JPH07272714A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH07272714A
JPH07272714A JP6057337A JP5733794A JPH07272714A JP H07272714 A JPH07272714 A JP H07272714A JP 6057337 A JP6057337 A JP 6057337A JP 5733794 A JP5733794 A JP 5733794A JP H07272714 A JPH07272714 A JP H07272714A
Authority
JP
Japan
Prior art keywords
positive electrode
positive
artificial graphite
axis
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6057337A
Other languages
Japanese (ja)
Inventor
Fumio Oo
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6057337A priority Critical patent/JPH07272714A/en
Publication of JPH07272714A publication Critical patent/JPH07272714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a nonaqueous electrolyte battery with low internal resistance and high capacity by using artificial graphite having a specified mean crystal layer distance, a specified crystallite size, and a specified ratio of the length in the direction of (c) axis in the X-ray diffraction to that in the direction of (a) axis as a conductive material of a positive electrode. CONSTITUTION:Artificial graphite having a mean crystal layer distance of about 3.4Angstrom , a crystallite size of 10Angstrom or more, and a ratio Lc/La of the length Lc in the direction of (c) axis in the X-ray diffraction to the La in the direction of (a) axis of 0.2-0.4 is used as a conductive material of a positive electrode 1. The conductive material is mixed with heat-treated manganese dioxide and a binder to form a positive mix, the positive mix is press-molded to a positive ring 2, then vacuum-dried. A negative electrode 3 is a blanked lithium plate, and pressed against a sealing plate 5. In a battery obtained, since the crystallite size of the artificial graphite is small, active material and graphite particles are uniformly mixed in the positive mix, conductivity of the positive mix is enhanced, and positive electrode capacity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属酸化物、ハロゲン
化物、硫化物などを活物質とした正極の、とくにその導
電剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode using a metal oxide, a halide, a sulfide or the like as an active material, and more particularly to a conductive agent therefor.

【0002】[0002]

【従来の技術】従来より、この種の電池に使用される正
極活物質は一般に二酸化マンガン、酸化銅、コバルト酸
リチウム等の半導体材料が主であるため、導電性、含液
性が悪く、特開昭55−14625号公報に記載されて
いるように炭素材料からなる導電剤を活物質に添加して
おり、これらを混合して正極合剤としている。導電剤と
してアセチレンブラックや人造黒鉛、天然黒鉛が使用さ
れているが、アセチレンブラックや人造黒鉛を使用した
場合には、正極合剤の結着性,成型性が低下するため、
結着剤材料を多く添加混合する必要性があった。
2. Description of the Related Art Conventionally, semiconductor materials such as manganese dioxide, copper oxide and lithium cobalt oxide have been mainly used as a positive electrode active material for batteries of this type. As described in JP-A-55-14625, a conductive material made of a carbon material is added to an active material, and these are mixed to form a positive electrode mixture. Although acetylene black, artificial graphite, and natural graphite are used as the conductive agent, when acetylene black and artificial graphite are used, the binding property of the positive electrode mixture and the moldability are deteriorated,
It was necessary to add and mix a large amount of binder material.

【0003】また、天然黒鉛は結着性,成型性に優れて
いるが不純物が多く、電池の電気化学反応に悪影響を及
ぼす問題があった。そしてこれらの理由から、人造黒鉛
で、特に平均結晶層間隔が約3.4Åであり、結晶粒径
が400Å以上で、且つX線回折におけるc軸方向の長
さLcとa軸方向の長さLaの比Lc/Laの値が0.
6〜0.7のものが使用されていた。
Further, although natural graphite is excellent in binding property and moldability, it has a problem that it contains many impurities and adversely affects the electrochemical reaction of the battery. For these reasons, artificial graphite has an average crystal layer spacing of about 3.4 Å, a crystal grain size of 400 Å or more, and a length Lc in the c-axis direction and a length in the a-axis direction in X-ray diffraction. The value of the ratio Lc / La of La is 0.
Those of 6 to 0.7 were used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
人造黒鉛ではX線回折におけるc軸方向の長さLcとa
軸方向の長さLaとの比Lc/Laの値が0.6〜0.
7であるため、結晶構成粒子間の距離が長く、黒鉛の導
電性が低かった。
However, in the above-mentioned artificial graphite, the lengths Lc and a in the c-axis direction in X-ray diffraction are
The value of the ratio Lc / La to the axial length La is 0.6 to 0.
Since it was 7, the distance between crystal constituent particles was long and the conductivity of graphite was low.

【0005】このため、正極の導電性を向上させるため
には、黒鉛の添加量を増加する必要があり、正極合剤中
の活物質の割合が小さくなって所望の容量が得られない
ことがあった。
Therefore, in order to improve the conductivity of the positive electrode, it is necessary to increase the amount of graphite added, and the ratio of the active material in the positive electrode mixture becomes small, so that the desired capacity cannot be obtained. there were.

【0006】本発明は、これらの課題を解決するもので
あり、良好な導電性を有して正極合剤中の添加量をでき
るだけ少なくできる人造黒鉛を用いて、高容量で内部抵
抗の小さい非水電解液電池を提供するものである。
The present invention solves these problems, and uses artificial graphite having good conductivity and capable of reducing the amount of addition in the positive electrode mixture as much as possible. A water electrolyte battery is provided.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の非水電解液電池は、正極の導電剤として
平均結晶層間隔が約3.4Åで、結晶粒径が10Å以上
であり、X線回折におけるc軸方向の長さLcとa軸方
向の長さLaとの比Lc/Laの値が0.2〜0.4で
ある人造黒鉛を用いるものである。
In order to solve the above-mentioned problems, the non-aqueous electrolyte battery of the present invention has an average crystal layer spacing of about 3.4 Å as a positive electrode conductive agent and a crystal grain size of 10 Å or more. That is, artificial graphite having a ratio Lc / La of the length Lc in the c-axis direction and the length La in the a-axis direction in X-ray diffraction of 0.2 to 0.4 is used.

【0008】[0008]

【作用】本発明の正極導電剤用人造黒鉛はLc/Laの
値が0.2〜0.4であり結晶構成粒子間の距離が従来
より短いため、人造黒鉛の導電性が向上し、これによっ
て正極合剤全体の導電性を高めることができる。
The artificial graphite for a positive electrode conductive agent of the present invention has an Lc / La value of 0.2 to 0.4 and the distance between crystal constituent particles is shorter than before, so that the artificial graphite has improved conductivity. Thereby, the conductivity of the entire positive electrode mixture can be increased.

【0009】また、結晶構成粒子間の距離が短いため結
晶粒の大きさが小さくなり、正極の活物質粉末間の接触
性が向上するとともに、正極合剤中の黒鉛の割合を少な
くすることができ正極の容量を大きくすることができ
る。
Further, since the distance between the crystal constituent particles is short, the size of the crystal particles is reduced, the contact property between the active material powders of the positive electrode is improved, and the proportion of graphite in the positive electrode mixture can be reduced. Therefore, the capacity of the positive electrode can be increased.

【0010】したがって、導電性が良好で内部抵抗が小
さく、高容量な非水電解液電池を提供することができ
る。
Therefore, it is possible to provide a high-capacity non-aqueous electrolyte battery having a good conductivity, a low internal resistance and a high capacity.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は本実施例で用いる非水電解液電池で
あり、1は正極、2は正極リング、3は負極、4はセパ
レータ、5は封口板、6は絶縁ガスケット、7は正極ケ
ースである。
FIG. 1 shows a non-aqueous electrolyte battery used in this embodiment, where 1 is a positive electrode, 2 is a positive electrode ring, 3 is a negative electrode, 4 is a separator, 5 is a sealing plate, 6 is an insulating gasket, and 7 is a positive electrode case. Is.

【0013】正極1は380〜470℃の温度で熱処理
を施した二酸化マンガン90重量部に、導電剤として平
均結晶層間隔が約3.4Åで結晶粒径が10Å以上であ
り、かつX線回折におけるc軸方向の長さLcとa軸方
向の長さLaとの比Lc/Laの値が0.2〜0.4で
ある人造黒鉛8重量部および結着剤としてポリエチレン
オキサイト樹脂粉末2重量部を混合して正極合剤とし、
ついで直径16mmの正極リング2に前記正極合剤を成
型圧力5トン/cm2で加圧成型したのち250℃で真
空乾燥して作製したものである。負極3はリチウム板を
直径16mmに打ち抜いたものを封口板5に圧着して作
製したものである。また、電解液はプロピレンカーボネ
ートと1,2−ジメトキシエタンとの等体積混合溶媒に
トリフルオロメタンスルホン酸リチウムを1モル/1溶
解したものであり、ポリプロピレン不織布よりなるセパ
レータ4に含浸して用いた。
The positive electrode 1 has 90 parts by weight of manganese dioxide heat-treated at a temperature of 380 to 470 ° C., an average crystal layer spacing of about 3.4 Å as a conductive agent, a crystal grain size of 10 Å or more, and X-ray diffraction. 8 parts by weight of artificial graphite having a ratio Lc / La of the length Lc in the c-axis direction to the length La in the a-axis direction of 0.2 to 0.4 and polyethylene oxide resin powder 2 as a binder By mixing parts by weight to form a positive electrode mixture,
Then, the positive electrode mixture having a diameter of 16 mm was press-molded at a molding pressure of 5 ton / cm 2 and then vacuum-dried at 250 ° C. The negative electrode 3 is made by punching a lithium plate having a diameter of 16 mm and press-bonding it to the sealing plate 5. The electrolytic solution was prepared by dissolving lithium trifluoromethanesulfonate in an amount of 1 mol / 1 in a mixed solvent of equal volume of propylene carbonate and 1,2-dimethoxyethane, and used by impregnating the separator 4 made of polypropylene nonwoven fabric.

【0014】このようにして作製したコイン形二酸化マ
ンガンリチウム電池を本発明の電池Aとした。
The coin-type lithium manganese dioxide battery thus produced was designated as Battery A of the present invention.

【0015】また、比較の電池として次の2種類の電池
B,Cを作製した。比較電池Bは、上記と同様の二酸化
マンガン85重量部に導電剤として平均結晶層間隔が約
3.4Åで結晶粒径が50Å以上であり、かつLc/L
aの値が0.6〜0.7であるアセチレンブラック10
重量部および結着剤としてポリエチレンオキサイト樹脂
粉末5重量部を混合した正極合剤を用いた以外は本発明
と同様の電池である。
Further, the following two types of batteries B and C were prepared as comparative batteries. Comparative battery B had the same average crystal layer spacing of about 3.4Å and a crystal grain size of 50Å or more as a conductive agent in 85 parts by weight of manganese dioxide similar to the above, and had Lc / L.
Acetylene black 10 having a value of 0.6 to 0.7
The battery is the same as that of the present invention, except that a positive electrode mixture prepared by mixing 5 parts by weight of polyethylene oxide resin powder as a binder and 5 parts by weight of a binder is used.

【0016】比較電池Cは上記と同様の二酸化マンガン
87重量部に、導電剤として平均結晶層間隔が約3.4
Åで結晶粒径が400Å以上であり、かつLc/Laの
値が0.6〜0.7である人造黒鉛10重量部および結
着剤としてポリエチレンオキサイト樹脂粉末3重量部を
混合した正極合剤を用いた以外は本発明と同様の電池で
ある。
In Comparative Battery C, 87 parts by weight of manganese dioxide similar to the above was used, and the average crystal layer spacing as a conductive agent was about 3.4.
A positive electrode mixture in which 10 parts by weight of artificial graphite having a crystal grain size of 400 Å or more and a Lc / La value of 0.6 to 0.7 and 3 parts by weight of polyethylene oxide resin powder as a binder are mixed. A battery similar to the present invention except that the agent was used.

【0017】次に本発明と比較の電池を用いて放電容量
と内部抵抗の測定を行った。放電容量は、10℃で15
kΩ負荷での高率放電時と10℃で65kΩ負荷での低
率放電時における容量を測定した。
Next, the discharge capacity and internal resistance were measured using the batteries of the present invention and comparison. Discharge capacity is 15 at 10 ℃
The capacity was measured during high rate discharge under a kΩ load and during low rate discharge under a 65 kΩ load at 10 ° C.

【0018】これらの結果を(表1)と(表2)に示
す。
The results are shown in (Table 1) and (Table 2).

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】ここで(表1)は放電容量の測定値であ
り、(表2)は内部抵抗の測定値である。
Here, (Table 1) is the measured value of the discharge capacity, and (Table 2) is the measured value of the internal resistance.

【0022】(表1)および(表2)に示したように、
本発明の電池Aでは比較の電池B,Cに比べて放電容量
および内部抵抗を改善することができた。
As shown in (Table 1) and (Table 2),
In the battery A of the present invention, the discharge capacity and internal resistance could be improved as compared with the comparative batteries B and C.

【0023】[0023]

【発明の効果】以上のように、本発明の非水電解液電池
は、正極の導電剤として平均結晶層間隔が約3.4Å
で、結晶粒径が10Å以上であり、X線回折におけるc
軸方向の長さLcとa軸方向の長さLaとの比Lc/L
aの値が0.2〜0.4である人造黒鉛を用いるもので
あり、結晶構成粒子間の距離が短いため人造黒鉛の導電
性を向上させることができるとともに、結晶粒径が小さ
いために正極合剤中において活物質粉末と黒鉛粉末とを
均一に混合することができ、黒鉛粉末の量を少なくして
も粒末間の接触性が向上して正極合剤全体の導電性を高
めることができる。
As described above, in the non-aqueous electrolyte battery of the present invention, the average crystal layer spacing as the positive electrode conductive agent is about 3.4Å.
And the crystal grain size is 10 Å or more, and c in X-ray diffraction
Ratio Lc / L of axial length Lc and axial length La
Since artificial graphite having a value of a of 0.2 to 0.4 is used and the distance between the crystal constituent particles is short, the conductivity of the artificial graphite can be improved and the crystal grain size is small. The active material powder and the graphite powder can be uniformly mixed in the positive electrode mixture, and even if the amount of the graphite powder is reduced, the contact between particle ends is improved and the conductivity of the entire positive electrode mixture is increased. You can

【0024】また、前記粉末間の均一混合により正極合
剤の密度が均一になり、電解液の吸液性も均一になって
反応が円滑に進み、正極容量を増大させることができ
る。
Also, the density of the positive electrode mixture is made uniform by the uniform mixing of the powders, the liquid absorbing property of the electrolyte is also made uniform, the reaction proceeds smoothly, and the capacity of the positive electrode can be increased.

【0025】したがって、内部抵抗が小さく高容量な非
水電解液電池を提供できる。
Therefore, it is possible to provide a high capacity non-aqueous electrolyte battery having a small internal resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例で用いた非水電解液電池の側面断面図FIG. 1 is a side sectional view of a non-aqueous electrolyte battery used in this example.

【符号の説明】[Explanation of symbols]

1 正極 2 正極リング 3 負極 4 セパレータ 5 封口板 6 絶縁ガスケット 7 正極ケース 1 Positive Electrode 2 Positive Electrode Ring 3 Negative Electrode 4 Separator 5 Sealing Plate 6 Insulation Gasket 7 Positive Electrode Case

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムなどの軽金属、あるいはそれらの
合金を活物質とした負極と、金属酸化物、ハロゲン化
物、硫化物などを活物質とした正極と、非水電解液を備
えるものであって、正極の導電剤として平均結晶層間隔
が約3.4Åであり、結晶粒径が10Å以上で、且つX
線回折におけるc軸方向の長さLcとa軸方向の長さL
aの比Lc/Laの値が0.2〜0.4である人造黒鉛
を用いたことを特徴とする非水電解液電池。
1. A negative electrode comprising a light metal such as lithium or an alloy thereof as an active material, a positive electrode comprising a metal oxide, a halide, a sulfide or the like as an active material, and a non-aqueous electrolyte. , As the positive electrode conductive agent, the average crystal layer spacing is about 3.4 Å, the crystal grain size is 10 Å or more, and X
In the line diffraction, the length Lc in the c-axis direction and the length L in the a-axis direction
A non-aqueous electrolyte battery, wherein artificial graphite having a ratio Lc / La of a of 0.2 to 0.4 is used.
JP6057337A 1994-03-28 1994-03-28 Nonaqueous electrolyte battery Pending JPH07272714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057337A JPH07272714A (en) 1994-03-28 1994-03-28 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057337A JPH07272714A (en) 1994-03-28 1994-03-28 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH07272714A true JPH07272714A (en) 1995-10-20

Family

ID=13052764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057337A Pending JPH07272714A (en) 1994-03-28 1994-03-28 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07272714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521376B1 (en) 1999-11-26 2003-02-18 Hitachi Maxell, Ltd. Non-aqueous liquid electrolyte cell
JP2020017391A (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521376B1 (en) 1999-11-26 2003-02-18 Hitachi Maxell, Ltd. Non-aqueous liquid electrolyte cell
JP2020017391A (en) * 2018-07-25 2020-01-30 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
US5783333A (en) Lithium nickel cobalt oxides for positive electrodes
JP3450894B2 (en) Alkaline manganese battery
JP4161382B2 (en) Process for producing two-layer structured particulate composition
KR101241571B1 (en) Cathode material for lithium ion secondary battery and lithium ion secondary battery using it
JP4897223B2 (en) Nonaqueous electrolyte secondary battery
JP4877898B2 (en) Nonaqueous electrolyte secondary battery
US4197366A (en) Non-aqueous electrolyte cells
WO2002054512A1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
EP3719883B1 (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery, and lithium secondary battery including the same
JP2005251684A (en) Nonaqueous electrolyte secondary battery
JP6730777B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode material
CN113711382A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JP2020129499A (en) Method for producing positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2002100344A (en) Positive electrode and battery
JPH09180736A (en) Alkaline manganese battery
JPH07272714A (en) Nonaqueous electrolyte battery
JP2018073562A (en) Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery arranged by use thereof, and method for manufacturing positive electrode material for nonaqueous electrolyte secondary battery
JP3523145B2 (en) Iron composite oxide battery
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP6819860B2 (en) A method for producing a positive electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the positive electrode material, and a positive electrode material for a non-aqueous electrolyte secondary battery.
JP3115256B2 (en) Non-aqueous electrolyte secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP2001006684A (en) Nonaqueous electrolyte battery
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell