JPH0644486B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0644486B2
JPH0644486B2 JP62200280A JP20028087A JPH0644486B2 JP H0644486 B2 JPH0644486 B2 JP H0644486B2 JP 62200280 A JP62200280 A JP 62200280A JP 20028087 A JP20028087 A JP 20028087A JP H0644486 B2 JPH0644486 B2 JP H0644486B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
conductive
carbon black
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62200280A
Other languages
Japanese (ja)
Other versions
JPS6443971A (en
Inventor
秀夫 坂本
謙介 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Original Assignee
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd filed Critical Seiko Electronic Components Ltd
Priority to JP62200280A priority Critical patent/JPH0644486B2/en
Priority to DE8787309971T priority patent/DE3785834T2/en
Priority to EP87309971A priority patent/EP0270264B1/en
Priority to US07/120,619 priority patent/US4804597A/en
Publication of JPS6443971A publication Critical patent/JPS6443971A/en
Publication of JPH0644486B2 publication Critical patent/JPH0644486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は負極活物質としてリチウム、正極活物質として
酸酸化ビスマス(以下Bi2O3と記す)を用いる有機電解
質電池の正極の改良に関するものである。
TECHNICAL FIELD The present invention relates to an improvement in the positive electrode of an organic electrolyte battery using lithium as a negative electrode active material and bismuth oxide oxide (hereinafter referred to as Bi 2 O 3 ) as a positive electrode active material. Is.

〔従来の技術〕[Conventional technology]

従来、この種の電池の正極導電剤としてはグラファイト
やアセチレンブラック(電池ブラックと呼ばれるアセチ
レンの熱分解法によるカーボンブラック)等の炭素粉末
や金属粉末が知られている。
BACKGROUND ART Carbon powders and metal powders such as graphite and acetylene black (carbon black obtained by a thermal decomposition method of acetylene, which is called battery black) are known as positive electrode conductive agents for batteries of this type.

例えばボタン型電池を製造する場合、正極は次の様に作
られていた。即ち、活物質とグラファイト又はアセチレ
ンブラック等の炭素粉末又は金属粉末等々の導電剤、及
びフッ素系樹脂やポリスチレン等の樹脂結着剤を所定組
成比で混合する。次にこの正極合剤の所定量を成形機の
金型内に充填し、加圧成形することによってペレット状
の正極形体とする。こうして得られた正極ペレットは減
圧加熱乾燥されて充分脱水された後、電池に組み込まれ
る。
For example, when manufacturing a button-type battery, the positive electrode was made as follows. That is, an active material, a conductive agent such as carbon powder or metal powder such as graphite or acetylene black, and a resin binder such as fluororesin or polystyrene are mixed at a predetermined composition ratio. Next, a predetermined amount of this positive electrode mixture is filled in a mold of a molding machine and pressure-molded to obtain a pellet-shaped positive electrode form. The positive electrode pellets thus obtained are dried by heating under reduced pressure and sufficiently dehydrated, and then incorporated into a battery.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、前述の従来の方法で作られた電池においては、
正極導電剤として炭素粉末を用いる場合、2重量%以
上、好ましくは4重量%以上添加しなければ、正極に充
分な導電性が得られないため電池の内部抵抗が大きくな
り、一定の負荷に接続した場合の電池の閉路電圧(特に
−10℃の様な低温の場合)が低くなり、この様な電池を
使用する機器によっては正常に作動させる電圧が得られ
ないという問題があった。逆に、内部抵抗を小さくする
ために、炭素粉末の添加量を多くすると、一定体積中に
充填できる正極活物質量がその分小さくなり電池容量が
小さくなるという問題があった。特に正極活物質として
Bi2O3を用いる場合には、Bi2O3の比重が約8.9g/cm3
炭素粉末の約2g/cm3の約4倍であり、正極中の炭素導
電剤1%の増減は、正極容量の約4%の増減に当り、炭
素導電剤の添加量は、この種電池の放電容量に極めて大
きな影響を有する問題である。
However, in the battery made by the conventional method described above,
When carbon powder is used as the positive electrode conductive agent, the internal resistance of the battery increases and the positive electrode cannot have sufficient conductivity unless it is added in an amount of 2% by weight or more, preferably 4% by weight or more. In such a case, the closed circuit voltage of the battery (particularly in the case of a low temperature such as −10 ° C.) becomes low, and there is a problem that a voltage for operating normally cannot be obtained depending on a device using such a battery. On the contrary, if the amount of carbon powder added is increased in order to reduce the internal resistance, the amount of the positive electrode active material that can be filled in a fixed volume is reduced accordingly, and the battery capacity is reduced. Especially as a positive electrode active material
When Bi 2 O 3 is used, the specific gravity of Bi 2 O 3 is about 8.9 g / cm 3 and about 4 times that of carbon powder, about 2 g / cm 3 , and the increase or decrease of 1% of carbon conductive agent in the positive electrode It is a problem that the amount of carbon conductive agent added has an extremely large effect on the discharge capacity of this type of battery when the positive electrode capacity is increased or decreased by about 4%.

本発明の目的は、正極導電剤の改良により、この種電池
の放電容量を犠牲にすることなく、閉路電圧と放電容量
が同時に高くなる様改良することにある。
An object of the present invention is to improve the positive electrode conductive agent so that the closed circuit voltage and the discharge capacity are simultaneously increased without sacrificing the discharge capacity of this type of battery.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前述の様な問題点を解決するために種々
検討した結果、正極導電剤として天然ガスやガス状高級
炭化水素等を燃焼炉中で不完全燃焼させるファーネス式
不完全燃焼法によるコンダクティブファーネスカーボン
ブラック又はこれとグラファイトとを同時に用いること
によって、正極の2重量%以下の様に少量の添加量でも
この種電池の閉路電圧が著しく向上することを見出し
た。
As a result of various investigations to solve the above-mentioned problems, the inventors of the present invention have conducted a furnace-type incomplete combustion method of incompletely combusting natural gas, higher gaseous hydrocarbons or the like as a positive electrode conductive agent in a combustion furnace. It was found that the simultaneous use of the conductive furnace carbon black according to No. 1 or graphite and graphite in combination with graphite can significantly improve the closed circuit voltage of this type of battery even with a small addition amount of 2% by weight or less of the positive electrode.

本発明に用いられるコンダクティブファーネスカーボン
ブラックの例としては、例えば、アクゾ社から市販され
ている商品名ケッチェンブラックECが好適な例として
あげられる。
As a preferred example of the conductive furnace carbon black used in the present invention, for example, trade name Ketjen Black EC, which is commercially available from Akzo Co., can be mentioned.

〔作用〕[Action]

正極導電剤としてコンダクティブファーネスカーボンブ
ラックを用いて製作した電池の閉路電圧は同じ量の従来
のグラファイトやアセチレンブラックを用いた電池に比
べ著しく向上する。閉路電圧の向上する理由は、コンダ
クティブファーネスカーボンブラックは従来のアセチレ
ンブラックやグラファイトに比べ、正極に添加したとき
の導電性に優れていることと、電解液の濡れ性・吸液性
に優れていることによると推定される。
The closed-circuit voltage of the battery manufactured by using the conductive furnace carbon black as the positive electrode conductive agent is significantly improved as compared with the battery using the same amount of conventional graphite or acetylene black. The reason why the closed circuit voltage is improved is that conductive furnace carbon black is superior in conductivity when added to the positive electrode and superior in wettability and liquid absorption of the electrolytic solution, compared with conventional acetylene black and graphite. It is estimated that this is the case.

しかし一方、コンダクティブファーネスカーボンブラッ
クを用いた正極合剤を一定形状の電極体に加圧成形する
場合には、グラファイト等を用いた場合に比べ非常に成
形性が悪いため、電池組立時に必要な機械的強度を得る
ためには、コンダクティブファーネスカーボンブラック
の添加量は2重量%以下が良い。又、2重量%以下でも
充分な導電性が得られることが分った。
However, on the other hand, when a positive electrode mixture using conductive furnace carbon black is pressure-molded into an electrode body of a certain shape, the moldability is much worse than when graphite or the like is used. In order to obtain the desired strength, the additive amount of the conductive furnace carbon black is preferably 2% by weight or less. It was also found that sufficient conductivity can be obtained even at 2% by weight or less.

さらに2重量%以下のコンダクティブファーネスカーボ
ンブラックとグラファイトを同時に用いた場合には、コ
ンダクティブファーネスカーボンブラックを単独で用い
た場合より、正極成形体の機械的強度がより高く、かつ
必要によってはより多量の導電剤を添加することがで
き、より高い正極導電性を実現できる。又、グラファイ
トを単独で用いた場合より、より少ない導電剤量でも正
極の導電性がより改善されるため、これを用いた電池の
閉路電圧を高めると同時に、正極の導電剤量を減らし正
極活物質を増やすことによって放電容量を著しく高める
ことができる。
Further, when 2% by weight or less of the conductive furnace carbon black and graphite are used at the same time, the mechanical strength of the positive electrode molded body is higher than that when the conductive furnace carbon black is used alone, and if necessary, a larger amount of it is used. A conductive agent can be added, and higher positive electrode conductivity can be realized. In addition, since the conductivity of the positive electrode is further improved with a smaller amount of the conductive agent than when graphite is used alone, the closed circuit voltage of the battery using this is increased, and at the same time, the amount of the conductive agent in the positive electrode is reduced. The discharge capacity can be significantly increased by increasing the substance.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例 正極活物質としてBi2O3粉末、導電剤としてケッチェン
ブラックEC粉末とアセチレンブラック粉末とグラファ
イト粉末、結着剤としてフッ素樹脂とを重量比で第1表
に示す割合で混合し、所定量を金型内に充填し断面L字
状のSUS製正極保持リングと共にペレット状に加圧成
形した後、100℃で10時間減圧加熱乾燥したものを正極
とした。
Example Bi 2 O 3 powder as a positive electrode active material, Ketjenblack EC powder, acetylene black powder and graphite powder as a conductive agent, and a fluororesin as a binder were mixed in a weight ratio shown in Table 1, and mixed. A positive electrode was prepared by filling a fixed amount in a mold, press-molding it into a pellet shape together with a SUS positive electrode holding ring having an L-shaped cross section, and heating and drying under reduced pressure at 100 ° C. for 10 hours.

第1図は、本発明の一例を示す電池断面図である。図に
おいて、1は負極端子を兼ねる負極缶であり、厚さ0.22
mmのNi/SUSクラッド板を絞り 加工したものである。2は負極であり、厚さ1.5mmのリ
チウムシートを直径5.9mmに打抜いて上記負極缶内面に
圧着したものである。6は正極端子を兼ねる正極缶であ
り、厚さ0.22mmのNi/SUSクラッド板を絞り加工した
ものである。この正極缶内に前記の正極5が充填され、
その上にマイクロポーラスなポリプロピレンシートから
成るセパレータ4が載置されている。3は正極と負極間
に電解液を保持する含浸材であり、ポリプロピレンを主
要素とする不織布から成る。7はポリプロピレンを主体
とするガスケットであり、負極缶と正極缶の間に介在
し、正極と負極の電気的絶縁性を保つと同時に、正極缶
開口縁が内側に折り曲げられ、カシメられることによっ
て、電池内容物を密封、封止している。電解液は、プロ
ピレンカーボネートと、1,2−ジメトキシエタンの
3:2混合溶媒に、過塩素酸リチウムを1モル/溶解
したものを用いた。電池の大きさは、外径9.5mm総厚3.0
mmである。この様にして作成した電池を7.5kΩ定抵抗
放電したときの放電容量と−10℃での閉路電圧を第2表
に示す。放電容量の放電終止電圧は1.0V,閉路電圧の
測定は負荷抵抗2kΩ,7.8msecパルス法である。
FIG. 1 is a sectional view of a battery showing an example of the present invention. In the figure, 1 is a negative electrode can that also serves as a negative electrode terminal and has a thickness of 0.22
Squeeze the Ni / SUS clad plate of mm It is processed. Reference numeral 2 denotes a negative electrode, which is obtained by punching a lithium sheet having a thickness of 1.5 mm into a diameter of 5.9 mm and press-bonding it to the inner surface of the negative electrode can. Reference numeral 6 denotes a positive electrode can which also serves as a positive electrode terminal, which is formed by drawing a Ni / SUS clad plate having a thickness of 0.22 mm. The positive electrode 5 is filled in the positive electrode can,
A separator 4 made of a microporous polypropylene sheet is placed on it. An impregnating material 3 holds an electrolytic solution between the positive electrode and the negative electrode, and is composed of a nonwoven fabric containing polypropylene as a main element. 7 is a gasket mainly composed of polypropylene, which is interposed between the negative electrode can and the positive electrode can, maintains the electrical insulation between the positive electrode and the negative electrode, and at the same time, the opening edge of the positive electrode can is bent inward and crimped, The battery contents are hermetically sealed. The electrolyte used was a mixture of propylene carbonate and 1,2-dimethoxyethane in a 3: 2 mixed solvent containing 1 mol / mol of lithium perchlorate. The battery size is 9.5 mm in outer diameter and 3.0 in total thickness.
mm. Table 2 shows the discharge capacity and the closed-circuit voltage at −10 ° C. when the battery thus produced was subjected to constant resistance discharge of 7.5 kΩ. The discharge end voltage of the discharge capacity is 1.0 V, and the closed circuit voltage is measured by a load resistance of 2 kΩ and a 7.8 msec pulse method.

これらの結果から明らかな様に、容量,閉路電圧とも導
電剤(アセチレンブラック,ケッチェンブラック,グラ
ファイトの場合とも)の量と著しく関係している。コン
ダクティブファーネスカーボンブラック(ケッチェンブ
ラック)を用いた電池F,G,Hの場合にはグラファイ
トを用いた電池A,B,Cやアセチレンブラックを用い
た電池D,Eに比べて少量の添加量で高い閉路電圧を示
し、放電容量も高くなっている。コンダクティブファー
ネスカーボンブラックとグラファイトとを同時に用いた
電池Iは、導電剤の添加量が同じ割合の電池C,D,F
と比べて放電容量は高めである。閉路電圧はコンダクテ
ィブファーネスカーボンブラックのみを用いた電池Fよ
りやや低いが実用上の差はほとんどないレベルであり、
グラファイトのみを用いた電池Cや、アセチレンブラッ
クのみを用いた電池Dより顕著に高い。又、コンダクテ
ィブファーネスカーボンブラックのみを2重量%用いた
電池Fの場合には、正極ペレットの加圧成形時や搬送時
に欠けや割れ等の不良が約1割発生したのに対し、コン
ダクティブファーネスカーボンブラックとグラファイト
を同時に用い合わせて2重量%とした電池Iではこの様
な不良の発生はほとんど0であった。
As is clear from these results, both the capacity and the closed-circuit voltage are significantly related to the amount of the conductive agent (in the case of acetylene black, Ketjen black and graphite). In the case of the batteries F, G and H using the conductive furnace carbon black (Ketjen black), the addition amount is smaller than that of the batteries A, B and C using graphite and the batteries D and E using acetylene black. It shows a high closed circuit voltage and a high discharge capacity. The battery I using the conductive furnace carbon black and the graphite at the same time is the batteries C, D, F having the same proportion of the conductive agent added.
The discharge capacity is higher than that of. The closed-circuit voltage is slightly lower than the battery F using only the conductive furnace carbon black, but there is almost no difference in practical use.
It is significantly higher than the battery C using only graphite and the battery D using only acetylene black. Further, in the case of the battery F using only 2% by weight of the conductive furnace carbon black, about 10% of defects such as chipping and cracking occurred during pressure molding of the positive electrode pellet and during transportation, whereas the conductive furnace carbon black In battery I in which 2 wt% of graphite and graphite were used at the same time, the occurrence of such defects was almost zero.

〔発明の効果〕〔The invention's effect〕

以上、詳述した様に本発明は正極導電剤としてコンダク
ティブファーネスカーボンブラックを用いることによっ
て、Li/Bi2O3系電池の放電容量を高めると同時に、閉路
電圧を著しく向上させる優れた効果を有する。
As described above in detail, the present invention has an excellent effect of increasing the discharge capacity of the Li / Bi 2 O 3 system battery and at the same time significantly improving the closed circuit voltage by using the conductive furnace carbon black as the positive electrode conductive agent. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による電池の一例を示す断面図である。 1……負極缶 2……負極 3……含浸材 4……セパレーター 5……正極 6……正極缶 7……ガスケット 8……正極保持リング FIG. 1 is a sectional view showing an example of a battery according to the present invention. 1 ... Negative electrode can 2 ... Negative electrode 3 ... Impregnating material 4 ... Separator 5 ... Positive electrode 6 ... Positive electrode can 7 ... Gasket 8 ... Positive electrode holding ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムを主活物質とする負極と有機電解
質と三酸化ビスマス(Bi2O3)を主活物質とする正極とか
ら少なくとも成り、前記正極に添加する導電剤として、
ファーネス式不完全燃焼法によるコンダクティブファー
ネスカーボンブラックを用いたことを特徴とする有機電
解質電池。
1. A conductive material to be added to the positive electrode, comprising at least a negative electrode containing lithium as a main active material, an organic electrolyte and a positive electrode containing bismuth trioxide (Bi 2 O 3 ) as a main active material.
An organic electrolyte battery comprising a conductive furnace carbon black produced by a furnace type incomplete combustion method.
【請求項2】正極導電剤としてコンダクティブファーネ
スカーボンブラックとグラファイトとを同時に用いたこ
とを特徴とする特許請求の範囲第1項記載の有機電解質
電池。
2. The organic electrolyte battery according to claim 1, wherein the conductive furnace carbon black and graphite are used at the same time as the positive electrode conductive agent.
【請求項3】コンダクティブファーネスカーボンブラッ
クの添加量が正極合剤の2重量%以下であることを特徴
とする特許請求の範囲第1項記載の有機電解質電池。
3. The organic electrolyte battery according to claim 1, wherein the amount of the conductive furnace carbon black added is 2% by weight or less of the positive electrode mixture.
JP62200280A 1986-11-13 1987-08-11 Organic electrolyte battery Expired - Lifetime JPH0644486B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62200280A JPH0644486B2 (en) 1987-08-11 1987-08-11 Organic electrolyte battery
DE8787309971T DE3785834T2 (en) 1986-11-13 1987-11-11 CELL WITH ORGANIC ELECTROLYTE.
EP87309971A EP0270264B1 (en) 1986-11-13 1987-11-11 An organic electrolyte cell
US07/120,619 US4804597A (en) 1986-11-13 1987-11-13 Organic electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62200280A JPH0644486B2 (en) 1987-08-11 1987-08-11 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6443971A JPS6443971A (en) 1989-02-16
JPH0644486B2 true JPH0644486B2 (en) 1994-06-08

Family

ID=16421690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62200280A Expired - Lifetime JPH0644486B2 (en) 1986-11-13 1987-08-11 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0644486B2 (en)

Also Published As

Publication number Publication date
JPS6443971A (en) 1989-02-16

Similar Documents

Publication Publication Date Title
US4197366A (en) Non-aqueous electrolyte cells
JP2000323143A (en) Positive electrode active material and lithium secondary battery using it
EP0149494B1 (en) Method for preparing positive electrode for non-aqueous electrolyte cell
US4804597A (en) Organic electrolyte cell
US4172927A (en) Organic electrolyte battery
JP3022758B2 (en) Alkaline manganese battery
JPH0352187B2 (en)
US5441833A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
US3960600A (en) Anode construction
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPS6335069B2 (en)
JPH0644486B2 (en) Organic electrolyte battery
JP4255762B2 (en) Zinc alkaline battery
JPH0560233B2 (en)
JPS5942949B2 (en) nickel electrode
JP2000277119A (en) Lithium battery
JP2612002B2 (en) Battery
JPH0261095B2 (en)
JPH02148654A (en) Nonaqueous electrolytic battery
JP2002203559A (en) Non-aqueous electrolyte secondary battery and manufacturing method of positive electrode active material
JPH0317346B2 (en)
JPH0424829B2 (en)
JPH07272714A (en) Nonaqueous electrolyte battery
JPH02262262A (en) Nonaqueous electrolyte liquid battery
JPS6031067B2 (en) Manufacturing method of battery positive electrode