate joining rings 2, 4, 6 and 8, but JIS-BA4 which is an Al-Si-Mg braze.
It is preferable to use a brazing sheet (JIS-BA18PC) having 004 or BA4004 as a skin material and A3003 as a core material.

次に、第3図及び第4図に基づいてアルミナリング1
と配管側金具3及び熱交換器側金具5、さらに熱応力緩
衝セラミックリング7,9などの加圧接合方法について説
明する。
Next, referring to FIGS. 3 and 4, the alumina ring 1
A method for pressure-bonding the pipe side fitting 3, the heat exchanger side fitting 5, and the thermal stress buffering ceramic rings 7, 9 will be described.

第3図に示すように、加熱装置(図示略)内におい
て、アルミナリング1の上下両端面にAl−Si−Mg系合金
からなる中間接合リング4,2を介して熱交換器側金具5
と配管側金具3を当接し、さらに配管側金具3の下面に
はAl−Si−Mg系合金からなる中間接合リング6を介して
熱応力緩衝セラミックリング7を当接し、熱交換器側金
具5の上面にはAl−Si−Mg系合金からなる中間接合リン
グ8を介して熱応力緩衝セラミックリング9を当接した
状態で、該熱応力緩衝セラミックリング7,9の表面を加
圧治具10,11により挾持する。この状態で加熱装置内部
を排気して真空状態にするとともに、第4図に示すよう
に、600℃まで加熱し、次に600℃で所定時間保持して被
ろう付け部全体の温度を均一にしたのち、約2℃/minの
降温速度で温度を低下させ、温度が580℃に達した時点
で0.5kgf/mm2の圧力を加圧治具10,11により加え、温度
が520℃に達するまで加圧状態をそのまま維持し、その
後温度が400℃まで低下したら、400℃で所定時間保持し
て焼きなましを行なったのち冷却させる。この加圧は中
間接合リングを構成する金属材料の液相線温度と固相線
温度の間の温度で開始し、固相線以下の温度まで継続す
る。この場合の加圧力は、0.05kgf/mm2〜2.0kgf/mm2
あれば接合強度に差は生じない。
As shown in FIG. 3, in the heating device (not shown), the heat exchanger side metal fitting 5 is provided on the upper and lower end surfaces of the alumina ring 1 via intermediate joining rings 4 and 2 made of Al-Si-Mg alloy.
And the pipe side metal fitting 3 are brought into contact with each other, and a thermal stress buffering ceramic ring 7 is brought into contact with the lower surface of the pipe side metal fitting 3 via an intermediate joining ring 6 made of an Al-Si-Mg alloy to make the heat exchanger side metal fitting 5 While the thermal stress buffering ceramic ring 9 is in contact with the upper surface of the thermal stress buffering ceramic ring 7 via the intermediate bonding ring 8 made of Al-Si-Mg alloy, the surface of the thermal stress buffering ceramic rings 7 and 9 is pressed against the pressing jig 10. Hold by 11,11. In this state, the inside of the heating device is evacuated to a vacuum state, and as shown in FIG. 4, it is heated up to 600 ° C. and then kept at 600 ° C. for a predetermined time to make the temperature of the whole brazed part uniform. After that, the temperature is lowered at a temperature lowering rate of about 2 ° C / min, and when the temperature reaches 580 ° C, a pressure of 0.5 kgf / mm 2 is applied by the pressure jigs 10 and 11, and the temperature reaches 520 ° C. The pressurized state is maintained as it is. After that, when the temperature drops to 400 ° C., the temperature is maintained at 400 ° C. for a predetermined time, annealing is performed, and then cooling is performed. This pressurization starts at a temperature between the liquidus temperature and the solidus temperature of the metal material forming the intermediate joining ring, and continues to a temperature below the solidus line. Pressure in this case, a difference in bonding strength if 0.05kgf / mm 2 ~2.0kgf / mm 2 does not occur.

このようにしてアルミナリング1に加圧ろう付けされ
た熱交換器側金具5及び配管側金具3には、それぞれ熱
応力緩衝セラミックリング9,7が接合されているため、
室温と高温(350℃)との間の熱サイクルを繰り返し与
えても、接合界面の剥離は起こらない。なお、セラミッ
ク部品と金属部品の接合界面に発生する熱応力は、前述
の如く、両部品を構成するセラミック材料と金属材料の
熱膨張係数の違いに起因して、接合温度からの冷却途中
で発生するとともに、該熱応力の大きさは、金属部品の
形状によって大きく変化する。従って、上記熱応力緩衝
セラミックリングの接合は、セラミック部品と金属部品
の接合界面のうち、接合界面の特性を劣化させるような
大きさの熱応力が発生する接合界面に対してのみ行うだ
けでよい場合もある。例えば、第3図に示した接合構造
においては、第2図に示した要部の分解斜視図から明ら
かな如く、熱交換器側金具5と配管側金具3とは形状が
異なり、熱交換器側金具5とアルミナリング1との接合
界面に発生する熱応力の方が、配管側金具3とアルミナ
リング1との接合界面に発生する熱応力より大きくな
る。従って、第3図の接合構造においては、使用条件ま
たは熱サイクル条件によっては、熱交換器側金具5のア
ルミナリング1との接合界面の反対側表面にのみ熱応力
緩衝セラミックリング9を接合し、配管側金具3とアル
ミナリング1との接合界面の反対側表面に上記熱応力緩
衝セラミックリング7を接合しない構造としてもよい。
Since the heat exchanger side metal fittings 5 and the piping side metal fittings 3 pressure brazed to the alumina ring 1 in this manner are joined with the thermal stress buffering ceramic rings 9 and 7, respectively.
Repeated thermal cycles between room temperature and high temperature (350 ° C) do not cause peeling of the bonding interface. The thermal stress generated at the joint interface between the ceramic component and the metal component is generated during cooling from the joint temperature due to the difference in the thermal expansion coefficient between the ceramic material and the metal material that compose both components, as described above. At the same time, the magnitude of the thermal stress changes greatly depending on the shape of the metal part. Therefore, it suffices that the thermal stress buffering ceramic ring is bonded only to the bonding interface between the ceramic component and the metal component where a thermal stress of a magnitude that deteriorates the characteristics of the bonding interface is generated. In some cases. For example, in the joint structure shown in FIG. 3, the heat exchanger side metal fitting 5 and the pipe side metal fitting 3 have different shapes, as is apparent from the exploded perspective view of the main part shown in FIG. The thermal stress generated at the joint interface between the side fitting 5 and the alumina ring 1 is larger than the thermal stress generated at the joint interface between the piping side fitting 3 and the alumina ring 1. Therefore, in the joint structure shown in FIG. 3, the heat stress buffering ceramic ring 9 is joined only to the surface of the heat exchanger side metal fitting 5 opposite to the joint interface with the alumina ring 1 depending on the use condition or the heat cycle condition. The structure may be such that the thermal stress buffering ceramic ring 7 is not joined to the surface on the opposite side of the joining interface between the pipe side metal fitting 3 and the alumina ring 1.

次に、この発明の別の実施例(実施例2)を説明す
る。
Next, another embodiment (second embodiment) of the present invention will be described.

この実施例では、中間接合リング2,4,6,8の材質を純
度99.9wt%以上の純アルミニウムとするとともに、熱交
換器側金具5及び配管側金具3をアルミニウム合金(JI
S−A3003)で製造し、前記実施例と同じ形状の構造体を
構成したのち、前記実施例と同じ加熱装置を使用して、
600℃まで加熱して所定時間保持したのち、2.0kgf/mm2
の圧力を加圧治具10,11により加え、その後温度を400℃
まで低下させ、400℃で所定の焼きなましを行ってから
冷却した。この実施例では、接合が中間接合リングであ
る純アルミニウムの融点(660℃)以下の温度で達成さ
れており、いわゆる固相接合により中間接合リングと各
部品の接合がなされていることになる。
In this embodiment, the material of the intermediate joining rings 2, 4, 6, 8 is pure aluminum having a purity of 99.9 wt% or more, and the heat exchanger side fitting 5 and the piping side fitting 3 are made of aluminum alloy (JI.
S-A3003), after constructing a structure having the same shape as the above-mentioned example, using the same heating device as the above-mentioned example,
After heating to 600 ℃ and holding for a specified time, 2.0kgf / mm 2
Pressure is applied by the pressurizing jigs 10 and 11, and then the temperature is raised to 400 ℃
The temperature was lowered to 400 ° C., a predetermined annealing was performed at 400 ° C., and then cooled. In this embodiment, the joining is achieved at a temperature equal to or lower than the melting point (660 ° C.) of pure aluminum that is the intermediate joining ring, and the intermediate joining ring and each component are joined by so-called solid-state joining.

次に、この発明のさらに別の実施例(実施例3)を説
明する。
Next, still another embodiment (Embodiment 3) of the present invention will be described.

この実施例では、中間接合リング2,4、6,8の材質を実
施例1と同じアルミニウム合金とし、熱交換器側金具5
及び配管側金具3を炭素鋼で製造し、前記実施例1と同
じ形状の構造体を構成したのち、前記実施例1と同じ方
法で接合した。
In this embodiment, the material of the intermediate joining rings 2, 4, 6, 8 is the same aluminum alloy as that of the first embodiment, and the heat exchanger side fitting 5
The pipe side metal fitting 3 was manufactured from carbon steel to form a structure having the same shape as that of the first embodiment, and then joined by the same method as the first embodiment.

一方、従来例として、上記実施例と同じ材料からなる
部品を組合せ、熱応力緩衝セラミックリング7,9がない
接合体を作成した。
On the other hand, as a conventional example, parts made of the same materials as those in the above-mentioned examples were combined to form a joined body without the thermal stress buffering ceramic rings 7 and 9.

これらの各種実施例と従来例の接合体について、室温
と350℃の間の温度における熱サイクル試験を行い、接
合部の気密性の劣化の有無をヘリウムリーク試験で検査
した結果を表2に示した。表2から明らかな如く、本発
明の実施例1では、熱サイクルの繰り返し数が300回ま
では、ヘリウムリークの発生頻度は0であった。また、
本発明の実施例2では熱サイクルの繰り返し数400回ま
では、ヘリウムリークの発生頻度は0であった。さらに
また、本発明の実施例3でも、熱サイクルの繰り返し数
が300回までは、ヘリウムリークの発生頻度は0であっ
た。これに対し、本発明の実施例と同じ材質の部品を組
合せ、該実施例と熱応力緩衝セラミックリングのない点
だけが異なる従来例1〜3の内、従来例1と2において
は100回熱サイクルで5個中1個がヘリウムリークを生
じた。また、従来例3においては、50回の熱サイクルで
5個中1個がヘリウムリークを生じた。
A thermal cycle test was performed on the bonded bodies of these various examples and the conventional example at a temperature between room temperature and 350 ° C., and Table 2 shows the results of inspection by a helium leak test for deterioration of the airtightness of the bonded parts. It was As is clear from Table 2, in Example 1 of the present invention, the frequency of occurrence of helium leak was 0 up to 300 thermal cycles. Also,
In Example 2 of the present invention, the occurrence frequency of helium leak was 0 up to the number of thermal cycle repetitions of 400 times. Furthermore, also in Example 3 of the present invention, the occurrence frequency of helium leak was 0 up to 300 thermal cycle repetitions. On the other hand, by combining parts made of the same material as that of the embodiment of the present invention, the conventional examples 1 to 2 differ from the example only in that there is no thermal stress buffering ceramic ring. One out of five leaked helium in the cycle. Further, in Conventional Example 3, 1 out of 5 leaked helium after 50 thermal cycles.

表2の結果から明らかな如く、本発明の実施例の方が
従来例より耐熱サイクル性が優れていることが判る。
As is clear from the results shown in Table 2, it can be seen that the examples of the present invention are superior in heat cycle resistance to the conventional examples.

なお、この発明は、前述した熱交換器以外の例えば、
電子管部品、エンジン部品などにおいて、繰り返し熱サ
イクルを受けるセラミック部品と金属部品との接合構造
に具体化することもできる。
Incidentally, the present invention, for example, other than the heat exchanger described above,
In an electron tube part, an engine part, etc., it can be embodied as a joining structure of a ceramic part and a metal part which are repeatedly subjected to a thermal cycle.

この発明を構成する金属部品は少なくとも炭素鋼、ス
テンレス鋼、アルミニウム、アルミニウム合金、銅なら
びに銅合金よりなる群から選ばれた一種の金属材料で構
成することが好ましく、アルミニウムあるいはアルミニ
ウム合金などの軟質金属とするのがより好ましい。さら
に、これらの金属材料に耐食性あるいは耐摩耗性を付与
するために、表面に被覆層が設けられている材料も本発
明に含まれるものとする。
It is preferable that the metal parts constituting the present invention are made of at least one kind of metal material selected from the group consisting of carbon steel, stainless steel, aluminum, aluminum alloys, copper and copper alloys, and soft metal such as aluminum or aluminum alloys. Is more preferable. Further, materials having a coating layer on the surface thereof in order to impart corrosion resistance or wear resistance to these metal materials are also included in the present invention.

また、この発明を構成するセラミック部品はアルミ
ナ、ジルコニア、窒化珪素ならびに炭化珪素よりなる群
から選ばれた一種のセラミック材料とするのが好まし
い。
Further, it is preferable that the ceramic component constituting the present invention is one kind of ceramic material selected from the group consisting of alumina, zirconia, silicon nitride and silicon carbide.

さらにまた、本発明のセラミック部品と金属部品との
接合構造において、熱応力緩衝セラミックリング7,9を
必ずしも前記セラミック部品と同材質とする必要はな
く、材質が近似し、かつ熱膨張係数がほぼ等しいもので
あれば異なる材質のものもこの発明に含まれるものとす
る。
Furthermore, in the joining structure of the ceramic component and the metal component of the present invention, the thermal stress buffering ceramic rings 7 and 9 do not necessarily have to be the same material as the ceramic component, the materials are similar, and the thermal expansion coefficient is almost the same. If they are the same, different materials are also included in the present invention.

[発明の効果] 以上詳述したようにこの発明は、セラミック部品と金
属部品との結合強度が向上し、更に接合部の熱応力を熱
応力緩衝セラミック部品による緩和作用の相乗効果によ
って抑制し、セラミック部品と金属部品との接合界面が
加熱〜冷却の熱サイクルを受けても剥離することことな
く接合強度を保持して熱サイクル特性を向上させ、か
つ、気密性の高い接合部が得られるという効果がある。
[Effects of the Invention] As described in detail above, the present invention improves the bonding strength between the ceramic component and the metal component, and further suppresses the thermal stress at the joint portion by the synergistic effect of the relaxation effect by the thermal stress buffering ceramic component, It is said that the joint interface between the ceramic component and the metal component does not separate even when subjected to a heat cycle of heating to cooling, maintains the joint strength, improves the heat cycle characteristics, and obtains a joint with high airtightness. effective.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明を熱交換器側金具及び配管側金具の接
合構造に具体化した一実施例を示す要部の断面図、第2
図は要部の分解斜視図、第3図は要部の構造を説明する
ための要部の断面図、第4図は加圧ろう付け方法を示す
グラフ、第5図は従来例を示す断面図である。 1…セラミック部品としてのアルミナリング、2,4,6,8
…中間接合リング、3…金属部品としての熱交換器側金
具、7,9…熱応力緩衝セラミック部品としての熱応力緩
衝セラミックリング。
FIG. 1 is a sectional view of essential parts showing an embodiment in which the present invention is embodied in a joint structure of a heat exchanger side fitting and a piping side fitting.
The figure is an exploded perspective view of the main part, FIG. 3 is a cross-sectional view of the main part for explaining the structure of the main part, FIG. 4 is a graph showing a pressure brazing method, and FIG. 5 is a cross section showing a conventional example. It is a figure. 1 ... Alumina ring as a ceramic part, 2,4,6,8
… Intermediate joint ring, 3… Heat exchanger side metal fittings as metal parts, 7,9… Heat stress buffer ceramic rings as heat stress buffer ceramic parts.

フロントページの続き (72)発明者 安藤 孝志 愛知県名古屋市熱田区三本松町22番 審査官 井上 雅博 (56)参考文献 特開 昭62−252376(JP,A)Front page continuation (72) Inventor Takashi Ando Masahiro Inoue, 22nd, Sanbonmatsucho, Atsuta-ku, Nagoya, Aichi (56) Reference JP 62-252376 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミック部品とアルミニウム又はアルミ
ニウム合金からなる金属部品との間に、AlにSiが添加さ
れたろう材を介在させて加圧接合を行うに際し、前記セ
ラミック部品と金属部品とのろう付面側とは反対側の前
記金属部品の表面に、前記セラミック部品とほぼ同材質
の熱応力緩衝セラミック部品を配置するとともに、前記
熱応力緩衝セラミック部品と金属部品との間にも前記ろ
う材と同質のろう材を介在させ、前記ろう材の液相線温
度と固相線温度との間で加圧を開始し、固相線温度以下
まで加圧を継続して接合することを特徴とするセラミッ
ク部品と金属部品との加圧接合方法。
1. When brazing a ceramic part and a metal part made of aluminum or an aluminum alloy with a brazing material containing Al added to Si, the brazing of the ceramic part and the metal part is performed. On the surface of the metal component opposite to the surface side, a thermal stress buffering ceramic component of substantially the same material as the ceramic component is arranged, and the brazing material is also provided between the thermal stress buffering ceramic component and the metal component. It is characterized in that the brazing material of the same quality is interposed, the pressurization is started between the liquidus temperature and the solidus temperature of the brazing material, and the pressurization is continued until the solidus temperature is reached. A method for pressure-bonding ceramic parts and metal parts.
【請求項2】前記請求項1記載の加圧接合方法におい
て、液相線温度と固相線温度との間で加圧を開始して固
相線温度以下まで加圧を継続するとともに、ろう材の焼
鈍温度で所定時間保持することを特徴とするセラミック
部品と金属部品との加圧接合方法。
2. The pressure bonding method according to claim 1, wherein the pressurization is started between the liquidus temperature and the solidus temperature, and the pressurization is continued to the solidus temperature or lower. A method for pressure-bonding a ceramic part and a metal part, characterized by holding the material at an annealing temperature for a predetermined time.
【請求項3】前記請求項1記載の加圧接合方法におい
て、前記熱応力緩衝セラミック部品の厚さを金属部品の
厚さよりも大きくしたセラミック部品と金属部品の加圧
接合方法。
3. The pressure joining method according to claim 1, wherein the thermal stress buffering ceramic component has a thickness greater than that of the metal component.
JP1183185A 1989-07-15 1989-07-15 Pressure joining method for ceramic parts and metal parts Expired - Fee Related JP2507614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183185A JP2507614B2 (en) 1989-07-15 1989-07-15 Pressure joining method for ceramic parts and metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183185A JP2507614B2 (en) 1989-07-15 1989-07-15 Pressure joining method for ceramic parts and metal parts

Publications (2)

Publication Number Publication Date
JPH0350167A JPH0350167A (en) 1991-03-04
JP2507614B2 true JP2507614B2 (en) 1996-06-12

Family

ID=16131261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183185A Expired - Fee Related JP2507614B2 (en) 1989-07-15 1989-07-15 Pressure joining method for ceramic parts and metal parts

Country Status (1)

Country Link
JP (1) JP2507614B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2412931T3 (en) * 2009-11-20 2013-07-12 Future Technology (Sensors) Ltd Sensor sets
KR102580589B1 (en) * 2020-12-28 2023-09-20 주식회사 아모센스 Method of manufacturing power semiconductor module and power semiconductor module manufactured thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252376A (en) * 1986-04-25 1987-11-04 日立造船株式会社 Method of joining alumina ceramic and copper plate

Also Published As

Publication number Publication date
JPH0350167A (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US4699310A (en) Method of bonding alumina to metal
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
JPH08267228A (en) Structure for joining aluminum tube with copper tube
JPS6140624B2 (en)
JP2507614B2 (en) Pressure joining method for ceramic parts and metal parts
US6131797A (en) Method for joining ceramic to metal
JPS60166165A (en) Joining method of metal and ceramics
JPH02196074A (en) Production of ceramics-metal joined body
JP3398204B2 (en) Brazing filler metal for aluminum alloys and aluminum alloy products
JP3398203B2 (en) Aluminum alloy and copper brazing filler metal and composites joined by this brazing filler metal
JP2004066324A (en) Brazing method between aluminum-based metal and different metal
JP3621513B2 (en) Al metal joint
CN109604761B (en) Jig for soldering
JPH0579633B2 (en)
JPH085723B2 (en) Pressure joining method for ceramic parts and Al parts
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JPH0649623B2 (en) Method of joining ceramics and metal
JP2020131251A (en) Manufacturing method for joint body of aluminum member and member to be joined, and joint body obtained by joining aluminum member and member to be joined via intermediate layer
JPH0577636B2 (en)
JP3476538B2 (en) Methods of manufacturing Al alloy brazing material having surface flux layer and Al alloy brazing sheet
JPH0222024B2 (en)
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JP2522124B2 (en) Method of joining ceramics to ceramics
JP2001225176A (en) Producing method for hip joined body of beryllium and copper alloy and hip joined body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees