JPH0644153B2 - Radiation-sensitive negative resist material - Google Patents

Radiation-sensitive negative resist material

Info

Publication number
JPH0644153B2
JPH0644153B2 JP59270753A JP27075384A JPH0644153B2 JP H0644153 B2 JPH0644153 B2 JP H0644153B2 JP 59270753 A JP59270753 A JP 59270753A JP 27075384 A JP27075384 A JP 27075384A JP H0644153 B2 JPH0644153 B2 JP H0644153B2
Authority
JP
Japan
Prior art keywords
polymer
radiation
copolymer
chloromethylated
methacrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59270753A
Other languages
Japanese (ja)
Other versions
JPS61148445A (en
Inventor
秀克 小原
昭宏 清水
晃 横田
久 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP59270753A priority Critical patent/JPH0644153B2/en
Publication of JPS61148445A publication Critical patent/JPS61148445A/en
Publication of JPH0644153B2 publication Critical patent/JPH0644153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は集積回路(ICと略称される。)、大規模集積
回路(LSIと略称される。)などの半導体素子の製造
に用いる微細パターン形成用放射線感受性ネガ型レジス
ト材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for forming a fine pattern used for manufacturing a semiconductor device such as an integrated circuit (abbreviated as IC) and a large scale integrated circuit (abbreviated as LSI). The present invention relates to a radiation-sensitive negative resist material.

従来の技術 近年、IC、LSIなど微細加工におけるパターンの寸
法は、いわゆるサブミクロンとなり、従来の紫外線を用
いるホトリソグラフィーやエッチング液を用いるウエッ
トエッチングに代って、短波長の遠紫外線、X線、電子
線などの高エネルギーの放射線を用いるリソグラフィー
や、プラズマなどを用いるドライエッチングが行なわれ
るようになってきた。かかる微細加工に用いるレジスト
材料には、高感度、高解像度、耐ドライエッチング性な
どが要求されるが、従来の放射線感受性ネガ型レジス
ト、例えばポリグリシジルメタクリレート(PGM
A)、グリシジメタクリレート−エチルアクリレート共
重合体[P(GMA−CO−EA)]、クロロメチル化
ポリスチレン(CMS)など〔例えば、集積回路の製造
・加工工程における超微細加工・各種プロセス技術の問
題点と実用化〈総合資料集〉56年7月ソフト技研出版
部発行p.41〜59〕では感度、解像度をある程度満
足しうるにしても耐ドライエッチング性が不充分であ
り、特に半導体基板をシリコン酸化膜に代って金属酸化
膜が使用される場合ドライエッチングの処理条件が酷な
ためエッチング終了時まで微細レジストパターンを保持
することが困難な状況にある。
2. Description of the Related Art In recent years, the dimensions of patterns in microfabrication such as IC and LSI have become so-called submicron. In place of conventional photolithography using ultraviolet rays and wet etching using etching solutions, short wavelength deep ultraviolet rays, X-rays, Lithography using high-energy radiation such as electron beams and dry etching using plasma have come to be performed. The resist material used for such fine processing is required to have high sensitivity, high resolution, dry etching resistance, etc., but conventional radiation-sensitive negative resists such as polyglycidyl methacrylate (PGM) are used.
A), glycidyl methacrylate-ethyl acrylate copolymer [P (GMA-CO-EA)], chloromethylated polystyrene (CMS), etc. [for example, ultra-fine processing in manufacturing and processing steps of integrated circuits, various process technologies] Problems and Practical Use <Comprehensive Collection of Materials> July 56, published by Soft Giken Publishing Department p. 41-59], the dry etching resistance is insufficient even if the sensitivity and the resolution can be satisfied to some extent. Especially, when the semiconductor substrate is replaced with a metal oxide film instead of a silicon oxide film, the dry etching treatment condition is required. However, it is difficult to hold the fine resist pattern until the end of etching.

なお、耐ドライエッチング性ネガ型レジストについて、
ポリハロゲノフェニルメタクリレート及びポリハロゲノ
ベンジルメタクリレートが特開昭57−124731号
に、クロロメチル化ポリナフチルメタクリレートが特開
昭58−111028号に、クロロメチル化2−イソプ
ロペニルナフタレンの共重合体が特開昭59−4875
9号にそれぞれ開示されている。
Regarding the dry etching resistant negative resist,
Polyhalogenophenyl methacrylate and polyhalogenobenzyl methacrylate are disclosed in JP-A-57-124731, chloromethylated polynaphthyl methacrylate is disclosed in JP-A-58-11108, and a copolymer of chloromethylated 2-isopropenylnaphthalene is disclosed. Sho 59-4875
No. 9 respectively.

しかしながら、これらのレジストでは、0.8μm以下
のパターンを形成することができず、微細加工化の進む
半導体工業においては実用的な解像性が得られない。
However, with these resists, a pattern of 0.8 μm or less cannot be formed, and practical resolution cannot be obtained in the semiconductor industry in which fine processing is advanced.

発明が解決しようとする問題点 本発明は、上記の状況を鑑み、放射線感受性を有し、微
細なレジストパターンを形成することができ、密着性及
び耐ドライエッチング性に優れた新規なネガ型レジスト
材料を開発しようとするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In view of the above situation, the present invention is a novel negative resist having radiation sensitivity, capable of forming a fine resist pattern, and having excellent adhesion and dry etching resistance. It is an attempt to develop materials.

問題点を解決するための手段 本発明者らは鋭意研究を重ねた結果、一般式 〔式中Xは水素原子又はメチル基を示し、Yは一般式−
O−CO−R、−CO−O−R又は−CO−O−CH
−Rを示し、Rはクロロメチル基で置換されたフェニル
基を示す〕で表わされる繰り返し単位を有する重合体又
は共重合体からなる放射線感受性ネガ型レジスト材料を
提供するものである。
Means for Solving the Problems As a result of intensive studies by the present inventors, the general formula [In the formula, X represents a hydrogen atom or a methyl group, and Y represents a general formula-
O-CO-R, -CO- O-R , or -CO-O-CH 2
-R, wherein R represents a phenyl group substituted with a chloromethyl group], and a radiation-sensitive negative resist material comprising a polymer or copolymer having a repeating unit represented by the formula:

本発明の要素について、以下に詳説する。The elements of the present invention are described in detail below.

(重合体と共重合体の種類) 本発明の上記一般式で表わされる繰り返し単位は、いず
れもベンゼン核をクロロメチルで置換した安息香酸ビニ
ル、イソプロペニル安息香酸、アクリル酸フエニル、メ
タクリル酸フエニル、アクリル酸ベンジル、又はメタク
リル酸ベンジルであり、また、これと共重合しうる繰り
返し単位としては、スチレン、α−メチルスチレン、ク
ロロメチル化スチレン等のスチレン系モノマー、メチル
メタクリレート、グリシジルメタクリレート等のアクリ
ル系モノマー、アクリロニトリル系の不飽和ニトリル等
を挙げることができる。
(Types of Polymer and Copolymer) The repeating unit represented by the above general formula of the present invention includes vinyl benzoate in which the benzene nucleus is substituted with chloromethyl, isopropenylbenzoic acid, phenyl acrylate, phenyl methacrylate, Benzyl acrylate or benzyl methacrylate, and as the repeating unit copolymerizable therewith, styrene-based monomers such as styrene, α-methylstyrene and chloromethylated styrene, acrylic-based monomers such as methyl methacrylate and glycidyl methacrylate. Examples thereof include monomers and acrylonitrile-based unsaturated nitriles.

本発明の重合体又は共重合体において、上記一般式で表
わされる繰り返し単位の好ましい割合は、重合体又は共
重合体中の全繰り返し単位数の20%以上、特に50%
以上である。これが少ないと本発明の材料の放射線に対
する感度及び耐ドライエッチング性が低下する。
In the polymer or copolymer of the present invention, the preferable ratio of the repeating unit represented by the above general formula is 20% or more, especially 50% of the total number of repeating units in the polymer or copolymer.
That is all. If the amount is small, the sensitivity of the material of the present invention to radiation and the dry etching resistance are lowered.

一般式で示される繰り返し単位の中の基Rは、クロロメ
チル基で置換されたフェニル基が好ましい。
The group R in the repeating unit represented by the general formula is preferably a phenyl group substituted with a chloromethyl group.

(製造方法) 本発明の重合体又は共重合体は、一般式で表わされる繰
り返し単位をもつ単量体を、又はそれと共重合しうる繰
り返し単位をもつ単量体と共に、重合する方法と、ハロ
ゲン化アルキル基を有しない単量体を、又はそれと共重
合しうる繰り返し単位をもつ単量体と共に重合させ、ハ
ロゲン化アルキル基を有しない重合体又は共重合体を得
て、これにハロゲン化アルキル基を導入する方法とがあ
り、何れでも良いが、副反応が少く簡単なものほど好ま
しい。ハロゲン化アルキル基としてクロロメチル基を導
入する場合には、クロロメチルメチルエーテルを使用し
た高分子反応による方法が副反応が少い点から好まし
い。なお、本発明の重合体又は共重合体の重量平均分子
量は10,000〜1,000,000の範囲であるこ
とが好ましい。
(Production method) The polymer or copolymer of the present invention comprises a method of polymerizing a monomer having a repeating unit represented by the general formula, or a monomer having a repeating unit capable of copolymerizing with the monomer, and a halogen. A monomer having no halogenated alkyl group or a monomer having a repeating unit capable of copolymerizing with the monomer is polymerized to obtain a polymer or copolymer having no halogenated alkyl group. There is a method of introducing a group, and any method may be used, but a simpler method with less side reaction is preferable. When a chloromethyl group is introduced as a halogenated alkyl group, a polymer reaction method using chloromethyl methyl ether is preferable from the viewpoint of less side reaction. The weight average molecular weight of the polymer or copolymer of the present invention is preferably in the range of 10,000 to 1,000,000.

(使用方法) 本発明の重合体又は共重合体は、放射線感受性ネガ型レ
ジスト材料として適当な有機溶剤例えばエチルセロソル
ブアセテート、シクロヘキサノン、メチルセロソルブ、
ブチルセロソルブなどに溶解して、溶液の形で用いるの
が有利である。
(Method of use) The polymer or copolymer of the present invention is a suitable organic solvent as a radiation-sensitive negative resist material, such as ethyl cellosolve acetate, cyclohexanone, methyl cellosolve,
It is advantageous to use it in the form of a solution by dissolving it in butyl cellosolve or the like.

本発明の放射線感受性ネガ型レジスト材料の好適な使用
方法について一例を示せば、金属酸化物膜、シリコン酸
化物膜、ポリシリコン膜、窒化シリコン膜などを形成し
たシリコンウエハー上に前記したような適当な溶剤に溶
かした溶液をスピンナー等で塗布し、乾燥してレジスト
膜を形成させる。しかる後、所要のマスクパターンを介
して遠紫外線又はX線を照射するか、あるいは電子線を
走査しながら照射する。次にこれをケトン類、セロソル
ブ類などの溶剤で現像し、アルコール類、炭化水素類な
どでリンス処理してレジストパターンを得る。
To give an example of a preferred method of using the radiation-sensitive negative resist material of the present invention, a suitable method as described above is formed on a silicon wafer having a metal oxide film, a silicon oxide film, a polysilicon film, a silicon nitride film, etc. formed thereon. A solution dissolved in another solvent is applied by a spinner or the like and dried to form a resist film. Thereafter, the far ultraviolet ray or the X-ray is irradiated through a required mask pattern, or the electron beam is irradiated while scanning. Next, this is developed with a solvent such as ketones and cellosolves, and rinsed with alcohols and hydrocarbons to obtain a resist pattern.

実施例 次に実施例により本発明をさらに詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to Examples.

合成例1. 安息香酸ビニル100gにN,N′−アゾビスイソブチ
ロニトリル0.5gを加えて、窒素ガス雰囲気中で攪拌
しながら60℃で約10時間反応させる。反応終了後、
反応物をメタノール1中に注下してポリマーを析出さ
せ、得られたポリマーを室温下で減圧乾燥する。ポリマ
ーの収量は70gであり、重量平均分子量(Mw)9
5,000、分散度(Mw/Mn)1.6であった。
Synthesis example 1. 0.5 g of N, N′-azobisisobutyronitrile is added to 100 g of vinyl benzoate, and the mixture is reacted at 60 ° C. for about 10 hours while stirring in a nitrogen gas atmosphere. After the reaction,
The reaction product is poured into methanol 1 to precipitate a polymer, and the obtained polymer is dried under reduced pressure at room temperature. The yield of the polymer was 70 g, and the weight average molecular weight (Mw) was 9
It was 5,000 and the dispersity (Mw / Mn) was 1.6.

このポリマー45gをクロロメチルメチルエーテル15
0gに溶解し、更にテトラクロロエタン50gを加えた
後、氷水中で反応フラスコを冷却しつつ塩化アルミニウ
ム50gを徐々に加えて反応を進行させる。1時間後、
反応物を氷水中に注入して沈澱物を析出させ純水で洗浄
する。得られたクロロメチル化ポリ安息香酸ビニルは6
5gで、クロロメチル化率は重合体の全繰り返し単位数
の58%であった。
45 g of this polymer was added to chloromethyl methyl ether 15
After dissolving in 0 g and further adding 50 g of tetrachloroethane, 50 g of aluminum chloride is gradually added to the reaction while cooling the reaction flask in ice water. One hour later,
The reaction product is poured into ice water to precipitate a precipitate, which is washed with pure water. The obtained chloromethylated poly (vinyl benzoate) was 6
At 5 g, the chloromethylation rate was 58% of the total number of repeating units in the polymer.

合成例2. ベンジルメタクリレート100gにN,N′−アゾビス
イソブチロニトリル0.5gを加えて窒素ガス雰囲気中
で撹拌しながら60℃で約20時間反応させる。反応終
了後、反応物をメタノール1中に注下してポリマーを
析出させ、得られたポリマーを室温下で減圧乾燥する。
ポリマーの収量は60gであり、重量平均分子量(M
w)74,000、分散度(Mw/Mn)1.55であ
った。
Synthesis example 2. 0.5 g of N, N'-azobisisobutyronitrile was added to 100 g of benzyl methacrylate, and the mixture was reacted at 60 ° C for about 20 hours while stirring in a nitrogen gas atmosphere. After completion of the reaction, the reaction product is poured into methanol 1 to precipitate a polymer, and the obtained polymer is dried under reduced pressure at room temperature.
The yield of the polymer was 60 g, and the weight average molecular weight (M
w) was 74,000, and the dispersity (Mw / Mn) was 1.55.

このポリマーを合成例1と同様の方法でクロロメチル化
を行い、重合体の全繰り返し単位数の65%がクロロメ
チル化されたクロロメチル化ポリベンジルメタクリレー
ト70gを得た。
This polymer was chloromethylated in the same manner as in Synthesis Example 1 to obtain 70 g of chloromethylated polybenzyl methacrylate in which 65% of all the repeating units of the polymer were chloromethylated.

合成例3. 安息香酸ビニル70gとグリシジルメタクリレート30
gを混合し、N,N′−アゾビスイソブチロニトリル
0.5gを加えて窒素ガス雰囲気中で撹拌しながら60
℃で約7時間反応させる。反応終了後、反応物をメタノ
ール1中に注下し、ポリマーを析出させ、得られたポ
リマーを室温下で減圧乾燥する。ポリマーの収量は80
gであり、重量平均分子量(Mw)125,000、分
散度(Mw/Mn)1.7であった。そして共重合比は
モル比で前者対後者が2:1であった。
Synthesis example 3. Vinyl benzoate 70g and glycidyl methacrylate 30
g, N, N′-azobisisobutyronitrile 0.5 g was added, and the mixture was stirred in a nitrogen gas atmosphere while stirring 60 g.
Incubate at ℃ for about 7 hours. After completion of the reaction, the reaction product is poured into methanol 1 to precipitate a polymer, and the obtained polymer is dried under reduced pressure at room temperature. Polymer yield is 80
The weight average molecular weight (Mw) was 125,000 and the dispersity (Mw / Mn) was 1.7. The molar ratio of the former to the latter was 2: 1.

このポリマーを合成例1と同様の方法でクロロメチル化
を行い、重合体の全繰り返し単位数の55%がクロロメ
チル化された安息香酸ビニル−グリシジルメタクリレー
ト共重合体65gを得た。
This polymer was chloromethylated in the same manner as in Synthesis Example 1 to obtain 65 g of vinyl benzoate-glycidyl methacrylate copolymer in which 55% of all the repeating units of the polymer were chloromethylated.

合成例4. ベンジルメタクリレート120gとメチルメタクリレー
ト20gを混合し、N,N′−アゾビスイソブチロニト
リル0.5gを加えて窒素ガス雰囲気中で撹拌しながら
60℃で約7時間反応させる。反応終了後、反応物をメ
タノール1中に注下してポリマーを析出させ、得られ
たポリマーを室温下で減圧乾燥する。ポリマーの収量は
80gであり共重合比は3:1であった。そして、重量
平均分子量(Mw)165,000で、分散度(Mw/
Mn1.5)であった。このポリマーを合成例1と同様
の方法でクロロメチル化を行い、重合体の全繰り返し単
位数の60%がクロロメチル化されたベンジルメタクリ
レート−メチルメタクリレート共重合体70gを得た。
Synthesis example 4. 120 g of benzyl methacrylate and 20 g of methyl methacrylate are mixed, 0.5 g of N, N'-azobisisobutyronitrile is added, and the mixture is reacted in a nitrogen gas atmosphere with stirring at 60 ° C. for about 7 hours. After completion of the reaction, the reaction product is poured into methanol 1 to precipitate a polymer, and the obtained polymer is dried under reduced pressure at room temperature. The polymer yield was 80 g and the copolymerization ratio was 3: 1. The weight average molecular weight (Mw) is 165,000 and the dispersity (Mw /
Mn 1.5). This polymer was chloromethylated by the same method as in Synthesis Example 1 to obtain 70 g of a benzyl methacrylate-methyl methacrylate copolymer in which 60% of the total number of repeating units of the polymer was chloromethylated.

合成例5. メタクリル酸フェニル50gとジクロロスチレン65g
を混合し、N,N′−アゾビスイソブチロニトリル0.
5gを加えて窒素ガス雰囲気中で撹拌しながら60℃で
約10時間反応させた。反応終了後、反応物をメタノー
ル1中に注下してポリマーを析出させ、得られたポリ
マーを室温下で減圧乾燥した。ポリマーの収量は75g
であり共重合比は1:1であった。そして重量平均分子
量(Mw)148,000、分散度(Mw/Mn)1.
6であった。このメタクリル酸フェニル−ジクロロスチ
レン共重合体45gを2−ブロモエチルエチルエーテル
150gに溶解し、更にテトラブロモエタン50gを加
えた後、氷水中で反応フラスコを冷却しつつ四塩化スズ
15gを徐々に加えて反応を進行させる。1時間後、反
応物を氷水中に注入して沈澱物を析出させ、純水で洗浄
した。このようにして重合体の全繰り返し単位数の70
%がブロモエチル化されたブロモエチル化ポリメタクリ
ル酸フェニル−ジクロロスチレン共重合体は、50gで
あった。
Synthesis example 5. 50 g of phenyl methacrylate and 65 g of dichlorostyrene
And N, N'-azobisisobutyronitrile 0.
5 g was added and reacted at 60 ° C. for about 10 hours while stirring in a nitrogen gas atmosphere. After completion of the reaction, the reaction product was poured into methanol 1 to precipitate a polymer, and the obtained polymer was dried under reduced pressure at room temperature. Polymer yield is 75g
And the copolymerization ratio was 1: 1. Then, the weight average molecular weight (Mw) is 148,000 and the dispersity (Mw / Mn) is 1.
It was 6. 45 g of this phenyl methacrylate-dichlorostyrene copolymer was dissolved in 150 g of 2-bromoethyl ethyl ether, and after further adding 50 g of tetrabromoethane, 15 g of tin tetrachloride was gradually added while cooling the reaction flask in ice water. To proceed the reaction. After 1 hour, the reaction product was poured into ice water to precipitate a precipitate, which was washed with pure water. Thus, the total number of repeating units of the polymer is 70
The amount of the bromoethylated polyphenylmethacrylate-dichlorostyrene copolymer with% bromoethylated was 50 g.

実施例1. 合成例1で得たクロロメチル化ポリ安息香酸ビニル10
gをエチルセロソルブアセテート100gに溶解し、メ
ンブランフィルターで濾過して微細な不溶物を除去し、
得たレジスト溶液を、スピンナーを用いて0.5μm厚
の熱酸化膜を形成したシリコン基板に、膜厚0.5μm
になるように塗布し、85℃で20分間乾燥した。この
シリコン基板に加速電圧20kV、線量0.8×10−6
C/cm2の電子線を照射し、次にメチルエチルケトンで
現像し、イソプロピルアルコールでリンス処理をして
0.4μmのラインパターンを得た。
Example 1. Chloromethylated Polyvinyl Benzoate 10 Obtained in Synthesis Example 1
g was dissolved in 100 g of ethyl cellosolve acetate and filtered through a membrane filter to remove fine insoluble matter,
The obtained resist solution was applied onto a silicon substrate on which a thermal oxide film having a thickness of 0.5 μm was formed by using a spinner, to give a film thickness of 0.5 μm.
And was dried at 85 ° C. for 20 minutes. An acceleration voltage of 20 kV and a dose of 0.8 × 10 −6 were applied to this silicon substrate.
It was irradiated with an electron beam of C / cm 2 , then developed with methyl ethyl ketone, and rinsed with isopropyl alcohol to obtain a 0.4 μm line pattern.

実施例2. 実施例1と全く同じ方法でシリコン基板にレジスト膜を
形成し、これにマスクを介して軸X線を照射した。80
%残膜に要する軟X線照射エネルギーは20mJ/cm2
であった。この基板をメチルセロソルブで現像し、イソ
プロピルアルコールでリンス処理して0.5μmのライ
ンパターンを得た。
Example 2. A resist film was formed on the silicon substrate by the same method as in Example 1, and the film was irradiated with an axial X-ray through a mask. 80
% Soft X-ray irradiation energy required for residual film is 20 mJ / cm 2
Met. This substrate was developed with methyl cellosolve and rinsed with isopropyl alcohol to obtain a 0.5 μm line pattern.

実施例3. 合成例2で得たクロロメチル化ポリベンジルメタクリレ
ート15gをシクロヘキサノン100gに溶解し、メン
ブランフィルターで濾過して微細な不溶物を除去し、得
たレジスト溶液をスピンナーを用いて0.5μm厚の熱
酸化膜を形成したシリコン基板に、膜厚0.5μmにな
るように塗布し、85℃で20分間乾燥した。このシリ
コン基板に加速電圧20kV、線量2.0×10−6C/
cm2の電子線を照射し、次にメチルイソブチルケトンで
現像し、キシレンでリンス処理をして0.5μmのライ
ンパターンを得た。
Example 3. 15 g of chloromethylated polybenzyl methacrylate obtained in Synthesis Example 2 was dissolved in 100 g of cyclohexanone and filtered through a membrane filter to remove fine insoluble matter, and the resulting resist solution was thermally oxidized to a thickness of 0.5 μm using a spinner. The coated silicon substrate was coated with a film thickness of 0.5 μm and dried at 85 ° C. for 20 minutes. This silicon substrate has an acceleration voltage of 20 kV and a dose of 2.0 × 10 −6 C /
It was irradiated with a cm 2 electron beam, then developed with methyl isobutyl ketone and rinsed with xylene to obtain a 0.5 μm line pattern.

実施例4. 合成例3で得たクロロメチル化された安息香酸ビニル−
グリシジルメタクリレート共重合体10gをエチルセロ
ソルブアセテート100gに溶解し、メンブランフィル
ターで濾過して微細な不溶物を除去したレジスト溶液
を、スピンナーを用いて0.5μm厚の熱酸化膜を形成
したシリコン基板に、膜圧0.5μmになるように塗布
し、85℃で20分間乾燥した。このシリコン基板に加
速電圧20kV、線量33×10−6C/cm2の電子線を
照射し、次にメチルイソブチルケトンで現像し、イソプ
ロピルアルコールでリンス処理をして、0.5μmのラ
インパターンを得た。
Example 4. Chloromethylated vinyl benzoate obtained in Synthesis Example 3
Glycidyl methacrylate copolymer (10 g) was dissolved in ethyl cellosolve acetate (100 g) and filtered through a membrane filter to remove fine insoluble matter. The resist solution was applied to a silicon substrate on which a 0.5 μm-thick thermal oxide film was formed using a spinner. The coating was applied so that the film thickness was 0.5 μm, and dried at 85 ° C. for 20 minutes. This silicon substrate was irradiated with an electron beam with an accelerating voltage of 20 kV and a dose of 33 × 10 −6 C / cm 2 , then developed with methyl isobutyl ketone and rinsed with isopropyl alcohol to form a 0.5 μm line pattern. Obtained.

実施例5. 合成例1で得たクロロメチル化ポリ安息香酸ビニル10
gをエチルセロソルブアセテート100gに溶解し、メ
ンブランフィルターで濾過して微細な不溶物を除去した
レジスト溶液を、スピンナーを用いて、エッチングを施
こし0.5μmの段差を有するシリコン基板に真空蒸着
法により0.5μm厚のアルミニウム被膜を形成した基
板上に塗布し、85℃で20分間乾燥して膜厚1.0μ
mのレジスト膜を得た。この段差のあるレジスト膜を石
英製テストチャートマスクを介してハードコンタクト
し、500Wのキセノン−水銀ランプの紫外線を3秒間
照射した後、メチルセロソルブ及び酢酸イソアミルから
なる混合溶剤を現像液として現像し、イソプロピルアル
コールでリンス処理して0.5μmのラインパターンを
得た。次いでこれを140℃でポストベークを行ない、
平行板型ドライエッチング装置OAPM−400(東京
応化工業社製)の反応処理室内に入れ、CC/He
=1/10(容量比)の反応性ガスを導入し、真空度
0.30Torr、出力150Wでドライエッチング処
理を行った。このときのアルミニウム被膜のエッチング
速度は200mm/minであったが、8分間エッチングし
てもレジスト膜はエッチング処理前と同じで何ら変化す
ることなく安定性の大きいことを示した。次に反応性ガ
スを酸素ガスにかえてレジスト膜を剥離し、段差のある
0.5μmの窓開けアルミニウムのパターンを得た。
Example 5. Chloromethylated Polyvinyl Benzoate 10 Obtained in Synthesis Example 1
g was dissolved in 100 g of ethyl cellosolve acetate, filtered through a membrane filter to remove fine insoluble matter, and the resist solution was subjected to etching by using a spinner and then vacuum-deposited on a silicon substrate having a step of 0.5 μm. Coating on a substrate with a 0.5 μm thick aluminum coating and drying at 85 ° C. for 20 minutes to give a film thickness of 1.0 μm.
m resist film was obtained. After making a hard contact with this stepped resist film through a quartz test chart mask and irradiating it with ultraviolet rays of a 500 W xenon-mercury lamp for 3 seconds, a mixed solvent consisting of methyl cellosolve and isoamyl acetate was developed as a developing solution, Rinsing with isopropyl alcohol gave a 0.5 μm line pattern. Then, post-bake this at 140 ° C,
The parallel plate type dry etching apparatus OAPM-400 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was put into a reaction treatment chamber, and CC 4 / He was used.
= 1/10 (volume ratio) of reactive gas was introduced, and dry etching treatment was performed at a vacuum degree of 0.30 Torr and an output of 150 W. The etching rate of the aluminum coating at this time was 200 mm / min, but it was shown that even after etching for 8 minutes, the resist film had the same stability as that before the etching treatment and did not change at all. Next, the reactive gas was changed to oxygen gas and the resist film was peeled off to obtain a 0.5 μm window opening aluminum pattern having a step.

実施例6. 合成例4で得たクロロメチル化ポリメタクリル酸ベンジ
ル−メチルメタアクリレート共重合体10gをシクロヘ
キサノン100gに溶解し、メンブランフィルターで濾
過して微細な不溶物を除去したレジスト溶液を、スピン
ナーを用いて0.5μm厚の熱酸化膜を形成したシリコ
ン基板に0.5μmの膜厚になるように塗布し、85℃
で20分間乾燥を行った。このレジスト膜を石英製テス
トチャートマスクを介してハードコンタクトし、500
Wキセノン水銀ランプの遠紫外線を3秒間照射した後、
エチレングリコールモノメチルエーテルおよびキシレン
からなる混合溶剤を現像液として現像し、キシレンでリ
ンス処理して0.5μmのラインパターンを得た。
Example 6. A resist solution was prepared by dissolving 10 g of the chloromethylated polybenzyl methacrylate-methyl methacrylate copolymer obtained in Synthesis Example 4 in 100 g of cyclohexanone and filtering it with a membrane filter to remove fine insoluble matter. Apply to a silicon substrate on which a thermal oxide film of 0.5 μm is formed to a film thickness of 0.5 μm, and 85 ° C.
And dried for 20 minutes. This resist film was hard-contacted through a quartz test chart mask,
After irradiating the far-ultraviolet rays of the W xenon mercury lamp for 3 seconds,
Development was performed using a mixed solvent of ethylene glycol monomethyl ether and xylene as a developing solution, followed by rinsing with xylene to obtain a 0.5 μm line pattern.

実施例7. 合成例5で得られたブロモエチル化ポリメタクリル酸フ
ェニル−ジクロロスチレンの共重合体10gをシクロヘ
キサノン100gに溶解し、メンブランフィルターで濾
過して微細な不溶物を除去したレジスト溶液を、スピン
ナーを用いて0.5μm厚の熱酸化膜を形成したシリコ
ン基板に0.5μmの膜厚になるように塗布し、85℃
で20分間乾燥を行った。
Example 7. The resist solution obtained by dissolving 10 g of the bromoethylated polyphenylmethacrylate-dichlorostyrene copolymer obtained in Synthesis Example 5 in 100 g of cyclohexanone and filtering a insoluble matter by filtration through a membrane filter to 0 using a spinner was used. Apply to a silicon substrate on which a thermal oxide film of 0.5 μm is formed to a film thickness of 0.5 μm, and 85 ° C.
And dried for 20 minutes.

このレジスト膜に加速電圧20kV、線量0.4×10
−6C/cm2の電子線を照射し、次にメチルイソブチル
ケトンで現像し、イソプロピルアルコールでリンス処理
をして0.3μmのラインパターンを得た。
This resist film has an acceleration voltage of 20 kV and a dose of 0.4 × 10
It was irradiated with an electron beam of -6 C / cm 2 , then developed with methyl isobutyl ketone and rinsed with isopropyl alcohol to obtain a line pattern of 0.3 µm.

発明の効果 本発明の放射線感受性ネガ型レジスト材料は、放射線、
特に遠紫外線、X線、電子線に感応して微細なパターン
を形成し、得られたパターンは耐ドライエッチング性が
優れているので、ICやLSIなどの半導体素子の製造
において極めて有用な放射線感受性材料である。
Effects of the Invention The radiation-sensitive negative resist material of the present invention is
In particular, since a fine pattern is formed in response to deep ultraviolet rays, X-rays, and electron beams, and the obtained pattern has excellent dry etching resistance, it is extremely useful in the production of semiconductor elements such as IC and LSI. It is a material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式 〔式中Xは水素原子又はメチル基を示し、Yは一般式−
O−CO−R、−CO−O−R又は−CO−O−CH
−Rを示し、Rはクロロメチル基で置換されたフェニル
基を示す〕 で表される繰り返し単位を有する重合体又は共重合体か
らなる放射線感受性ネガ型レジスト材料。
1. A general formula [In the formula, X represents a hydrogen atom or a methyl group, and Y represents a general formula-
O-CO-R, -CO- O-R , or -CO-O-CH 2
And R represents a phenyl group substituted with a chloromethyl group.] A radiation-sensitive negative resist composition comprising a polymer or copolymer having a repeating unit represented by the formula:
JP59270753A 1984-12-24 1984-12-24 Radiation-sensitive negative resist material Expired - Lifetime JPH0644153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59270753A JPH0644153B2 (en) 1984-12-24 1984-12-24 Radiation-sensitive negative resist material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59270753A JPH0644153B2 (en) 1984-12-24 1984-12-24 Radiation-sensitive negative resist material

Publications (2)

Publication Number Publication Date
JPS61148445A JPS61148445A (en) 1986-07-07
JPH0644153B2 true JPH0644153B2 (en) 1994-06-08

Family

ID=17490498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59270753A Expired - Lifetime JPH0644153B2 (en) 1984-12-24 1984-12-24 Radiation-sensitive negative resist material

Country Status (1)

Country Link
JP (1) JPH0644153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125268A (en) 1999-10-28 2001-05-11 Sony Corp Exposure method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212755A (en) * 1984-04-06 1985-10-25 Toray Ind Inc Radiation sensitive material
JPS613138A (en) * 1984-06-15 1986-01-09 Toyo Soda Mfg Co Ltd Formation of resist pattern
JPS61143746A (en) * 1984-12-18 1986-07-01 Asahi Chem Ind Co Ltd Novel high-energy ray sensitive material

Also Published As

Publication number Publication date
JPS61148445A (en) 1986-07-07

Similar Documents

Publication Publication Date Title
JP2839159B2 (en) High sensitivity positive photoresist composition
JPH05265212A (en) Resist material and pattern forming using it
JP3368888B2 (en) Organometallic polymers and uses thereof
JPH0546535B2 (en)
US5962191A (en) Resist compositions for forming resist patterns
JP3584968B2 (en) Method of forming negative photoresist pattern
JP4527827B2 (en) Photoresist crosslinking agent, photoresist composition, photoresist pattern forming method, and semiconductor device
JP2962145B2 (en) Negative pattern forming material
JP2528110B2 (en) Method for manufacturing electronic device using lithographic method
JPH05257284A (en) Radiation-sensitive material and pattern forming method using same
JPH10147619A (en) Polymer for producing chemically amplifying and positive type photoresist, and photoresist containing the same
JP2594112B2 (en) Positive photosensitive resin composition
JPS62240953A (en) Resist
JPH0644153B2 (en) Radiation-sensitive negative resist material
JPH0234380B2 (en)
JPH0330852B2 (en)
JP2557817B2 (en) Ionizing radiation sensitive negative resist
JPH0721055B2 (en) Copolymer of Sulfur Dioxide and Nuclear Substituted Styrene Derivative
JPH05257285A (en) Radiosensitive material and formation of pattern using the same
JPH07225473A (en) Preparation of device
US4678850A (en) Halogenated polystyrenes for electron beam, X-ray and photo resists
JPH0682215B2 (en) Radiation resist and pattern forming method using the same
US4892617A (en) Processes involving lithographic materials
JP2707164B2 (en) Resist material
JPH0331250B2 (en)