JPH0645509B2 - Method of surface modification and bonding of ceramic substrates - Google Patents

Method of surface modification and bonding of ceramic substrates

Info

Publication number
JPH0645509B2
JPH0645509B2 JP1239637A JP23963789A JPH0645509B2 JP H0645509 B2 JPH0645509 B2 JP H0645509B2 JP 1239637 A JP1239637 A JP 1239637A JP 23963789 A JP23963789 A JP 23963789A JP H0645509 B2 JPH0645509 B2 JP H0645509B2
Authority
JP
Japan
Prior art keywords
substrate
aln substrate
aln
copper
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1239637A
Other languages
Japanese (ja)
Other versions
JPH03103370A (en
Inventor
尚之 金原
結理花 井野
哲夫 降幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP1239637A priority Critical patent/JPH0645509B2/en
Publication of JPH03103370A publication Critical patent/JPH03103370A/en
Publication of JPH0645509B2 publication Critical patent/JPH0645509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミック基板の表面改質法および該方法で
表面改質したセラミック基板と金属板との接合方法に関
し、特にAlN(窒化アルミニウム)基板と銅板あるい
は銅粉との接合体を得るためにAlN基板の接合すべき
面をAlに選択的に改質することを特徴とする表
面改質法およびこれを利用した接合方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for modifying the surface of a ceramic substrate and a method for joining a ceramic substrate surface-modified by the method and a metal plate, and more particularly to AlN (aluminum nitride). TECHNICAL FIELD The present invention relates to a surface modification method characterized by selectively modifying a surface of an AlN substrate to be bonded to Al 2 O 3 in order to obtain a bonded body of a substrate and a copper plate or copper powder, and a bonding method using the same. .

[従来技術] 近年、回路基板として使用できる高熱伝導性セラミック
基板として、AlN基板が開発され、該基板に、従来A
基板用に使用されてきた導電ペーストを同様に
用いて回路基板を製造することが試みられているが、こ
の方法で得られた回路基板は密着強度が弱く且つ信頼性
に欠けるという欠点を有していた。
[Prior Art] In recent years, an AlN substrate has been developed as a high thermal conductive ceramic substrate that can be used as a circuit substrate.
It has been attempted to manufacture a circuit board by using the conductive paste which has been used for the l 2 O 3 board in the same manner, but the circuit board obtained by this method has weak adhesion strength and lacks reliability. It had drawbacks.

これらの欠点を改善する技術として、特開昭61−11
9094号公報「高熱伝導性回路基板」に開示された、
AlN基板の表面に酸化層を形成することにより導体層
たる銅板等の接合を可能にした方法が知られている。こ
の目的で、AlN基板表面に酸化層を形成する方法とし
ては、大気中での高温処理、水蒸気中等の酸化性雰囲気
での熱処理、および酸洗液中への浸漬処理等が知られて
いる。
As a technique for improving these drawbacks, Japanese Patent Laid-Open No. 61-11
No. 9094, “High Thermal Conductivity Circuit Board”,
A method is known in which an oxide layer is formed on the surface of an AlN substrate so that a copper plate or the like as a conductor layer can be joined. For this purpose, known methods for forming an oxide layer on the surface of an AlN substrate include high-temperature treatment in the air, heat treatment in an oxidizing atmosphere such as steam, and immersion treatment in a pickling solution.

しかしながらこれらの方法には、以下のような問題点が
あった。
However, these methods have the following problems.

すなわち大気中で高温処理を行う方法では、処理温度が
高いため、AlN基板表面が酸化されてAl基板
に改質され、AlN基板との熱膨脹差によりクラックが
発生する。更に冷却工程においてその効果は大きくな
り、クラックがより進展する。この結果、後続の工程で
接着させた銅などの導体層の密着強度の低下および繰り
返り熱衝撃に対する信頼性の低下を招く。
That is, in the method of performing high temperature treatment in the atmosphere, since the treatment temperature is high, the surface of the AlN substrate is oxidized and reformed into an Al 2 O 3 substrate, and cracks are generated due to the difference in thermal expansion from the AlN substrate. Further, the effect becomes large in the cooling step, and cracks further develop. As a result, the adhesion strength of the conductor layer such as copper adhered in the subsequent step is deteriorated and the reliability against repeated thermal shock is deteriorated.

水蒸気中等の酸化性雰囲気で熱処理を行う方法では、A
lN基板の耐湿性を考慮に入れると大きな問題は生じな
い筈であるが、導体との接着を行う場合に、脱水を十分
に行わないと接着不良を生じることになる。また、上述
の特開昭61−119094号公報の実施例3に示され
ているように、この方法は処理時間が168時間と長く、
工業的に利用するには生産性が著しく劣る方法である。
In the method of performing heat treatment in an oxidizing atmosphere such as steam,
If the moisture resistance of the 1N substrate is taken into consideration, no major problem should occur, but if dehydration is not performed sufficiently when adhering to the conductor, adhesion failure will occur. Further, as shown in Example 3 of JP-A-61-119094, this method requires a long processing time of 168 hours,
This is a method with extremely poor productivity for industrial use.

また、上記公報の実施例2には10%リン酸液中に浸漬し
て酸化処理する方法も開示されているが、その方法は、
本発明者等の実験によれば、本明細書の比較例2に示す
ように工業的な生産方法としては不適当な手段であるこ
とが判明した。
In addition, Example 2 of the above publication also discloses a method of immersing in a 10% phosphoric acid solution for oxidation treatment.
According to experiments conducted by the present inventors, it was found that the method is unsuitable as an industrial production method as shown in Comparative Example 2 of the present specification.

一方、他のAl系セラミック材であるAl基板に
銅板を直接接合させる方法が、本発明者等の先行発明で
ある特開昭63−166774号公報に開示された「銅
板とアルミナ基板との接合体の製造方法」により知られ
ているが、この方法はAl基板と銅板とを直接接
合させる方法としては優れているもののAlN基板には
直接適用できない方法であった。
On the other hand, a method of directly joining a copper plate to an Al 2 O 3 substrate which is another Al-based ceramic material is disclosed in Japanese Patent Laid-Open No. 63-166774, which is a prior invention of the present inventors, such as “copper plate and alumina substrate”. Although it is known as a method for manufacturing a bonded body with the above method, this method is an excellent method for directly bonding an Al 2 O 3 substrate and a copper plate, but cannot be directly applied to an AlN substrate.

[発明が解決しようとする課題] 上述のように高熱伝導性セラミック基板であるAlN基
板に対して、銅板あるいは銅粉からなる導体層を接合す
る方法が求められていたが、現状では既に述べたような
方法しか知られていなかった。
[Problems to be Solved by the Invention] As described above, there has been a demand for a method of joining a conductor layer made of a copper plate or copper powder to an AlN substrate which is a high thermal conductivity ceramic substrate, but has already been described in the present situation. Only such a method was known.

[課題を解決するための手段] 本発明者等は斯る課題を解決するために鋭意研究したと
ころにより、タフピッチ銅中に含有される酸素を有効に
利用してAlN基板表面をAlに改質させ得るこ
とを知り、さらにこのように表面改質したAlN基板を
用いることによってAlN基板とCu板等の導体との直
接接合が可能であることを見い出し、本発明を達成する
ことができた。
[Means for Solving the Problem] The inventors of the present invention have made earnest studies to solve the problem, and as a result, the oxygen contained in the tough pitch copper was effectively utilized to make the surface of the AlN substrate Al 2 O 3 It has been found that direct bonding between an AlN substrate and a conductor such as a Cu plate is possible by using the surface-modified AlN substrate in this way, and the present invention can be achieved. did it.

すなわち本発明においては、AlN基板の表面を選択的
に酸化することを目的として、AlN基板にタフピッチ
銅を接触させて酸素を0.5%以下含有する不活性ガス
中、温度800℃以上で加熱処理することによりAlN
基板表面をAlに改質する。
That is, in the present invention, for the purpose of selectively oxidizing the surface of the AlN substrate, tough pitch copper is brought into contact with the AlN substrate and heated at a temperature of 800 ° C. or higher in an inert gas containing 0.5% or less of oxygen. AlN by processing
The substrate surface is modified to Al 2 O 3 .

また、本発明の方法は、AlN基板にタフピッチ銅を接
触させて酸素を0.5%以下含有する不活性ガス中に
て、温度800℃以上で加熱処理することによりAlN
基板表面をAlに改質した後、得られた表面改質
AlN基板に銅板等の所定の導体を接触させて不活性雰
囲気中において、1,083℃以下のただし、1,08
3℃に近い温度に加熱することにより導体と表面改質A
lN基板とを直接接合させてセラミック基板と導体との
接合体を得る。
In addition, the method of the present invention is that AlN substrate is contacted with tough pitch copper and heat-treated at a temperature of 800 ° C. or higher in an inert gas containing 0.5% or less of oxygen.
After the substrate surface is modified to Al 2 O 3 , a predetermined conductor such as a copper plate is brought into contact with the obtained surface-modified AlN substrate and the temperature is 1,083 ° C. or lower in an inert atmosphere, but 1,083 ° C.
Conductor and surface modification by heating to a temperature close to 3 ° C A
The 1N substrate is directly joined to obtain a joined body of the ceramic substrate and the conductor.

[作 用] AlNの酸化反応は、1気圧の下では次式に基づいて行
われる。
[Operation] The oxidation reaction of AlN is performed based on the following equation at 1 atm.

4AlN+30=2Al+2N‥‥(1) △G(J/mol)=−2,068,230+193.57T (933〜2,000K) これによりlogPO2=2/3logPN2−22.8 (1,373K) すなわち酸素濃度が大きな高温雰囲気中では、AlN基
板の表面が急速に酸化されてしまうことがわかる。
4AlN + 30 2 = 2Al 2 O 3 + 2N 2 (1) ΔG 0 (J / mol) = − 2,068,230 + 193.57T (933 to 2,000K) As a result, logP O2 = 2 / 3logP N2 −22.8 (1) , 373 K) That is, it is understood that the surface of the AlN substrate is rapidly oxidized in a high temperature atmosphere having a high oxygen concentration.

AlN基板の特徴である高熱伝導性を保持させるために
は、AlN基板表面の酸化を過度に進めることは好まし
くない。したがって、できるだけ限定的な酸化を実施す
る手段が求められていた。
In order to maintain the high thermal conductivity characteristic of the AlN substrate, it is not preferable to excessively oxidize the surface of the AlN substrate. Therefore, there has been a demand for means for carrying out oxidation that is as limited as possible.

このような目的に有効な手段としては低温で酸化を行う
かあるいは酸素分圧の低い雰囲気で酸化を行うことが考
えられるが、酸素濃度コントロールを必要とする高温炉
は高価となり、工業的量産を行う上で好ましくない。ま
た、雰囲気にさらされたAlN基板の全表面が酸化され
てしまうので、選択的に基板表面のある部分のみ、ある
いは基板の片面のみを酸化させたい場合には不都合であ
る。
As an effective means for such purpose, it is possible to oxidize at a low temperature or in an atmosphere with a low oxygen partial pressure, but a high temperature furnace that requires oxygen concentration control becomes expensive and industrial mass production is required. It is not preferable in practice. Further, the entire surface of the AlN substrate exposed to the atmosphere is oxidized, which is inconvenient when it is desired to selectively oxidize only a part of the substrate surface or only one surface of the substrate.

そこで本発明者等は全く別の着想に基づき、タフピッチ
銅をAlN基板表面上に重ねて配置し、両者の界面空間
で生じるAlNとCuOとの分解における平衡反応を
利用して、AlN基板表面の所望部分のみを選択的に酸
化したり、あるいはAlN基板の両面だけの酸化を行っ
たりすることのできるAlN基板表面の選択的酸化方法
を開発した。この方法によればAlN基板の所望の表面
部分だけを選択的に酸化してAlに改質すること
ができる。
Therefore, based on a completely different idea, the inventors of the present invention arranged tough pitch copper on the surface of an AlN substrate in an overlapping manner and utilized the equilibrium reaction in the decomposition of AlN and Cu 2 O generated in the interface space between the two to make use of the AlN substrate. We have developed a selective oxidation method for the surface of an AlN substrate that can selectively oxidize only a desired portion of the surface or oxidize only both surfaces of the AlN substrate. According to this method, only a desired surface portion of the AlN substrate can be selectively oxidized and reformed into Al 2 O 3 .

上記の場合、タフピッチ銅中のCuOとCuとの間に
は、次のような解離の平衡式が成り立つ。
In the above case, the following dissociation equilibrium equation holds between Cu 2 O and Cu in tough pitch copper.

CuO(s)=2Cu(s)+1/2O(g)‥‥(2) この反応の標準自由エネルギー変化は △G=40,500+3.92TlogT−29.5T
(cal)で与えられており、 なる関係が成り立ち、CuOは酸素分圧の大きさによ
り、ある温度Tdで解離することが理解される。
Cu 2 O (s) = 2Cu (s) + 1 / 2O 2 (g) (2) The standard free energy change of this reaction is ΔG o = 40,500 + 3.92TlogT−29.5T
(cal), It is understood that the following relationship holds and Cu 2 O dissociates at a certain temperature Td depending on the magnitude of the oxygen partial pressure.

本発明者等の実験等においても、酸素を含まない窒素雰
囲気炉中に、AlN基板上に配置したタフピッチ銅を入
れて加熱したところ、タフピッチ銅中のCuOは解離
してOを発生し、上述の(1)式に示す反応によりAl
N基板が酸化されてAlに改質されていることが
確認された。
Also in experiments by the present inventors, when the tough pitch copper arranged on the AlN substrate was placed in a nitrogen atmosphere furnace containing no oxygen and heated, Cu 2 O in the tough pitch copper was dissociated to generate O 2 . However, by the reaction shown in the above formula (1), Al
It was confirmed that the N substrate was oxidized and reformed to Al 2 O 3 .

この方法では、発生するOの量を、使用するタフピッ
チ銅中の酸素量により制御することができるので、大気
中で高温加熱してAlNを分解、酸化する方法より制御
し易い。
In this method, the amount of O 2 generated can be controlled by the amount of oxygen in the tough pitch copper used, so it is easier to control than the method of decomposing and oxidizing AlN by heating at high temperature in the atmosphere.

また、タフピッチ銅より発生する酸素は、銅板表面近傍
にのみ多量に生じるので、タフピッチ銅をAlN基板に
隣接配置しないときには酸素の供給がなく、AlN基板
表面の酸化は生じない。従ってAlN基板上の酸化を必
要とする部分だけにその必要部の形状に合わせた所定の
形状を持つタフピッチ銅を予めプレス成形およびエッチ
ング処理等の方法で作成して、AlN基板上に配置する
ことによりAlN基板の所望の部分だけを選択的に酸化
改質することができる。
Further, a large amount of oxygen generated from the tough pitch copper is generated only in the vicinity of the surface of the copper plate. Therefore, when the tough pitch copper is not arranged adjacent to the AlN substrate, oxygen is not supplied and the surface of the AlN substrate is not oxidized. Therefore, the tough pitch copper having a predetermined shape that matches the shape of the required portion of the AlN substrate only needs to be prepared in advance by a method such as press molding and etching, and placed on the AlN substrate. Thus, only a desired portion of the AlN substrate can be selectively oxidized and modified.

以下、実施例によりさらに詳細に説明する。Hereinafter, further details will be described with reference to examples.

[実施例1] AlN基板として、焼結助剤にYを含んだ厚さ
0.635mm、縦横寸法22mm×22mmの基板1を用意
し、銅板として、酸素含有量280ppmのタフピッチ銅
(同和金属工業株式会社製)からなるAlN基板1より
一回り小さい大きさの銅板2を用意し、第1図に示すよ
うにAlN基板1上にタフピッチ銅の銅板2を載せ、メ
ッシュベルト3でマッフル式抵抗加熱炉に搬入した。
[Example 1] As an AlN substrate, a substrate 1 containing Y 2 O 3 in a sintering aid and having a thickness of 0.635 mm and length and width dimensions of 22 mm x 22 mm was prepared. As a copper plate, tough pitch copper with an oxygen content of 280 ppm ( A copper plate 2 of a size smaller than the AlN substrate 1 made of Dowa Metal Industry Co., Ltd. is prepared, and the copper plate 2 of tough pitch copper is placed on the AlN substrate 1 as shown in FIG. It was carried into a resistance heating furnace.

酸化条件は、炉内の雰囲気が酸素濃度0.2ppm以下に
保たれた窒素ガス雰囲気であり、加熱温度は毎分50℃
の割合で昇温しながら、炉内の最高到達温度を1,00
0℃に設定し、1,000℃に達したらその温度に10
分間保持し、その後は逆に毎分50℃の割合で降温する
という形の温度プロファイルとなるようなベルトスピー
ドで炉内を通過させて熱処理を行った。
The oxidizing conditions are a nitrogen gas atmosphere in which the atmosphere in the furnace is kept at an oxygen concentration of 0.2 ppm or less, and the heating temperature is 50 ° C. per minute.
While increasing the temperature at a rate of 1,00
Set it to 0 ℃, and once it reaches 1,000 ℃, set the temperature to 10 ℃.
The heat treatment was carried out by passing through the furnace at a belt speed such that the temperature profile was maintained for 5 minutes, and then the temperature was lowered at a rate of 50 ° C. per minute.

取り出した後のAlN基板の表面には、タフピッチ銅の
内部より昇華したCuOが分解、解離してCuが付着
していたため、このCuを硝酸で洗浄除去した後、Al
N基板表面に残った反応生成物をX線回折で調べたとこ
ろ、AlN基板上面1aにはAlのピークが観察
されたが、タフピッチ銅を接触配置しなかったAlN基
板下面1bにはAl等のピークは観察されなかっ
た。
On the surface of the AlN substrate after being taken out, Cu 2 O sublimated from the inside of the tough pitch copper was decomposed and dissociated and Cu was attached. Therefore, after cleaning and removing this Cu with nitric acid, Al
When the reaction product remaining on the surface of the N substrate was examined by X-ray diffraction, a peak of Al 2 O 3 was observed on the upper surface 1a of the AlN substrate, but on the lower surface 1b of the AlN substrate on which tough pitch copper was not arranged in contact. No peaks such as Al 2 O 3 were observed.

このことからAlN基板の下面1bにおいては、タフピ
ッチ銅の内部より昇華したCuOが分解、解離して生
じたOの影響を受けてAlN基板の表面がAl
になる反応は生じていないことが知られる。
In the lower surface 1b of the AlN substrate Therefore, Cu 2 O is decomposed sublimed from the inside of the tough pitch copper, the surface of the AlN substrate under the influence of O 2 produced by dissociation of Al 2 O 3
It is known that the reaction to become does not occur.

次いで得られた表面改質AlN基板をそのまま用いて、
特開昭63−166774号に記載されているように銅
板を接触配置して、酸素濃度20ppmの窒素ガス雰囲気
中で、1,063℃の温度に8分間保持してAlN基板
と銅板とを直接接合させるための処理をし、冷却して取
り出したところ、十分良く接合した銅板とAlN基板の
接合体が得られた。
Then, using the obtained surface-modified AlN substrate as it is,
As described in Japanese Patent Laid-Open No. 63-166774, a copper plate is placed in contact with the AlN substrate and the copper plate is directly held at a temperature of 1,063 ° C. for 8 minutes in a nitrogen gas atmosphere having an oxygen concentration of 20 ppm. When a treatment for joining, cooling and taking out was performed, a joined body of a copper plate and an AlN substrate that were joined sufficiently well was obtained.

[実施例2] 実施例1と同様に、AlN基板1上にタフピッチ銅の銅
板2を配置した後、エッチング処理を行い、第2図に示
すパターンを形成した。
[Example 2] Similar to Example 1, after the copper plate 2 of tough pitch copper was arranged on the AlN substrate 1, etching treatment was performed to form the pattern shown in FIG.

次に、AlN基板1を実施例1と同様な条件下で酸化処
理した後、該基板表面の反応生成物をX線回折で調べた
ところ、タフピッチ銅のパターンと接触しているA部で
はAlN基板の表面にAlが観察されたが、タフ
ピッチ銅と接触していないB部ではCuの付着もなく、
AlN基板表面のAlへの改質も認められなかっ
た。
Next, the AlN substrate 1 was subjected to an oxidation treatment under the same conditions as in Example 1, and the reaction product on the substrate surface was examined by X-ray diffraction. As a result, AlN was found in the A portion in contact with the tough pitch copper pattern. Al 2 O 3 was observed on the surface of the substrate, but there was no Cu adhesion in the B portion that was not in contact with the tough pitch copper,
No modification of the AlN substrate surface to Al 2 O 3 was observed.

[比較例1] 実施例1に示す酸化処理を施さなかったAlN基板その
ものを用いて、特開昭63−166774号に記載され
ているように銅板を配置して、酸素濃度20ppmの窒素
ガス雰囲気中で1,063℃の温度に8分間保持してA
lN基板と銅板とを直接接合させるための処理をした
が、実施例1の場合と異なり、接合体は得られなかっ
た。
Comparative Example 1 Using the AlN substrate itself which has not been subjected to the oxidation treatment shown in Example 1, a copper plate is arranged as described in JP-A-63-166774, and a nitrogen gas atmosphere having an oxygen concentration of 20 ppm is provided. Hold at a temperature of 1,063 ℃ for 8 minutes
A treatment for directly joining the 1N substrate and the copper plate was performed, but unlike the case of Example 1, a joined body was not obtained.

[比較例2] 特開昭61−119094号公報に開示されている方法
に従ってリン酸によるAlN基板の表面改質を試みた。
実施例1に示すAlN基板を用いて、10vol.%リン酸
水溶液中で6時間煮沸した後、AlN基板をX線回折で
調べたところ、上下いずれの表面にもAlの存在
は認められなかった。
Comparative Example 2 An attempt was made to modify the surface of an AlN substrate with phosphoric acid according to the method disclosed in JP-A-61-119094.
When the AlN substrate shown in Example 1 was boiled in a 10 vol.% Phosphoric acid aqueous solution for 6 hours and examined by X-ray diffraction, the presence of Al 2 O 3 on both the upper and lower surfaces was confirmed. I couldn't do it.

これはAlNが共有結合性の強い化合物であり、一般的
に酸に対して強いため、リン酸では容易に酸化されない
ことによるものであると理解される。
It is understood that this is because AlN is a compound having a strong covalent bond and is generally strong against acid, so that it is not easily oxidized by phosphoric acid.

[発明の効果] 本発明は上述したようにAlN基板の表面を酸化改質す
るに際し、酸化させたい個所を任意に選択でき、更に、
短時間で低コストで処理できるものである。
[Advantages of the Invention] In the present invention, when the surface of the AlN substrate is oxidized and modified as described above, the portion to be oxidized can be arbitrarily selected.
It can be processed in a short time and at low cost.

また、本発明法で改質したAlN基板に銅板を直接接合
することができるため、高価なAlN基板を有効に活用
できるものである。
Further, since the copper plate can be directly bonded to the AlN substrate modified by the method of the present invention, an expensive AlN substrate can be effectively utilized.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明法に従ってAlN基板上に銅板を接触
配置したものをメッシュベルト上に載せた状態を示す側
面図である。 第2図は、第1図に示したAlN基板と銅板の平面図で
ある。 第3図は、AlN基板上に載せた銅板の一部をエッチン
グで除去して導体パターンを形成した本発明の別の実施
態様についての平面図である。 符号の説明 1……AlN基板 1a……同上面 1b……同下面 2……銅板 3……メッシュベルト A……銅パターンと接触している部分 B……銅パターンと接触していない部分
FIG. 1 is a side view showing a state in which a copper plate is placed in contact with an AlN substrate according to the method of the present invention and is placed on a mesh belt. FIG. 2 is a plan view of the AlN substrate and the copper plate shown in FIG. FIG. 3 is a plan view of another embodiment of the present invention in which a conductor pattern is formed by etching away a part of a copper plate placed on an AlN substrate. Explanation of reference numerals 1 ... AlN substrate 1a ... Same top surface 1b ... Same bottom surface 2 ... Copper plate 3 ... Mesh belt A ... Part that is in contact with copper pattern B ... Part that is not in contact with copper pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】AlN基板にタフピッチ銅を接触させて酸
素を0.5%以下含有する不活性ガス中にて、温度800℃以
上で加熱処理することによりAlN基板表面をAl
に改質することを特徴とするセラミック基板の表面改
質方法。
1. A surface of an AlN substrate is treated with Al 2 O by heat treatment at a temperature of 800 ° C. or higher in an inert gas containing 0.5% or less of oxygen by bringing tough pitch copper into contact with the AlN substrate.
3. A method for modifying the surface of a ceramic substrate, characterized in that
【請求項2】AlN基板にタフピッチ銅を接触させて酸
素を0.5%以下含有する不活性ガス中にて、温度800℃以
上で加熱処理することによりAlN基板表面をAl
に改質する第1工程; 次いで得られた表面改質AlN基板に所定の銅板を接触
させて不活性雰囲気中において、1,083℃以下のただし
これに近い温度に加熱することにより銅板と表面改質A
lN基板とを直接接合させる第2工程; からなることを特徴とするセラミック基板の接合方法。
2. A tough pitch copper is brought into contact with an AlN substrate and heat-treated at a temperature of 800 ° C. or higher in an inert gas containing 0.5% or less of oxygen so that the surface of the AlN substrate is Al 2 O.
The first step of modifying the 3; in then the resulting surface modification AlN substrate is contacted with a predetermined copper plate in an inert atmosphere, copper and surface modification by heating to a temperature close to the proviso below this 1,083 ° C. Quality A
a second step of directly joining the 1N substrate; and a method of joining the ceramic substrates.
JP1239637A 1989-09-14 1989-09-14 Method of surface modification and bonding of ceramic substrates Expired - Lifetime JPH0645509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239637A JPH0645509B2 (en) 1989-09-14 1989-09-14 Method of surface modification and bonding of ceramic substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1239637A JPH0645509B2 (en) 1989-09-14 1989-09-14 Method of surface modification and bonding of ceramic substrates

Publications (2)

Publication Number Publication Date
JPH03103370A JPH03103370A (en) 1991-04-30
JPH0645509B2 true JPH0645509B2 (en) 1994-06-15

Family

ID=17047677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239637A Expired - Lifetime JPH0645509B2 (en) 1989-09-14 1989-09-14 Method of surface modification and bonding of ceramic substrates

Country Status (1)

Country Link
JP (1) JPH0645509B2 (en)

Also Published As

Publication number Publication date
JPH03103370A (en) 1991-04-30

Similar Documents

Publication Publication Date Title
US3911553A (en) Method for bonding metal to ceramic
JPH0429390A (en) Manufacture of ceramic circuit board
JPS644668B2 (en)
JPH01261283A (en) Method for bonding copper plate to substrate made of electric insulating material
JPH07502B2 (en) Metallization method for non-oxide ceramics
US4737416A (en) Formation of copper electrode on aluminum nitride
KR20230027290A (en) Ceramic-clad copper plate and manufacturing method of ceramic-clad copper plate
JPH0645509B2 (en) Method of surface modification and bonding of ceramic substrates
JPH0424312B2 (en)
JP3157520B2 (en) Manufacturing method of aluminum nitride substrate
JP2555770B2 (en) Copper thick film circuit substrate and method of manufacturing the same
JPH0477702B2 (en)
JP4557354B2 (en) Method for manufacturing ceramic copper circuit board
JP2736949B2 (en) High strength aluminum nitride circuit board and method of manufacturing the same
JP2503780B2 (en) Manufacturing method of substrate for semiconductor device
JP3307862B2 (en) Ceramic substrate
JPH0799380A (en) Pattern formation of ceramic-metal bonded body
JPH03112874A (en) Junction between ceramic base and copper
JP3859280B2 (en) Method for manufacturing aluminum-ceramic composite substrate
JP2652074B2 (en) Method for producing bonded body of copper plate and ceramic substrate
JPS6150920B2 (en)
JPH059396B2 (en)
JPH07180040A (en) Production of metallized body and metallized body
JPH0292887A (en) Formation of cooper film on ceramic substrate
JPH0245354B2 (en) KINZOKUKAIROOJUSURUSERAMITSUKUSUKIBANNOSEIZOHOHO

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 16