JPS6335069B2 - - Google Patents

Info

Publication number
JPS6335069B2
JPS6335069B2 JP55148364A JP14836480A JPS6335069B2 JP S6335069 B2 JPS6335069 B2 JP S6335069B2 JP 55148364 A JP55148364 A JP 55148364A JP 14836480 A JP14836480 A JP 14836480A JP S6335069 B2 JPS6335069 B2 JP S6335069B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
manganese dioxide
battery
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55148364A
Other languages
Japanese (ja)
Other versions
JPS5772272A (en
Inventor
Motoi Kanda
Shuji Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55148364A priority Critical patent/JPS5772272A/en
Publication of JPS5772272A publication Critical patent/JPS5772272A/en
Publication of JPS6335069B2 publication Critical patent/JPS6335069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/182Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、リチウム固体電池の製造方法に関す
るものである。 アルカリ金属系固体電解質電池は、電池電圧が
高くエネルギー密度も大きく、かつ漏液のおそれ
がない等の利点を有している。特に負極にリチウ
ムまたはその合金を使用し、正極に二酸化マンガ
ンを使用したリチウム・二酸化マンガン系固体電
池は、電解質に有機溶媒を使用したリチウム・二
酸化マンガン系有機電解液電池と同様に優れた電
池特性が期待される上に耐漏液性の観点からはさ
らに有利と考えられる。 しかしながら、従来のリチウム・二酸化マンガ
ン系の固体電解質電池においては、放電によつて
生ずるリチウムイオンが正極中へ拡散する速度が
極めて遅く、そのため放電開始後わずかな時間で
電池電圧が低下するという欠点があつた。また固
体電解質としてのリチウム導電体の導電率が低い
ために電池の内部抵抗が大きいという欠点があつ
た。 本発明は上記の点に鑑み、簡略化された製造工
程で、放電特性が平坦で放電電圧の低下の少ない
リチウム固体電池の製造方法を提供する事を目的
とする。 本発明は、二酸化マンガンにヨウ化リチウムを
混合し、正極を得る工程と、前記正極をリチウム
金属あるいはリチウム合金からなる負極に直接接
合する工程とを具備した事を特徴とするリチウム
固体電池の製造方法である。 つまり本発明は二酸化マンガンおよびヨウ化リ
チウムの混合物からなる正極とリチウム金属等か
らなる負極とを直接接合する事により、前記正極
と負極との間にヨウ化リチウム薄層が生成され、
このヨウ化リチウム薄層が固体電解質層として働
き、放電特性が平坦で放電電圧の低下が少ないリ
チウム固体電池が得られるというものである。 さらに詳述すると、第1図aに示す如く、リチ
ウム金属又はリチウム合金からなる負極1と二酸
化マンガンおよびヨウ化リチウムの混合物からな
る正極2とを直接接合する事により、第1図bに
示される如くその界面に固体電解質層としてのヨ
ウ化リチウム薄層3が生成される。なおこのヨウ
化リチウム薄層3の生成過程は明らかではないが
以下の如き反応によるものと思われる。 つまり、まず正極活物質2中で MnO2+Li→LiMn〓O2+(1/2)2
……(1) の反応が生じ、さらに負極1を構成するリチウム
と反応し、次式の如くヨウ化リチウム薄層3を形
成する。 Li+(1/2)2→Li ……(2) さらにリチウム固体電池系としては Li→Li++e ……(3) (1/2)2+Li++e→Li ……(4) の反応が起こる。 この時(4)式は(1)式により発生したヨウ素ガスが
二酸化マンガン中に迅速かつ均一に拡散した結果
によるものである。 つまり電池反応自体が正極中で発生したヨウ素
ガスによる為、正極中の有効活物質となる二酸化
マンガンが有効に使用され、放電特性が平坦で放
電電圧の低下の少ないリチウム固体電池を得る事
ができるというものである。 なお、本発明において正極中のヨウ化リチウム
と二酸化マンガンとの混合比は、ヨウ化リチウム
を多くすると、内部抵抗が大きくなり、また正極
容量が減少し、逆にヨウ化リチウムを少なくする
と、内部抵抗は低下するがリチウムと二酸化マン
ガンとの短絡が起き電池電圧が低下するので、ヨ
ウ化リチウムはモル比で20〜90%程度が望まし
い。 以下、本発明を実施例により詳細に説明する。 実施例 1 粒度として200メツシユパスの電解二酸化マン
ガンを230℃で窒素気流中で8時間熱処理を行な
う。次に、ヨウ化リチウムを150℃で減圧乾燥を
行なう。前記二酸化マンガンと前記ヨウ化リチウ
ムとを重量比で2:1の割合で混ぜメノウ乳鉢で
充分混合し正極を得る。 次に、負極活物質として直径13mm、厚さ0.5mm
の金属リチウム円板、電極集電体として直径13mm
厚さ0.2mmの銅円板を用意し、以下のようにリチ
ウム固体電池を作製した。 まず、内径13mmの電池成形用金型シリンダー内
に電極集電体の銅円板を敷き、その上に前記二酸
化マンガン・ヨウ化リチウム混合物0.25gを載
せ、これを同径のフツ素樹脂棒で軽く押圧した。
ついで、この上に金属リチウム円板を載置し、さ
らに銅円板を載せた後、全体を3ton/cm2の圧力で
加圧成形した。得られた成形体は金型シリンダー
から取り出し、最外層の銅円板にリード線を配設
した後、全体をパラフインで被覆して本発明に係
るリチウム固体電池を作製した。 比較例 粒度として200メツシユパスの電解二酸化マン
ガンを230℃で窒素気流中で8時間熱処理を行な
う。この二酸化マンガンそれに導電剤としてのフ
レークカーボンと結着剤としてフツ素樹脂を重量
比で80:15:5の割合で充分混合して正極とす
る。 次に150℃で減圧乾燥したヨウ化リチウムを固
体電解質とする。電池の作製は実施例1と同様に
正極を0.25g押圧した後ヨウ化リチウム0.1gを
載せ軽く押圧し、後は実施例1と同様にして電池
を作製する。 以上のように作製した電池につき、内部抵抗、
開回路電圧および定抵抗放電による電圧変化をし
らべた。
The present invention relates to a method for manufacturing a lithium solid state battery. Alkali metal solid electrolyte batteries have advantages such as high battery voltage, high energy density, and no risk of leakage. In particular, lithium-manganese dioxide-based solid-state batteries that use lithium or its alloys for the negative electrode and manganese dioxide for the positive electrode have excellent battery characteristics similar to lithium-manganese dioxide-based organic electrolyte batteries that use organic solvents for the electrolyte. Not only is this expected, but it is also considered to be more advantageous from the viewpoint of leakage resistance. However, in conventional lithium-manganese dioxide-based solid electrolyte batteries, the rate at which lithium ions generated during discharge diffuse into the positive electrode is extremely slow, and as a result, the battery voltage drops within a short period of time after the start of discharge. It was hot. Another drawback was that the internal resistance of the battery was high due to the low conductivity of the lithium conductor used as the solid electrolyte. In view of the above points, it is an object of the present invention to provide a method for manufacturing a lithium solid-state battery with flat discharge characteristics and a small drop in discharge voltage using a simplified manufacturing process. The present invention relates to the production of a lithium solid-state battery, which comprises the steps of: mixing lithium iodide with manganese dioxide to obtain a positive electrode; and directly bonding the positive electrode to a negative electrode made of lithium metal or a lithium alloy. It's a method. That is, in the present invention, by directly bonding a positive electrode made of a mixture of manganese dioxide and lithium iodide to a negative electrode made of lithium metal, etc., a thin lithium iodide layer is generated between the positive electrode and the negative electrode.
This thin layer of lithium iodide acts as a solid electrolyte layer, resulting in a lithium solid battery with flat discharge characteristics and little drop in discharge voltage. More specifically, by directly bonding the negative electrode 1 made of lithium metal or lithium alloy and the positive electrode 2 made of a mixture of manganese dioxide and lithium iodide as shown in FIG. A thin lithium iodide layer 3 as a solid electrolyte layer is formed at the interface. Although the formation process of this lithium iodide thin layer 3 is not clear, it is thought to be due to the following reaction. That is, first, in the positive electrode active material 2, MnO 2 +Li→LiMn〓O 2 +(1/2) 2
...The reaction (1) occurs, and it further reacts with lithium constituting the negative electrode 1 to form a lithium iodide thin layer 3 as shown in the following formula. Li+(1/2) 2 →Li ……(2) Furthermore, as a lithium solid battery system, the reaction is Li→Li + +e ……(3) (1/2) 2 +Li + +e→Li ……(4) happen. At this time, equation (4) is the result of the iodine gas generated by equation (1) quickly and uniformly diffusing into manganese dioxide. In other words, since the battery reaction itself is based on iodine gas generated in the positive electrode, manganese dioxide, which is an effective active material in the positive electrode, is used effectively, making it possible to obtain a lithium solid-state battery with flat discharge characteristics and little drop in discharge voltage. That is what it is. In addition, in the present invention, the mixing ratio of lithium iodide and manganese dioxide in the positive electrode is such that when the amount of lithium iodide is increased, the internal resistance increases and the positive electrode capacity decreases, whereas when the amount of lithium iodide is decreased, the internal resistance increases. Although the resistance decreases, a short circuit between lithium and manganese dioxide occurs and the battery voltage decreases, so it is desirable that the molar ratio of lithium iodide is about 20 to 90%. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 Electrolytic manganese dioxide having a particle size of 200 mesh passes was heat treated at 230° C. in a nitrogen stream for 8 hours. Next, lithium iodide is dried under reduced pressure at 150°C. The manganese dioxide and the lithium iodide are mixed at a weight ratio of 2:1 and thoroughly mixed in an agate mortar to obtain a positive electrode. Next, as the negative electrode active material, the diameter is 13 mm and the thickness is 0.5 mm.
Metallic lithium disk, diameter 13mm as electrode current collector
A 0.2 mm thick copper disk was prepared, and a lithium solid-state battery was fabricated as follows. First, a copper disc serving as an electrode current collector was placed in a battery mold cylinder with an inner diameter of 13 mm, and 0.25 g of the manganese dioxide/lithium iodide mixture was placed on top of the copper disc, and a fluororesin rod of the same diameter was used to spread the copper disc. I pressed it lightly.
Next, a metal lithium disk was placed on top of this, and then a copper disk was placed on top of this, and the whole was press-molded at a pressure of 3 tons/cm 2 . The obtained molded body was taken out from the mold cylinder, lead wires were arranged on the outermost copper disc, and the whole was covered with paraffin to produce a lithium solid battery according to the present invention. Comparative Example Electrolytic manganese dioxide having a particle size of 200 mesh pass was heat treated at 230°C in a nitrogen stream for 8 hours. This manganese dioxide, flake carbon as a conductive agent, and fluororesin as a binder are thoroughly mixed in a weight ratio of 80:15:5 to form a positive electrode. Next, lithium iodide dried under reduced pressure at 150°C is used as a solid electrolyte. A battery is manufactured in the same manner as in Example 1, after pressing 0.25 g of the positive electrode, 0.1 g of lithium iodide is placed and lightly pressed. For the battery manufactured as above, the internal resistance,
The voltage changes due to open circuit voltage and constant resistance discharge were investigated.

【表】 第1表はその内部抵抗および開回路電圧の結果
である。 本発明に係るリチウム固体電池は比較例電池に
比べて開回路電圧は低いが内部抵抗はかなり小さ
くなる。 また放電特性として1MΩの定抵抗放電を行つ
た場合の電圧変化を調べ、第2図に示した。なお
第2図中曲線aは上記実施例を、曲線bは上記比
較例をそれぞれ示す。 この結果から明らかな如く、比較例の場合は放
電開始後50時間程度で急激に電池電圧が低下する
のに対し、本発明に係る実施例ではほとんど放電
電圧の低下が見られず、極めて平坦な放電特性を
有するリチウム固体電池が得られた。 以上の如く、本発明では予じめ固体電解質層を
製造する必要もなく簡略化された工程で放電特性
が平坦なリチウム固体電池を得る事が可能とな
る。
[Table] Table 1 shows the results of its internal resistance and open circuit voltage. The lithium solid state battery according to the present invention has a lower open circuit voltage than the comparative example battery, but has a considerably smaller internal resistance. As for the discharge characteristics, the voltage change when a constant resistance discharge of 1MΩ was performed was investigated and is shown in Figure 2. In FIG. 2, curve a shows the above example, and curve b shows the above comparative example. As is clear from this result, in the case of the comparative example, the battery voltage suddenly decreased approximately 50 hours after the start of discharge, whereas in the example according to the present invention, there was almost no decrease in the discharge voltage, and the discharge voltage remained extremely flat. A lithium solid-state battery with discharge characteristics was obtained. As described above, in the present invention, it is possible to obtain a lithium solid battery with flat discharge characteristics through a simplified process without the need to manufacture a solid electrolyte layer in advance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の概略工程を示す断面図。 1…負極、2…正極、3…ヨウ化リチウム薄
層。 第2図は本発明に係るリチウム固体電池の特性
例を示す曲線図。
FIG. 1 is a sectional view schematically showing the steps of the method of the present invention. 1... Negative electrode, 2... Positive electrode, 3... Lithium iodide thin layer. FIG. 2 is a curve diagram showing an example of the characteristics of the lithium solid state battery according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化マンガンにヨウ化リチウムを混合し、
正極を得る工程と、前記正極をリチウム金属ある
いはリチウム合金からなる負極に直接接合する工
程とを具備したことを特徴とするリチウム固体電
池の製造方法。
1 Mix lithium iodide with manganese dioxide,
A method for manufacturing a lithium solid state battery, comprising the steps of obtaining a positive electrode and directly bonding the positive electrode to a negative electrode made of lithium metal or a lithium alloy.
JP55148364A 1980-10-24 1980-10-24 Solid lithium battery and its manufacture Granted JPS5772272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55148364A JPS5772272A (en) 1980-10-24 1980-10-24 Solid lithium battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55148364A JPS5772272A (en) 1980-10-24 1980-10-24 Solid lithium battery and its manufacture

Publications (2)

Publication Number Publication Date
JPS5772272A JPS5772272A (en) 1982-05-06
JPS6335069B2 true JPS6335069B2 (en) 1988-07-13

Family

ID=15451105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55148364A Granted JPS5772272A (en) 1980-10-24 1980-10-24 Solid lithium battery and its manufacture

Country Status (1)

Country Link
JP (1) JPS5772272A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592776B2 (en) 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US6891353B2 (en) 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
US7443136B2 (en) 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
JP4998392B2 (en) * 2008-07-09 2012-08-15 株式会社豊田中央研究所 Non-aqueous electrolyte battery
US8415074B2 (en) 2007-09-04 2013-04-09 Kabushiki Kaisha Toyota Chuo Kenkyusho Nonaqueous electrolyte battery
JP5446401B2 (en) * 2009-04-06 2014-03-19 セイコーエプソン株式会社 Lithium iodine battery and method for producing lithium iodine battery
JP5682698B2 (en) * 2013-12-25 2015-03-11 セイコーエプソン株式会社 Lithium iodine battery, medical equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133729A (en) * 1977-04-25 1978-11-21 Mallory & Co Inc P R Solid state electrochemical battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133729A (en) * 1977-04-25 1978-11-21 Mallory & Co Inc P R Solid state electrochemical battery

Also Published As

Publication number Publication date
JPS5772272A (en) 1982-05-06

Similar Documents

Publication Publication Date Title
JP4395898B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using these anode materials
EP3576192B1 (en) Manufacturing method for electrode for all-solid-state battery and manufacturing method for all solid-state-battery
JP3729155B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JPS6335069B2 (en)
US5682592A (en) Fabrication method for paste-type metal hydride electrode
WO2015141120A1 (en) Lithium primary battery
JPS5942949B2 (en) nickel electrode
JPS5849965B2 (en) Manufacturing method of lithium ion conductive solid electrolyte
JP3985263B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, METHOD FOR PRODUCING SAME, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61116758A (en) Lithium battery
JPS6151380B2 (en)
JPS62139252A (en) Manufacture of lithium-aluminum alloy electrode
JPH03145058A (en) Paste type nickel positive electrode
JPS62139250A (en) Manufacture of lithium-aluminum alloy electrode
JPS61181072A (en) Non-aqueous electrolyte battery
JP3237071B2 (en) Non-aqueous electrolyte secondary battery
JP2562640B2 (en) Cadmium electrode for alkaline storage battery
JPS6031067B2 (en) Manufacturing method of battery positive electrode
JPH0465068A (en) Total solid voltage memory element
JPH01189862A (en) Manufacture of negative electrode plate for sealed type alkaline lead-acid battery
JPS6352739B2 (en)
JPS6290861A (en) Cadmium anode for alkaline storage battery
JPS61193364A (en) Nickel-cadmium alkaline storage battery
JPS62147656A (en) Manufacture of lithium-aluminum alloy electrode