JPH0637354B2 - Method and apparatus for growing silicon carbide single crystal - Google Patents

Method and apparatus for growing silicon carbide single crystal

Info

Publication number
JPH0637354B2
JPH0637354B2 JP2097590A JP9759090A JPH0637354B2 JP H0637354 B2 JPH0637354 B2 JP H0637354B2 JP 2097590 A JP2097590 A JP 2097590A JP 9759090 A JP9759090 A JP 9759090A JP H0637354 B2 JPH0637354 B2 JP H0637354B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
silicon carbide
carbide single
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2097590A
Other languages
Japanese (ja)
Other versions
JPH03295898A (en
Inventor
正敏 金谷
雄一郎 藤原
明弘 森谷
誠二 篠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2097590A priority Critical patent/JPH0637354B2/en
Publication of JPH03295898A publication Critical patent/JPH03295898A/en
Publication of JPH0637354B2 publication Critical patent/JPH0637354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、炭化珪素単結晶成長方法および装置に関す
る。詳しく述べるとこの発明は、半導体電子材料として
青色発光ダイオード等の応用面に有用な大面積で長尺か
つ高品質の炭化珪素単結晶を安価に効率よく成長させる
炭化珪素単結晶成長方法および装置に関する。
TECHNICAL FIELD The present invention relates to a method and an apparatus for growing a silicon carbide single crystal. More specifically, the present invention relates to a silicon carbide single crystal growth method and apparatus for efficiently growing a large area, long and high quality silicon carbide single crystal useful as a semiconductor electronic material for applications such as blue light emitting diodes. .

(従来の技術) 従来塊状の炭化珪素単結晶成長方法としては、アチソン
法、レーリー法、昇華再結晶法(改良レーリー法)等が
知られている。このうち現在では、半導体材料として有
用な成長法としては昇華再結晶法がおもに採用されてい
る。
(Prior Art) Conventionally, as the bulk silicon carbide single crystal growth method, the Acheson method, Rayleigh method, sublimation recrystallization method (improved Rayleigh method) and the like are known. Of these, at present, the sublimation recrystallization method is mainly used as a growth method useful as a semiconductor material.

第2図に示す装置は、アイイーイーイー トランスアク
ションズ オン エレクトロン デバイシズ、ボリウ
ム.イーディー30.ナンバー4(1983)277 〜 281ペー
ジ[IEEE TRANSACTIONS ON ELECTRON DEVICES.VOL.ED-30
.NO.4(1983)277-281]に記載された装置であり、同図に
おいて、符号1は断面円形の黒鉛からなるるつぼ、2は
るつぼ1内の中央部に配置された多孔質グラファイトか
らなる円筒体、3はるつぼ1と円筒体2との間の下半部
分に設けられた多孔質グラファイトからなる原料載置
台、4はるつぼ1と円筒体2との間の上半部に収容され
た炭化珪素原料、5は円筒体2の内側に形成された成長
室、6は成長室5の下部に配設されたグラファイトから
なる台座、7は台座6上に載置された炭化珪素単結晶基
板であり、るつぼ1の外側に配置された図示されていな
い高周波誘導加熱コイルによりるつぼ1が加熱されて原
料4が昇華し、円筒体2を経て成長室に到達した昇華ガ
スが原料4よりも若干低温になっている基板7に当って
基板7の表面に再結晶することによって炭化珪素単結晶
が成長する。しかし、再結晶するためのガスは原料がす
べて昇華してしまえば補充できないため、できる単結晶
の大型化あるいは長尺化には限度がある。さらに、原料
を入れ換えて再度成長を行う場合は、単結晶成長にした
がって単結晶成長面が原料に近づくため、るつぼの長さ
が限定されることにより、単結晶成長面と原料との間の
所定の温度勾配を作ることができなくなる。このため本
方法では、炭化珪素単結晶を簡単に長く成長させること
ができないという問題がある。
The device shown in FIG. 2 is an IEE ETransactions on Electron Devices, Volume. Eddy 30. Number 4 (1983) Pages 277-281 [IEEE TRANSACTIONS ON ELECTRON DEVICES.VOL.ED-30
No. 4 (1983) 277-281]. In the figure, reference numeral 1 denotes a crucible made of graphite having a circular cross section, and 2 denotes porous graphite arranged in the central portion of the crucible 1. Cylinder body 3, 3 is a raw material mounting base made of porous graphite provided in the lower half portion between crucible 1 and cylinder body 4, and 4 is housed in the upper half portion between crucible 1 and cylinder body 2. Silicon carbide raw material, 5 is a growth chamber formed inside the cylindrical body 2, 6 is a pedestal made of graphite disposed below the growth chamber 5, and 7 is a silicon carbide single crystal placed on the pedestal 6. The raw material 4 is sublimated by heating the crucible 1 by a high-frequency induction heating coil (not shown) which is a substrate and is arranged outside the crucible 1, and the sublimation gas reaching the growth chamber via the cylindrical body 2 is more than the raw material 4. Re-crystallize on the surface of the substrate 7 by hitting the substrate 7 which is slightly cold. A silicon carbide single crystal grows by and. However, the gas for recrystallization cannot be replenished if all the raw materials are sublimated, so there is a limit to the size increase or lengthening of the single crystal. Further, when the raw materials are exchanged and the growth is performed again, the single crystal growth surface approaches the raw material as the single crystal grows, so that the length of the crucible is limited, so that the predetermined distance between the single crystal growth surface and the raw material is reduced. It becomes impossible to make the temperature gradient. Therefore, this method has a problem that the silicon carbide single crystal cannot be easily grown for a long time.

また、第3図に示す装置は、特開昭62−66,000
号に開示されている従来装置を示す。黒鉛製有底円筒形
の収納部9と該円筒形収納部の内部に同心円状に配置さ
れた壁12の間に形成される空間11に収納された炭化
珪素原材料10が、図示されていない高周波誘導加熱コ
イルによって加熱されて、できた昇華ガスが成長室13
に到達する。昇華したガスは摺動機構14を有する摺動
部材15に取り付けられた基板ホルダー16に保持され
た単結晶基板17に当って該表面に再結晶することによ
り、塊状の単結晶が成長する。基板ホルダー16に保持
された単結晶基板17の下面から原材料10表面までの
高さは、摺動機構14によって任意に調節できるように
なっている。たしかに本方法を用いれば、塊状の単結晶
が大きくなるにつれて基板ホルダーを摺動させることに
よって単結晶成長面から原材料までの距離を一定に保ち
ながら炭化珪素単結晶を長尺化できるが、本方法では設
備が大型化すること、成長方法に熟練が必要とされるこ
となど、安価に効率良く炭化珪素単結晶を大型化、長尺
化するにはまだ問題がある。
Further, the apparatus shown in FIG. 3 is disclosed in JP-A-62-66,000.
2 shows a conventional device disclosed in No. A silicon carbide raw material 10 housed in a space 11 formed by a bottomed cylindrical accommodating part 9 made of graphite and a wall 12 arranged concentrically inside the cylindrical accommodating part is not shown. The sublimation gas produced by being heated by the induction heating coil is in the growth chamber 13
To reach. The sublimated gas hits the single crystal substrate 17 held by the substrate holder 16 attached to the sliding member 15 having the sliding mechanism 14 and recrystallizes on the surface, whereby a lumped single crystal grows. The height from the lower surface of the single crystal substrate 17 held by the substrate holder 16 to the surface of the raw material 10 can be arbitrarily adjusted by the sliding mechanism 14. Certainly, using this method, it is possible to lengthen the silicon carbide single crystal while keeping the distance from the single crystal growth surface to the raw material constant by sliding the substrate holder as the bulk single crystal becomes larger. However, there are still problems in increasing the size and length of a silicon carbide single crystal inexpensively and efficiently, because the equipment becomes large and the growth method requires skill.

(発明が解決しようとする課題) 上記の如く、従来技術では大型で長尺の炭化珪素単結晶
を安価に製造するにはまだ問題があるため、本発明は、
これらの課題を解決し安価に大型で長尺かつ高品質の炭
化珪素単結晶を製造するための炭化珪素単結晶の成長方
法および装置を提供することを目的とするものである。
(Problems to be Solved by the Invention) As described above, the prior art still has a problem in inexpensively producing a large and long silicon carbide single crystal.
It is an object of the present invention to provide a method and an apparatus for growing a silicon carbide single crystal for solving these problems and manufacturing a large-sized, long-sized and high-quality silicon carbide single crystal at low cost.

(課題を解決するための手段) 上記目的は、昇華再結晶法により炭化珪素粉末からなる
原料を加熱昇華させ炭化珪素単結晶基板上に炭化珪素単
結晶を成長させる方法において、結晶成長方向にるつぼ
の長さを変更することが可能な黒鉛製のるつぼを使用
し、炭化珪素単結晶成長を行なったのち、該るつぼ内に
装填される原料を入れ換え、かつ前記単結晶成長面から
前記原料の表面までの距離が所定の距離になるようにる
つぼの長さを調製し、再度昇華再結晶法により結晶成長
を行う操作を少なくとも一回行うことを特徴とする炭化
珪素単結晶成長方法によって達成される。
(Means for Solving the Problem) The above object is to provide a method for growing a silicon carbide single crystal on a silicon carbide single crystal substrate by heating and sublimating a raw material made of silicon carbide powder by a sublimation recrystallization method, and a crucible in a crystal growth direction. Using a graphite crucible whose length can be changed, after performing silicon carbide single crystal growth, the raw materials loaded in the crucible are exchanged, and the surface of the raw material is changed from the single crystal growth surface. Is achieved by adjusting the length of the crucible so that the distance to be a predetermined distance, and performing the crystal growth again by the sublimation recrystallization method at least once. .

上記目的はまた、黒鉛製の発熱体を兼ねるるつぼと、前
記るつぼの上端開口部を覆う黒鉛製のるつぼ蓋体と、る
つぼを加熱する加熱手段と、るつぼを挿入して真空また
は不活性ガス雰囲気に制御する真空系を有する炭化珪素
単結晶成長装置において、前記黒鉛製のるつぼが、上部
るつぼ外筒と、るつぼ底と、この両者間に着脱自在に配
設される増設用るつぼ外筒とからなる分割形であること
を特徴とする炭化珪素単結晶成長装置によって達成され
る。
The above-mentioned purpose is also a crucible that also serves as a heating element made of graphite, a crucible lid made of graphite that covers the upper end opening of the crucible, heating means for heating the crucible, and a vacuum or inert gas atmosphere by inserting the crucible. In the silicon carbide single crystal growth apparatus having a vacuum system controlled to, the graphite crucible includes an upper crucible outer cylinder, a crucible bottom, and an additional crucible outer cylinder detachably arranged between the crucible bottom and the crucible bottom. It is achieved by a silicon carbide single crystal growth apparatus characterized by being a divided type.

(作用) 本発明の炭化珪素単結晶成長方法は、炭化珪素からなる
原料粉末を加熱昇華させ、るつぼの上部を覆う黒鉛製の
るつぼ蓋体に配置され原料粉末よりやや低温になった炭
化珪素単結晶基板上に、昇華した炭化珪素ガスから炭化
珪素単結晶を堆積成長させるものであるが、一度成長し
た後の原料の残滓を取り除いた後、再成長する前の結晶
成長面から再成長のために入れ換えた原料の表面までの
距離は、るつぼの長さが変更できるために所定の距離に
することができる。この所定の距離は、単結晶が長く大
きく成長したときに成長を続けるための空間であること
と同時に昇華法による炭化珪素単結晶成長のために単結
晶成長面を原料粉末よりやや低温に保持するのに必要な
温度勾配を生じさせるための距離である。
(Operation) The silicon carbide single crystal growth method of the present invention is a method of heating and sublimating a raw material powder made of silicon carbide and arranging it in a graphite crucible lid that covers the upper part of the crucible. This is a method for depositing and growing a silicon carbide single crystal from a sublimated silicon carbide gas on a crystal substrate, but after removing the residue of the raw material after once growing, for re-growing from the crystal growth surface before re-growing. Since the length of the crucible can be changed, the distance to the surface of the raw material replaced with can be set to a predetermined distance. This predetermined distance is a space for continuing the growth when the single crystal grows long and large, and at the same time keeps the single crystal growth surface at a temperature slightly lower than that of the raw material powder for the silicon carbide single crystal growth by the sublimation method. This is the distance for producing the temperature gradient necessary for

以上、本発明を実施態様に基づきより詳細に説明する。The present invention will now be described in more detail based on the embodiments.

第1図は本発明の炭化珪素単結晶の成長方法において好
適に用いられる単結晶成長装置の一例を示すものであ
る。
FIG. 1 shows an example of a single crystal growth apparatus preferably used in the method for growing a silicon carbide single crystal of the present invention.

第1図に示されるように、該単結晶成長装置に使用され
る黒鉛製のるつぼ28は、例えば円形などの断面形状を
有する黒鉛製の上部るつぼ外筒18と、結晶成長方向に
るつぼの長さを調節するために使用される増設用るつぼ
外筒21と、炭化珪素原料粉末26を保持するためのる
つぼ底20によって構成されている。そして、上部るつ
ぼ外筒18と増設用るつぼ外筒21、ならびにるつぼ外
筒18ないしは増設用るつぼ外筒21とるつぼ底20は
それぞれ、昇華した炭化珪素ガスがるつぼ28の外に出
ないでかつるつぼ温度の不均一ができないような接続部
25で連結されている。接続部25は、例えば、ねじ
込み式、すりあわせ式、嵌め込み式などで代表され
る前記接合部の条件を満たす構造でできている。なお、
前記上部るつぼ外筒18の上端開口部には、内面中央部
に炭化珪素単結晶基板の取り付け部22を有する黒鉛製
のるつぼ蓋体19が、上部るつぼ外筒18の上端開口部
を覆うように取付けられる。
As shown in FIG. 1, a graphite crucible 28 used in the single crystal growth apparatus includes a graphite upper crucible outer cylinder 18 having a cross-sectional shape such as a circle, and a length of the crucible in the crystal growth direction. It comprises an additional crucible outer cylinder 21 used for adjusting the height and a crucible bottom 20 for holding the silicon carbide raw material powder 26. Then, the upper crucible outer cylinder 18, the additional crucible outer cylinder 21, and the crucible outer cylinder 18 or the additional crucible outer cylinder 21 and the crucible bottom 20 respectively have the sublimated silicon carbide gas without coming out of the crucible 28 and the crucible 28. They are connected by a connecting portion 25 that prevents uneven temperature. The connecting portion 25 is made of a structure that satisfies the condition of the joining portion, which is represented by, for example, a screw-in type, a lap type, and a fitting type. In addition,
At the upper end opening of the upper crucible outer cylinder 18, a graphite crucible lid 19 having a silicon carbide single crystal substrate mounting portion 22 in the center of the inner surface is formed so as to cover the upper end opening of the upper crucible outer cylinder 18. Mounted.

この第1図のようなるつぼを使用して単結晶成長を行う
には、まず、黒鉛製の蓋体19の炭化珪素結晶基板の取
り付け部22に炭化珪素単結晶基板23を取り付ける。
上部るつぼ外筒18と増設用るつぼ外筒21とるつぼ底
20で構成される黒鉛製のるつぼ28には、原料となる
炭化珪素を含む粉末26を収納する。ここで単結晶基板
成長面27から原料粉末26表面までの距離30は、増
設用るつぼ外筒21の長さにより調節する。もちろん、
この増設用るつぼ外筒21は、使用しなくても、例え
ば、上部るつぼ外筒18とるつぼ底20によって、距離
30が所定の距離になれば良い。しかして、原料を加熱
手段により加熱して昇華した炭化珪素ガスが、やや低温
になっている炭化珪素単結晶基板23の上に堆積し、塊
状の炭化珪素単結晶24を成長させることができる。継
続して結晶成長を行なうには、まず、るつぼ28内の結
晶成長後の残滓を取り除き、再び結晶成長を行うための
新しい炭化珪素を含む原料粉末26を入れる。再成長を
行って大きくあるいは長くしようとする塊状の炭化珪素
単結晶24は、最初の結晶成長において用いられた蓋体
19と一体となったままあるいは新しいるつぼ蓋体19
の炭化珪素単結晶取り付け部22に取り付けて上部るつ
ぼ外筒18の上に載置する。単結晶成長面29から炭化
珪素原料粉末26の表面までの距離30は、増設用るつ
ぼ外筒21の長さを調整して所定の距離にする。この所
定の距離30は、5〜25mm、特に10〜20mmが望ま
しく、短いと単結晶の成長が阻害され易く、長いと必要
な温度勾配を作りにくい。しかして、高周波誘導加熱コ
イルなどの加熱手段でるつぼ28を加熱し、昇華した炭
化珪素ガスを単結晶成長面29に堆積させて炭化珪素単
結晶24を長くすることができる。炭化珪素単結晶は、
例えば、エクステンデッド アブストラクト オブ ザ
セブンティーンス コンファレンス オン ソリッド
ステート デバイシズ アンド マテリアルズ、トウ
キョウ、1985、 249〜 252ページ[Extended abstructs
of the 17th. Conference on Solid State Devices and
Materials, Toky, 1985, pp249-252]に記載の如く、結
晶成長方向に垂直方向にも成長することが知られてお
り、半径方向の大型化も可能となる。また、アイイーイ
ーイー トランスアクションズ オン エレクトロン
デバイシズ、ボリウム. イーディー30.ナンバー4
(1983)277 〜 281ページ[IEEE TRANSACTIONS ON ELECTR
ON DEVICES, VOL.ED-30. NO.4(1983 )277-281] に記載
の如く、炭化珪素単結晶基板に比べて基板上に成長した
単結晶の法が結晶性が向上し結晶を長く成長させること
によって次第に結晶性が改善されることが知られてお
り、本方法を用いて炭化珪素単結晶を長く成長させるこ
とにより簡単に単結晶の結晶性を向上させることができ
る。
To perform single crystal growth using the crucible as shown in FIG. 1, first, a silicon carbide single crystal substrate 23 is attached to the attachment portion 22 of the silicon carbide crystal substrate of the graphite lid 19.
A graphite crucible 28 composed of an upper crucible outer cylinder 18, an additional crucible outer cylinder 21 and a crucible bottom 20 contains a powder 26 containing silicon carbide as a raw material. Here, the distance 30 from the single crystal substrate growth surface 27 to the surface of the raw material powder 26 is adjusted by the length of the crucible outer cylinder 21 for expansion. of course,
Even if this additional crucible outer cylinder 21 is not used, the distance 30 may be a predetermined distance due to, for example, the upper crucible outer cylinder 18 and the crucible bottom 20. Then, the silicon carbide gas obtained by heating the raw material by the heating means and sublimating the silicon carbide gas is deposited on the silicon carbide single crystal substrate 23 having a slightly low temperature, and the massive silicon carbide single crystal 24 can be grown. In order to continue the crystal growth, first, the residue after the crystal growth in the crucible 28 is removed, and the raw material powder 26 containing new silicon carbide for performing the crystal growth again is put. The lump-shaped silicon carbide single crystal 24 which is to be regrown to be larger or longer has the crucible lid 19 which remains integral with the lid 19 used in the initial crystal growth or which is new.
It is attached to the silicon carbide single crystal attachment part 22 and placed on the upper crucible outer cylinder 18. The distance 30 from the single crystal growth surface 29 to the surface of the silicon carbide raw material powder 26 is adjusted to a predetermined distance by adjusting the length of the additional crucible outer cylinder 21. The predetermined distance 30 is preferably 5 to 25 mm, particularly 10 to 20 mm. If it is short, the growth of the single crystal is likely to be hindered, and if it is long, the necessary temperature gradient is hard to be formed. Thus, the crucible 28 can be heated by a heating means such as a high frequency induction heating coil and the sublimated silicon carbide gas can be deposited on the single crystal growth surface 29 to lengthen the silicon carbide single crystal 24. The silicon carbide single crystal is
For example, Extended Abstract of the Seventeens Conference on Solid State Devices and Materials, Tokyo, 1985, pp. 249-252 [Extended abstructs
of the 17th. Conference on Solid State Devices and
As described in Materials, Toky, 1985, pp249-252], it is known that the crystal grows in the direction perpendicular to the crystal growth direction, and the size can be increased in the radial direction. Also, IEE Trance Actions on Electron
Devices, Volume. Eddy 30. Number 4
(1983) pp. 277-281 [IEEE TRANSACTIONS ON ELECTR
ON DEVICES, VOL.ED-30. NO.4 (1983) 277-281], the single crystal method grown on the substrate has a better crystallinity and a longer crystal than the silicon carbide single crystal substrate. It is known that the crystallinity is gradually improved by growing, and the crystallinity of the single crystal can be easily improved by growing the silicon carbide single crystal for a long time by using this method.

一方、再成長の成長界面付近は不純物の濃度が不均一に
なり易いので、使用する炭化珪素原料粉末26として
は、不純物を除去した炭化珪素粉末あるいは高純度の炭
化珪素粉末を使用するのが望ましい。
On the other hand, since the concentration of impurities tends to be non-uniform near the growth interface of regrowth, it is desirable to use silicon carbide powder from which impurities have been removed or high-purity silicon carbide powder as the silicon carbide raw material powder 26 to be used. .

また、第1図のような構成のるつぼでは。るつぼ蓋体1
9に不必要な多結晶炭化珪素が若干付着する、単結晶成
長を阻害する程度には成長しない。
Also, with a crucible having the structure shown in FIG. Crucible lid 1
9 does not grow to such an extent that unnecessary polycrystalline silicon carbide is slightly adhered to it, which hinders single crystal growth.

前記再成長法を数回繰り返すことによって、実用可能な
大型で長く高品質な炭化珪素単結晶を簡単に安価にしか
も効率よく成長させることができる。なお、成長装置の
大きさの許す限り、るつぼ増設用外筒21を継ぎ足すか
もしくは長さを変えたるつぼ増設用外筒21を使用すれ
ば何回でも成長可能であり、繰り返し成長の回数が制限
されるものではない。
By repeating the regrowth method several times, it is possible to easily and inexpensively grow a practicable large-sized, long, and high-quality silicon carbide single crystal. It should be noted that, as long as the size of the growth apparatus permits, it is possible to grow any number of times by adding the crucible extension outer cylinder 21 or using the crucible extension outer cylinder 21 having a different length, and the number of times of repeated growth is increased. It is not limited.

(実施例) 以下、本発明を実施例によりさらに具体的に説明する。(Examples) Hereinafter, the present invention will be described more specifically with reference to Examples.

第1図に示すような構成の単結晶成長るつぼを用いて、
炭化珪素単結晶の成長を試みた。上部るつぼ外筒18と
増設用るつぼ外筒21とるつぼ底20との接続部25は
ねじ込み方式とした。まず、最初の成長に用いた炭化珪
素単結晶基板23は、炭化珪素研磨材を工業的に製造す
る過程で副産物として得られた単結晶を整形したものま
たは昇華再結晶法にて得られた単結晶を切断、研磨した
ものを用いた。大きさは、約10〜15mmである。ま
た、炭化珪素原料粉末26としては、市販されている炭
化珪素研磨材を約2000℃で10分間で真空熱処理し
たものを用いた。上記のごとく前処理を施した炭化珪素
粉末26をるつぼ28に入れ、単結晶基板23をるつぼ
蓋体19の単結晶基板取り付け部22に取り付け上部る
つぼ外筒18の上に載置し、単結晶基板の成長面27か
ら原料粉末26の表面までの距離30を15mmに調整
し、不活性ガス雰囲気中で高周波誘導加熱によりるつぼ
28を約2350℃に加熱し、成長速度が約0.5〜
1.5mm毎時になるように雰囲気圧力を調整して結晶成
長を試みた。この結果、直径が13mm、長さが10mmの
炭化珪素単結晶が得られた。継続して成長させるため
に、るつぼ28外に原料26の残滓を取り出し、新しい
原料26を入れ変え、一度できた単結晶24の結晶成長
面29から原料表面までの距離を15mmに調整した後、
前記と同様の結晶成長条件で再度成長を試みた結果、直
径が18mm、長さが18mmの炭化珪素単結晶が得られ
た。さらに同様の成長を繰り返し、直径が23mm、長さ
が25mmの塊状の炭化珪素単結晶が得られた。この時、
単結晶24の周囲の多結晶は単結晶の成長を阻害するほ
ど成長することはなかった。また、繰り返し成長の界面
での、結晶欠陥密度は8×10個/cm2であり、半導
体電子材料として十分実用になる。さらに、成長にした
がって結晶欠陥密度も改善され、4×10個/cm2
まで改善された。
Using a single crystal growth crucible with the structure shown in FIG.
An attempt was made to grow a silicon carbide single crystal. The connecting portion 25 between the upper crucible outer cylinder 18, the additional crucible outer cylinder 21 and the crucible bottom 20 is of a screw type. First, the silicon carbide single crystal substrate 23 used for the initial growth is a single crystal obtained by shaping a single crystal obtained as a by-product in the process of industrially manufacturing a silicon carbide abrasive or a single crystal obtained by a sublimation recrystallization method. A crystal obtained by cutting and polishing was used. The size is about 10 to 15 mm. Further, as the silicon carbide raw material powder 26, a commercially available silicon carbide abrasive material subjected to vacuum heat treatment at about 2000 ° C. for 10 minutes was used. The silicon carbide powder 26 subjected to the pretreatment as described above is put in the crucible 28, the single crystal substrate 23 is attached to the single crystal substrate attachment portion 22 of the crucible lid 19, and the single crystal is placed on the upper crucible outer cylinder 18. The distance 30 from the growth surface 27 of the substrate to the surface of the raw material powder 26 is adjusted to 15 mm, the crucible 28 is heated to about 2350 ° C. by high frequency induction heating in an inert gas atmosphere, and the growth rate is about 0.5 to.
Crystal growth was tried by adjusting the atmospheric pressure so as to be 1.5 mm per hour. As a result, a silicon carbide single crystal having a diameter of 13 mm and a length of 10 mm was obtained. In order to continuously grow, the residue of the raw material 26 is taken out of the crucible 28, the new raw material 26 is replaced, and the distance from the crystal growth surface 29 of the single crystal 24 once formed to the raw material surface is adjusted to 15 mm.
As a result of attempting the growth again under the same crystal growth conditions as above, a silicon carbide single crystal having a diameter of 18 mm and a length of 18 mm was obtained. Further, the same growth was repeated to obtain a massive silicon carbide single crystal having a diameter of 23 mm and a length of 25 mm. At this time,
The polycrystal around the single crystal 24 did not grow so much as to hinder the growth of the single crystal. Further, the crystal defect density at the interface of repeated growth is 8 × 10 4 defects / cm 2, which is sufficiently practical as a semiconductor electronic material. Further, the crystal defect density was improved with the growth and was improved to 4 × 10 4 defects / cm 2 .

(発明の効果) 以上に述べたように本発明は、長さが変更可能なるつぼ
を使用し、炭化珪素単結晶を行ったのち、るつぼ内に装
填される炭化珪素原料粉末を入れ換え、かつ前記単結晶
成長面から前記原料表面までの距離を所定の距離に調整
し、単結晶成長を繰り返す方法であるから、簡単にしか
も安価に効率良く大型で長くかつ高品質な炭化珪素単結
晶を成長させることができ、炭化珪素単結晶を用いた青
色発光ダイオードをはじめとする各種応用面に有用な炭
化珪素単結晶ウェハの供給を可能とするものである。
(Effect of the invention) As described above, the present invention uses a crucible whose length can be changed, performs a silicon carbide single crystal, and then replaces the silicon carbide raw material powder loaded in the crucible, and This is a method of repeating the single crystal growth by adjusting the distance from the single crystal growth surface to the surface of the raw material to a predetermined distance, so that a large, long, and high-quality silicon carbide single crystal can be easily and inexpensively and efficiently grown. Thus, it is possible to supply a silicon carbide single crystal wafer useful for various applications including a blue light emitting diode using a silicon carbide single crystal.

本発明はまた、発熱体を兼ねる黒鉛製のるつぼが、上部
るつぼ外筒と、るつぼ底と、この両者間に着脱自在に配
設される増設用るつぼ外筒とからなる分割形であること
を特徴とする炭化珪素単結晶成長装置であるので、前記
のごとき単結晶成長方法において好適に使用され、この
ような簡単な構成にもかかわらず、大型で長尺の炭化珪
素単結晶を簡単にしかも安価に効率良く成長させること
ができる。
The present invention also provides that the graphite crucible, which also serves as a heating element, is of a split type composed of an upper crucible outer cylinder, a crucible bottom, and an additional crucible outer cylinder detachably arranged between the two. Since it is a characteristic silicon carbide single crystal growth apparatus, it is preferably used in the single crystal growth method as described above. Despite such a simple structure, a large and long silicon carbide single crystal can be easily formed. It can be grown inexpensively and efficiently.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の炭化珪素単結晶成長装置の一例を使用
段階において模式的に示す断面図であり、第2図および
第3図は従来の炭化珪素単結晶成長装置の断面図であ
る。 18……上部るつぼ外筒、19……るつぼ蓋体、 20……るつぼ底、21……増設用るつぼ外筒、 22……単結晶基板取り付け部、 23……炭化珪素単結晶基板、 24……炭化珪素単結晶、25……るつぼ接続部、 26……炭化珪素原料粉末、 27……単結晶基板成長面、28……るつぼ、 29……単結晶成長面。
FIG. 1 is a sectional view schematically showing an example of a silicon carbide single crystal growing apparatus of the present invention in a use stage, and FIGS. 2 and 3 are sectional views of a conventional silicon carbide single crystal growing apparatus. 18 ... upper crucible outer cylinder, 19 ... crucible lid, 20 ... crucible bottom, 21 ... additional crucible outer cylinder, 22 ... single crystal substrate mounting portion, 23 ... silicon carbide single crystal substrate, 24 ... ... silicon carbide single crystal, 25 ... crucible connection part, 26 ... silicon carbide raw material powder, 27 ... single crystal substrate growth surface, 28 ... crucible, 29 ... single crystal growth surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠山 誠二 山口県光市大字島田3434番地 新日本製鐵 株式會社光製鐵所内 (56)参考文献 特開 昭59−54697(JP,A) 特開 昭62−66000(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Shinoyama 3434 Shimada, Hikari City, Yamaguchi Pref. Nippon Steel Co., Ltd. Inside the Hikari Works (56) Reference Sho 62-66000 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】昇華再結晶法により炭化珪素粉末からなる
原料を加熱昇華させ炭化珪素単結晶基板上に炭化珪素単
結晶を成長させる方法において、結晶成長方向にるつぼ
の長さを変更することが可能な黒鉛製のるつぼを使用
し、炭化珪素単結晶成長を行なったのち、該るつぼ内に
装填される原料を入れ換え、かつ前記単結晶成長面から
前記原料の表面までの距離が所定の距離になるようにる
つぼの長さを調整し、再度昇華再結晶法により結晶成長
を行う操作を少なくとも一回行うことを特徴とする炭化
珪素単結晶成長方法。
1. A method of growing a silicon carbide single crystal on a silicon carbide single crystal substrate by heating and sublimating a raw material made of silicon carbide powder by a sublimation recrystallization method, and changing the length of the crucible in the crystal growth direction. Using a possible graphite crucible, after performing silicon carbide single crystal growth, the raw materials loaded in the crucible are replaced, and the distance from the single crystal growth surface to the surface of the raw material becomes a predetermined distance. A method for growing a silicon carbide single crystal, wherein the length of the crucible is adjusted so that the crystal growth is performed again by the sublimation recrystallization method at least once.
【請求項2】黒鉛製の発熱体を兼ねるるつぼと、前記る
つぼの上端開口部を覆う黒鉛製のるつぼ蓋体と、るつぼ
を加熱する加熱手段と、るつぼを挿入して真空または不
活性ガス雰囲気に制御する真空系を有する炭化珪素単結
晶成長装置において、前記黒鉛製のるつぼが、上部るつ
ぼ外筒と、るつぼ底と、この両者間に着脱自在に配設さ
れる増設用るつぼ外筒とからなる分割形であることを特
徴とする炭化珪素単結晶成長装置。
2. A crucible that also serves as a heating element made of graphite, a crucible lid that covers the upper end opening of the crucible, a heating means that heats the crucible, and a vacuum or an inert gas atmosphere by inserting the crucible. In the silicon carbide single crystal growth apparatus having a vacuum system controlled to, the graphite crucible includes an upper crucible outer cylinder, a crucible bottom, and an additional crucible outer cylinder detachably arranged between the crucible bottom and the crucible bottom. A silicon carbide single crystal growth apparatus, characterized in that
JP2097590A 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal Expired - Lifetime JPH0637354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097590A JPH0637354B2 (en) 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097590A JPH0637354B2 (en) 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JPH03295898A JPH03295898A (en) 1991-12-26
JPH0637354B2 true JPH0637354B2 (en) 1994-05-18

Family

ID=14196455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097590A Expired - Lifetime JPH0637354B2 (en) 1990-04-16 1990-04-16 Method and apparatus for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH0637354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160069094A (en) * 2014-12-05 2016-06-16 주식회사 포스코 Reverse sublimation apparatus for single crystal growth
KR20160069095A (en) * 2014-12-05 2016-06-16 주식회사 포스코 Reverse sublimation apparatus for single crystal growth

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491402B2 (en) * 1995-08-07 2004-01-26 株式会社デンソー Single crystal manufacturing method and single crystal manufacturing apparatus
US5667587A (en) * 1996-12-18 1997-09-16 Northrop Gruman Corporation Apparatus for growing silicon carbide crystals
JP2007223867A (en) * 2006-02-24 2007-09-06 Bridgestone Corp Tool for flattening surface of powder and method for producing silicon carbide single crystal
JP4833780B2 (en) * 2006-09-21 2011-12-07 新日本製鐵株式会社 Lid graphite crucible and silicon carbide single crystal growth apparatus
JP4831128B2 (en) * 2008-05-26 2011-12-07 パナソニック株式会社 Crystal growth crucible
JP2015040146A (en) * 2013-08-22 2015-03-02 三菱電機株式会社 Single crystal production device and single crystal production method using the same
JP6223290B2 (en) * 2014-06-27 2017-11-01 三菱電機株式会社 Single crystal manufacturing equipment
KR102122668B1 (en) * 2018-12-12 2020-06-12 에스케이씨 주식회사 Apparatus for ingot and preparation method of silicon carbide ingot with the same
WO2021060365A1 (en) 2019-09-27 2021-04-01 学校法人関西学院 Method for producing semiconductor substrates and device for producing semiconductor substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160069094A (en) * 2014-12-05 2016-06-16 주식회사 포스코 Reverse sublimation apparatus for single crystal growth
KR20160069095A (en) * 2014-12-05 2016-06-16 주식회사 포스코 Reverse sublimation apparatus for single crystal growth

Also Published As

Publication number Publication date
JPH03295898A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US5968261A (en) Method for growing large silicon carbide single crystals
US6066205A (en) Growth of bulk single crystals of aluminum nitride from a melt
KR100855650B1 (en) Method and apparatus for growing silicon carbide crystals
US9068277B2 (en) Apparatus for manufacturing single-crystal silicon carbide
US5746827A (en) Method of producing large diameter silicon carbide crystals
JP2000302600A (en) Method for growing large-sized single-polytype silicon carbide single crystal
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JPH0558774A (en) Vessel for silicone carbide single crystal growing device
JPH06316499A (en) Production of sic single crystal
JPH09268096A (en) Production of single crystal and seed crystal
JPH0637354B2 (en) Method and apparatus for growing silicon carbide single crystal
JP2000264795A (en) Apparatus and method for producing silicon carbide single crystal
JPH08295595A (en) Device for growing single crystal
JPH0455397A (en) Production of alpha-sic single crystal
EP0956381B1 (en) Apparatus for growing large silicon carbide single crystals
JPH08143396A (en) Method for growing silicon carbide single crystal
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JPH09263497A (en) Production of silicon carbide single crystal
JPH0637353B2 (en) Method and apparatus for growing silicon carbide single crystal
JPH10324599A (en) Production of silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH10139589A (en) Production of single crystal
JPH06183897A (en) Method for growing silicon carbide single crystal
JPH06298600A (en) Method of growing sic single crystal
JP2680617B2 (en) Method for growing silicon carbide single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080518

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 16

EXPY Cancellation because of completion of term