JPH063768B2 - Perpendicular magnetic film - Google Patents

Perpendicular magnetic film

Info

Publication number
JPH063768B2
JPH063768B2 JP59229570A JP22957084A JPH063768B2 JP H063768 B2 JPH063768 B2 JP H063768B2 JP 59229570 A JP59229570 A JP 59229570A JP 22957084 A JP22957084 A JP 22957084A JP H063768 B2 JPH063768 B2 JP H063768B2
Authority
JP
Japan
Prior art keywords
film
rare earth
transition metal
earth metal
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59229570A
Other languages
Japanese (ja)
Other versions
JPS61108112A (en
Inventor
元治 田中
文也 近江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59229570A priority Critical patent/JPH063768B2/en
Publication of JPS61108112A publication Critical patent/JPS61108112A/en
Publication of JPH063768B2 publication Critical patent/JPH063768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、膜面と垂直な方向に磁化容易軸を有する垂直
磁化膜に関する。
TECHNICAL FIELD The present invention relates to a perpendicular magnetization film having an easy axis of magnetization in a direction perpendicular to a film surface.

従来の技術 近年、垂直磁化膜に反転磁区を記録し、この記録情報を
磁気光学効果などを利用して読み出すようにした記録媒
体が注目されている。このような記録媒体としては特公
昭57−20691号公報に、Tb−Fe系合金全膜を備えた
磁性薄膜記録媒体が報告されている。Tb−Fe合金膜
は垂直異方性を示し、保磁力が大きくメモリ材料として
は適しているが、磁気光学効果が不十分であり、また、
垂直異方性や保磁力などの磁気特性についてもより一層
の改善がまたれていた。
2. Description of the Related Art In recent years, a recording medium in which a reversed magnetic domain is recorded on a perpendicular magnetization film and the recorded information is read out by utilizing a magneto-optical effect or the like has been attracting attention. As such a recording medium, Japanese Patent Publication No. 57-20691 discloses a magnetic thin film recording medium provided with a Tb-Fe alloy whole film. The Tb-Fe alloy film exhibits vertical anisotropy and has a large coercive force and is suitable as a memory material, but the magneto-optical effect is insufficient, and
The magnetic properties such as vertical anisotropy and coercive force were further improved.

発明の目的 本発明は、優れた磁気特性および磁気光学特性を有する
垂直磁化膜を提供することを目的とする。
Object of the Invention It is an object of the present invention to provide a perpendicular magnetization film having excellent magnetic properties and magneto-optical properties.

発明の構成 本発明の垂直磁化膜は、Gd,Tb及びDyから選ばれる少な
くとも1種の希土類金属からなる厚さ2.0〜50Åの超薄
膜と、Fe,Co,Ni,CrおよびCuから選ばれる
少なくとも1種の遷移金属からなる厚さ2.5〜50Åの超
薄膜とが、交互に少なくとも全体で2層以上積層されて
いることを特徴とする。
Structure of the Invention The perpendicular magnetic film of the present invention has an ultrathin film having a thickness of 2.0 to 50 Å composed of at least one rare earth metal selected from Gd, Tb and Dy, and at least selected from Fe, Co, Ni, Cr and Cu. The present invention is characterized in that at least two layers of at least the whole are alternately laminated with an ultrathin film having a thickness of 2.5 to 50Å made of one kind of transition metal.

以下、添付図面に沿って本発明をさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は本発明の垂直磁化膜を光磁気記録媒体ないしは
垂直磁気記録媒体として応用した場合の構成例を模式的
に示す断面図であり、基板11の上に遷移金属膜13および
希土類金属膜15が順次に積層されている。このように、
本発案において交互に積層するとは、遷移金属膜と希土
類金属膜とがそれぞれ1層づつで、全体で2層から構成
される場合をも包含する。
FIG. 1 is a cross-sectional view schematically showing a structural example in which the perpendicularly magnetized film of the present invention is applied as a magneto-optical recording medium or a perpendicular magnetic recording medium. A transition metal film 13 and a rare earth metal film are formed on a substrate 11. 15 are stacked in sequence. in this way,
In the present invention, alternately stacking includes a case where each of the transition metal film and the rare earth metal film has one layer, and is composed of two layers in total.

希土類金属膜15はGd(ガドリウム)、Tb(テルビウ
ム)またはDy(ジスプロシウム)から形成され、これ
らは単独であるいは併用して用いられる。希土類金属膜
15の厚さは2.0〜50Åであり、好ましくは2.0〜20Åであ
る。この膜厚が2Åに満たないと磁気特性および磁気光
学特性が変化せずほぼ一定の値を示し、また、50Åを越
えると磁気特性および磁気光学特性が垂直磁気異方性を
示さなくなる。
The rare earth metal film 15 is formed of Gd (gadolinium), Tb (terbium) or Dy (dysprosium), and these are used alone or in combination. Rare earth metal film
The thickness of 15 is 2.0 to 50Å, preferably 2.0 to 20Å. If this film thickness is less than 2Å, the magnetic properties and magneto-optical properties do not change and show almost constant values, and if it exceeds 50Å, the magnetic properties and magneto-optical properties do not exhibit perpendicular magnetic anisotropy.

遷移金属膜13はFe(鉄)、Co(コバルト)、Ni
(ニッケル)、Cr(クロム)またはCu(銅)から形
成され、これらは単独でまたは併用して用いられる。遷
移金属膜13の厚さは2.5〜50Åであり、好ましくは2.5〜
20Åである。この膜厚が2.5Åに満たないと磁気特性お
よび磁気光学特性が変化せずほぼ一定の値を示し、ま
た、50Åを越えると磁気特性および磁気光学特性が垂直
磁気異方性を示さなくなる。
The transition metal film 13 is made of Fe (iron), Co (cobalt), Ni.
It is formed of (nickel), Cr (chrome) or Cu (copper), and these are used alone or in combination. The thickness of the transition metal film 13 is 2.5 to 50Å, preferably 2.5 to
It is 20Å. When the film thickness is less than 2.5Å, the magnetic properties and magneto-optical properties do not change and show almost constant values, and when it exceeds 50Å, the magnetic properties and magneto-optical properties do not exhibit perpendicular magnetic anisotropy.

基板11としては、たとえば、ガラス、プラスチックセラ
ミックなどが用いられる。
As the substrate 11, for example, glass, plastic ceramic or the like is used.

第2図は、他の構成例を示し、基板11上に互いに複数の
層の遷移金属膜13と希土類金属膜15とがそれぞれ交互に
積層されている。各膜については既に説明した通りであ
る。遷移金属膜および希土類金属膜は各1〜5000層(全
体として2〜10000)積層するのが適当であり、好まし
くは各10〜1000層である。また、希土類金属膜15と遷移
金属膜13の各層の厚さの比は1/5〜2/1の間で任意に設定
できる。この範囲からはずれると、膜が垂直磁気異方性
を示さなくなる。また、垂直磁化膜17と基板11との間、
あるいは垂直磁化膜17の上面には、保護膜、断熱膜、反
射膜、高透磁率物質膜を設けることもできる。
FIG. 2 shows another configuration example, in which a plurality of layers of the transition metal film 13 and the rare earth metal film 15 are alternately laminated on the substrate 11. Each film is as described above. It is suitable that the transition metal film and the rare earth metal film are each laminated in an amount of 1 to 5000 layers (2 to 10,000 in total), and preferably 10 to 1000 layers each. Further, the thickness ratio of each layer of the rare earth metal film 15 and the transition metal film 13 can be arbitrarily set in the range of 1/5 to 2/1. If it deviates from this range, the film will not exhibit perpendicular magnetic anisotropy. Further, between the perpendicular magnetization film 17 and the substrate 11,
Alternatively, a protective film, a heat insulating film, a reflective film, and a high magnetic permeability material film can be provided on the upper surface of the perpendicular magnetization film 17.

本発明の垂直磁化膜を作成するには、基板上にスパッタ
リング蒸着、イオンプレーティングなどの薄膜作成法に
より、遷移金属膜と希土類金属膜とを交互に設ければよ
い。
To form the perpendicularly magnetized film of the present invention, the transition metal film and the rare earth metal film may be alternately provided on the substrate by a thin film forming method such as sputtering deposition or ion plating.

効果 本発明によれば、遷移金属膜と希土類金属膜との交互積
層膜から垂直磁化膜を形成することにより、飽和磁化M
s、保磁力Hcおよび垂直異方性エネルギーK⊥などの
磁気性能が向上し、再生性能の良好な垂直磁化膜が得ら
れ、さらにカー回転角θkも大きくなるので、磁気光学
効果を利用して高感度に情報の記録読出しを行うことが
できる。このように、本発明の垂直磁化膜は、光磁気記
録媒体および垂直磁気記録媒体として有用であり、たと
えば、ハードディスク、フロッピーディスク、ドキュメ
ントフィルムなどに応用される。
Effect According to the present invention, the saturation magnetization M is formed by forming the perpendicular magnetization film from the alternate laminated film of the transition metal film and the rare earth metal film.
s, coercive force Hc, and perpendicular anisotropy energy K⊥ are improved in magnetic performance, a perpendicular magnetization film with good reproduction performance is obtained, and the Kerr rotation angle θ k is also increased. Therefore, information can be recorded and read out with high sensitivity. As described above, the perpendicular magnetic film of the present invention is useful as a magneto-optical recording medium and a perpendicular magnetic recording medium, and is applied to, for example, hard disks, floppy disks, document films and the like.

実施例1 第3図に示したようなマグネトロンスパッタ装置を用い
た。この装置では、2つのRFスパッタ電極21,23が配
設され、それぞれの電極上に遷移金属ターゲット25およ
び希土類金属ターゲット27が載置されている。ターゲッ
ト上にマスク29を配設することにより、それぞれ遷移金
属スパッタリング帯域および希土類金属スパッタリング
帯域を形成している。基板ホルダー31には基板33が固定
され、この基板ホルダーを回転しながら、スパッタリン
グすることにより、基板33は前記両スパッタリング帯域
を交互に通過することになり、遷移金属膜と希土類金属
膜の交互積層膜が形成される。22,24はRF電源であ
り、26はガス導入バルブである。それぞれのRF電極2
1,23にかかる放電電力および基板の回転速度を制御す
ることにより、遷移金属膜および希土類金属膜の膜厚な
らびに両者の膜厚比を制御できる。
Example 1 A magnetron sputtering apparatus as shown in FIG. 3 was used. In this apparatus, two RF sputter electrodes 21 and 23 are arranged, and a transition metal target 25 and a rare earth metal target 27 are placed on the respective electrodes. By disposing the mask 29 on the target, a transition metal sputtering zone and a rare earth metal sputtering zone are formed, respectively. A substrate 33 is fixed to the substrate holder 31, and while rotating the substrate holder, sputtering causes the substrate 33 to alternately pass through both of the sputtering zones, thereby alternately laminating a transition metal film and a rare earth metal film. A film is formed. 22 and 24 are RF power supplies, and 26 is a gas introduction valve. Each RF electrode 2
By controlling the discharge power applied to 1, 23 and the rotation speed of the substrate, it is possible to control the film thickness of the transition metal film and the rare earth metal film and the film thickness ratio of both.

本実施例では、遷移金属としてFeを用い、また、希土
類金属としてTbを用い、以下の条件でスパッタリング
して、Tb膜の膜厚d1とFe膜の膜厚d2の比をd1
2=1:1.7に設定し、基板ホルダーの回転速度を変化
させることにより種々の膜厚の交互積層膜を形成し、全
体で1000Åの垂直磁化膜とした。
In the present embodiment, Fe is used as the transition metal, Tb is used as the rare earth metal, and sputtering is performed under the following conditions, and the ratio of the film thickness d 1 of the Tb film to the film thickness d 2 of the Fe film is d 1 :
By setting d 2 = 1: 1.7 and changing the rotation speed of the substrate holder, alternate laminated films with various film thicknesses were formed, and a 1000 Å perpendicular magnetization film was formed as a whole.

残留ガス圧:1.0×10-6Torr Arガス圧:5.0×10-3Torr ターゲット材:Tb,Fe 放電電力:Tb;125W Fe;400W スパッタ時間:15min(1000Å) 基 板:スライドガラス 得られた垂直磁化膜の特性を第4図および第6図(曲線
Tb−Fe)に示す。
Residual gas pressure: 1.0 × 10 -6 Torr Ar gas pressure: 5.0 × 10 -3 Torr Target material: Tb, Fe Discharge power: Tb; 125W Fe; 400W Sputtering time: 15min (1000Å) Base plate: Slide glass obtained The characteristics of the perpendicular magnetization film are shown in FIGS. 4 and 6 (curve Tb-Fe).

第4図から、d1=1.25Å、d2=2.15Åより薄くなると
積層構造ではなく合金の単層構造を示すが、それより厚
くなると、Ms,Hc,K⊥が大きくなり、磁気性能が向
上するのが判る。
From Fig. 4, when d 1 = 1.25 Å and d 2 = 2.15 Å, a single layer structure of an alloy is shown instead of a laminated structure, but when it is thicker than that, Ms, Hc and K⊥ become large and the magnetic performance is You can see it improve.

また、第6図から、同様にθkが大きくなり、磁気光学
性能が大きくなるのが判る。
Further, it can be seen from FIG. 6 that θ k similarly increases and the magneto-optical performance also increases.

実施例2 遷移金属としてFe−Coを用い、希土類金属としてT
bを用い、また、Tb膜の膜厚d1とFe−Co膜の膜
厚d2との比率をd1:d2=1:1.7とし、以下の条件で
実施例1と同様にスパッタリングした、 残留ガス圧:1.0×10-6Torr Arガス圧:5.0×10-3Torr ターゲット材:Tb,Fe0.85Co0.15 放電電力:Tb;125W Fe0.85Co0.15;400W 基 板:スライドガラス 得られた磁化膜の特性を第5図および第6図(Tb−F
e−Co曲線)に示した。
Example 2 Fe-Co is used as a transition metal, and T is used as a rare earth metal.
b, and the ratio of the film thickness d 1 of the Tb film to the film thickness d 2 of the Fe—Co film was set to d 1 : d 2 = 1: 1.7, and sputtering was performed in the same manner as in Example 1 under the following conditions. Residual gas pressure: 1.0 × 10 −6 Torr Ar gas pressure: 5.0 × 10 −3 Torr Target material: Tb, Fe 0.85 Co 0.15 Discharge power: Tb; 125 W Fe 0.85 Co 0.15 ; 400 W Base plate: Slide glass The characteristics of the magnetized film are shown in FIGS. 5 and 6 (Tb-F).
e-Co curve).

実施例3 作製条件は実施例1および2と同じで、希土類金属(G
d,Dy,Tb)膜の膜圧d1と遷移金属(Fe,C
o,Ni,Cr,Cu)膜の膜圧d2との比率をd1:d
2=1:1.7として以下の条件でスパッタリングして作製
した。
Example 3 The manufacturing conditions are the same as in Examples 1 and 2, except that the rare earth metal (G
d, Dy, Tb) film pressure d 1 and transition metal (Fe, C
o, Ni, Cr, Cu) film pressure d 2 to the ratio d 1 : d
2 = 1: 1.7, and sputtering was performed under the following conditions.

残留ガス圧:1.0×10-6Torr Arガス圧:5.0×10-3Torr ターゲット材:Gd,Dy,Tb0.50Dy0.50Fe,Fe0.85Co0.13
0.29,Fe0.85Co0.13Cr0.29,Fe0.85Co0.13Cu0.02 放電電力;Gd;100W Dy,Tb0.50Dy0.50;125W Fe,Fe0.85Co0.13Ni0.02, Fe0.85Co0.13Cr0.02, Fe0.85Co0.13Cu0.02:400W スパッタ時間:15min(1000Å) 基 板:スライドガラス 作成した膜は、Gd−Fe,Dy−Fe,Tb−Dy−
Fe,Tb−Fe−Co−Ni,Tb−Fe−Co−C
r,Tb−Fe−Co−Cuである。
Residual gas pressure: 1.0 × 10 -6 Torr Ar gas pressure: 5.0 × 10 -3 Torr Target material: Gd, Dy, Tb 0.50 Dy 0.50 Fe, Fe 0.85 Co 0.13 N
i 0.29 , Fe 0.85 Co 0.13 Cr 0.29 , Fe 0.85 Co 0.13 Cu 0.02 Discharge power; Gd; 100W Dy, Tb 0.50 Dy 0.50 ; 125W Fe, Fe 0.85 Co 0.13 Ni 0.02 , Fe 0.85 Co 0.13 Cr 0.02 , Fe 0.85 Co 0.13 Cu 0.02 : 400 W Sputtering time: 15 min (1000Å) Substrate: Slide glass The prepared film is Gd-Fe, Dy-Fe, Tb-Dy-
Fe, Tb-Fe-Co-Ni, Tb-Fe-Co-C
r, Tb-Fe-Co-Cu.

得られた磁性膜の特性(Hc,Qk)の結果をd1=0.5
Å/d2=0.86Åの場合と本発明の範囲であるd1=5Å
/d2=8.6Åの場合に分けて表1にまとめた。
The result of the characteristics (Hc, Qk) of the obtained magnetic film is d 1 = 0.5
The case of Å / d 2 = 0.86Å and the range of the present invention d 1 = 5Å
The results are summarized in Table 1 in the case of / d 2 = 8.6Å.

表1の結果からd1=0.5Å/d2=0.86Åの場合は各膜
とも合金の単層構造の場合の特性と同じであるが、d1
=5Å/d2=8.6Åと本願発明の範囲にした場合は各膜
ともHcおよびQkが大きくなり積層構造の効果が生じ
た。
From the results of Table 1, when d 1 = 0.5Å / d 2 = 0.86Å, each film has the same characteristics as in the case of the alloy single-layer structure, but d 1
= 5Å / d 2 = 8.6Å, and within the range of the present invention, Hc and Qk increased for each film, and the effect of the laminated structure occurred.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は、本発明の垂直磁化膜を用いた光
磁気記録媒体ないし垂直磁気記録媒体の構成例を示す断
面図である。 第3図は実施例で用いたマグネトロンスパッタ装置につ
いて示す構成図である。 第4図および第5図は、膜厚d1,d2と、飽和磁化M
s、保磁力Hcおよび垂直異方性エネルギーK⊥との関
係を示すグラフである。 第6図は膜厚d1,d2とカー回転角θとの関係を示すグ
ラフである。 11…基板、13…遷移金属膜 15…希土類金属膜
FIG. 1 and FIG. 2 are cross-sectional views showing a configuration example of a magneto-optical recording medium or a perpendicular magnetic recording medium using the perpendicularly magnetized film of the present invention. FIG. 3 is a block diagram showing the magnetron sputtering apparatus used in the examples. 4 and 5 show the film thicknesses d 1 and d 2 and the saturation magnetization M.
It is a graph which shows the relationship with s, coercive force Hc, and perpendicular anisotropy energy K⊥. FIG. 6 is a graph showing the relationship between the film thicknesses d 1 and d 2 and the Kerr rotation angle θ k . 11 ... Substrate, 13 ... Transition metal film 15 ... Rare earth metal film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Gd,TbおよびDyから選ばれる少なくとも1
種の希土類金属からなる厚さ2.0〜50Åの超薄膜と、F
e,Co,Ni,CrおよびCuから選ばれる少なくと
も1種の遷移金属からなる厚さ2.5〜50Åの超薄膜と
が、交互に少なくとも全体で2層以上積層されているこ
とを特徴とする垂直磁化膜。
1. At least one selected from Gd, Tb and Dy
Ultra-thin film of 2.0 to 50 Å with rare earth metal
Perpendicular magnetization characterized in that at least two layers in total are alternately laminated with an ultrathin film having a thickness of 2.5 to 50 Å consisting of at least one transition metal selected from e, Co, Ni, Cr and Cu. film.
JP59229570A 1984-10-31 1984-10-31 Perpendicular magnetic film Expired - Lifetime JPH063768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229570A JPH063768B2 (en) 1984-10-31 1984-10-31 Perpendicular magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229570A JPH063768B2 (en) 1984-10-31 1984-10-31 Perpendicular magnetic film

Publications (2)

Publication Number Publication Date
JPS61108112A JPS61108112A (en) 1986-05-26
JPH063768B2 true JPH063768B2 (en) 1994-01-12

Family

ID=16894244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229570A Expired - Lifetime JPH063768B2 (en) 1984-10-31 1984-10-31 Perpendicular magnetic film

Country Status (1)

Country Link
JP (1) JPH063768B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128041A (en) * 1985-11-28 1987-06-10 Sony Corp Photomagnetic recording medium
JPS6226659A (en) * 1985-07-26 1987-02-04 Sony Corp Photomagnetic recording medium
JPS62264463A (en) * 1986-05-12 1987-11-17 Fuji Photo Film Co Ltd Magneto-optical recording medium
JPS63140076A (en) * 1986-12-02 1988-06-11 Ricoh Co Ltd Perpendicularly magnetized film
JPS63211141A (en) * 1987-02-27 1988-09-02 Nippon Hoso Kyokai <Nhk> Magneto-optical recording medium
JPS63269354A (en) * 1987-04-28 1988-11-07 Ricoh Co Ltd Magneto-optical recording medium
EP0341521A1 (en) * 1988-05-09 1989-11-15 Siemens Aktiengesellschaft Magneto-optical storage medium
JP2561130B2 (en) * 1988-06-27 1996-12-04 富士写真フイルム株式会社 Magneto-optical recording medium
JPH0254448A (en) * 1988-08-18 1990-02-23 Nec Corp Magneto-optical disk medium
JPH0752528B2 (en) * 1988-08-29 1995-06-05 富士写真フイルム株式会社 Magneto-optical recording medium
JP2825837B2 (en) * 1989-03-06 1998-11-18 三井化学株式会社 Magnetic laminated film and method of manufacturing the same
JP2647958B2 (en) * 1989-04-13 1997-08-27 日本電気株式会社 Magneto-optical recording medium
JP2703372B2 (en) * 1989-11-22 1998-01-26 三洋電機株式会社 Magneto-optical recording medium
JP2957260B2 (en) * 1990-10-26 1999-10-04 日本電気株式会社 Magneto-optical recording medium
CA2060549C (en) * 1991-02-08 2002-08-13 Masumi Ohta Magneto-optical recording medium
US7285338B2 (en) 2000-08-02 2007-10-23 Neomax Co., Ltd. Anisotropic thin-film rare-earth permanent magnet
CN104081475A (en) * 2012-03-26 2014-10-01 株式会社日立制作所 Rare-earth magnet
FR3025357A1 (en) * 2014-09-01 2016-03-04 Vivier Harry J P PERMANENT MAGNETS STRUCTURES IN STRATES

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217249A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium
JPS59217247A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217249A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium
JPS59217247A (en) * 1983-05-25 1984-12-07 Sony Corp Photomagnetic recording medium and its manufacture

Also Published As

Publication number Publication date
JPS61108112A (en) 1986-05-26

Similar Documents

Publication Publication Date Title
JPH063768B2 (en) Perpendicular magnetic film
JPH0670858B2 (en) Magneto-optical recording medium and its manufacturing method
JPS60128605A (en) Amorphous magnetic alloy multilayer film and magnetic head using the same
US5403457A (en) Method for making soft magnetic film
Kadokura et al. Deposition of Co-Cr films for perpendicular magnetic recording by improved opposing targets sputtering
JPS6134723A (en) Magnetic recording medium and its manufacture
EP0492584B1 (en) Magneto-optical recording medium
JPS6154059A (en) Magneto-optical recording film
JPS63269354A (en) Magneto-optical recording medium
JPS63273236A (en) Magneto-optical recording medium
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JP2707560B2 (en) Artificial lattice magneto-optical recording medium
JPS60173746A (en) Photoelectromagnetic recording medium
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film
JPH0792936B2 (en) Method for manufacturing magneto-optical recording element
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
JPH03157838A (en) Magneto-optical recording device
JPH0660452A (en) Magneto-optical recording medium
JP3237977B2 (en) Magneto-optical recording medium
JPH06325419A (en) Magneto-optical recording medium
JPH03268247A (en) Magneto-optical recording medium and its production
JPH07107757B2 (en) Magneto-optical recording medium
JPS6398827A (en) Perpendicular magnetic recording medium
JPH04245043A (en) Magneto-optic data board body with platinum-containing read layer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term