JP2007223867A - Tool for flattening surface of powder and method for producing silicon carbide single crystal - Google Patents

Tool for flattening surface of powder and method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP2007223867A
JP2007223867A JP2006049284A JP2006049284A JP2007223867A JP 2007223867 A JP2007223867 A JP 2007223867A JP 2006049284 A JP2006049284 A JP 2006049284A JP 2006049284 A JP2006049284 A JP 2006049284A JP 2007223867 A JP2007223867 A JP 2007223867A
Authority
JP
Japan
Prior art keywords
powder
silicon carbide
reaction vessel
single crystal
powder surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049284A
Other languages
Japanese (ja)
Inventor
Daisuke Kondo
大輔 近藤
Sho Kumagai
祥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006049284A priority Critical patent/JP2007223867A/en
Publication of JP2007223867A publication Critical patent/JP2007223867A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for flattening the surface of a powder, with which the surface of a raw material powder for sublimation can be flattened in a short time with good precision so as to keep the distance between a seed crystal growth surface and the raw material powder for sublimation constant, in a method for growing a silicon carbide single crystal by a sublimation method. <P>SOLUTION: The tool is equipped with: a bridging part 2 which is hung on the edge of an upper opening part of a cylindrical reaction vessel 21 through the circle center of the cross section of the reaction vessel 21 for housing powder; a rotary shaft 4 extending to the powder side of the reaction vessel 21 from the central part of the bridging part 2; and a blade part 10 which is provided at the side different from the bridging part 2 side of the rotary shaft 4 and arranged on the surface of the powder, and scrapes projecting parts on the surface of the powder by the rotation of the rotary shaft 4 to flatten the surface of the powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子デバイス、光学デバイス等として特に好適な炭化ケイ素単結晶の製造に用いられる粉体表面平坦化治具及び炭化ケイ素単結晶の製造方法に関する。   The present invention relates to a powder surface flattening jig and a method for producing a silicon carbide single crystal used for producing a silicon carbide single crystal particularly suitable as an electronic device, an optical device or the like.

炭化ケイ素単結晶は、パワーデバイス等の半導体装置製造用基板材料として注目されており、現在の技術動向からさらなる高品質化と大型化が求められている。この炭化ケイ素単結晶の製造方法の1つとして、昇華法により炭化ケイ素単結晶を成長させる方法(改良レイリー法)がある。改良レイリー法において、高品質な炭化ケイ素単結晶を製造するために、種結晶成長表面と、昇華用原料との距離を一定に保つ方法が提案されている(特許文献1参照)。   Silicon carbide single crystal is attracting attention as a substrate material for manufacturing semiconductor devices such as power devices, and further higher quality and larger size are demanded from current technological trends. One method for producing this silicon carbide single crystal is a method (an improved Rayleigh method) for growing a silicon carbide single crystal by a sublimation method. In the improved Rayleigh method, in order to produce a high-quality silicon carbide single crystal, a method of keeping the distance between the seed crystal growth surface and the sublimation raw material constant has been proposed (see Patent Document 1).

しかし、特許文献1にかかる方法は、複雑な構造の製造装置が必要で、またかかる製造装置の取扱いが困難で距離調整に時間がかかっていた。即ち十分な平坦性を短時間で実現するための方法及び装置は見当らなかった。
特開平3−295898号公報
However, the method according to Patent Document 1 requires a manufacturing apparatus having a complicated structure, and it is difficult to handle the manufacturing apparatus, and it takes time to adjust the distance. That is, no method or apparatus for realizing sufficient flatness in a short time was found.
JP-A-3-295898

原料粉体の表面を短時間で精度よく平坦化させる手段が求められていた。   There has been a demand for means for accurately flattening the surface of the raw material powder in a short time.

即ち、本発明は、以下の記載事項に関する:
(1)円筒状の粉体を収容する反応容器の断面の円中心を通って上記反応容器の上部開口部の縁に懇架された懇架部と、
上記懇架部の中心部から上記反応容器の粉体側に伸びる回転軸と、
上記回転軸の懇架部側とは異なる側に設けられ、粉体表面に設置され、上記回転軸を軸に回転させると上記粉体表面の凸部を欠き取り上記粉体表面を平坦化する羽根部と、を備える粉体表面平坦化治具。
That is, the present invention relates to the following items:
(1) An angulation portion erected on the edge of the upper opening of the reaction vessel through the circular center of the cross section of the reaction vessel containing cylindrical powder;
A rotating shaft extending from the central part of the bridge part to the powder side of the reaction vessel;
Provided on the side of the rotating shaft that is different from the support portion side, is installed on the powder surface, and when the rotating shaft is rotated around the shaft, the convex portion of the powder surface is cut off to flatten the powder surface. A powder surface flattening jig comprising a blade portion.

(2)上記羽根部は、欠き取った余剰粉体を回収する回収溝を備える上記(1)記載の粉体表面平坦化治具。 (2) The powder surface flattening jig according to (1), wherein the blade portion includes a collection groove for collecting the excess powder that has been cut off.

(3)上記反応容器の上部開口部の縁に沿って配置され、上記反応容器の係合部と係合可能なねじ切り部を備えるリング部をさらに有する上記(1)又は(2)記載の粉体表面平坦化治具。 (3) The powder according to (1) or (2), further including a ring portion that is disposed along an edge of the upper opening of the reaction vessel and includes a threaded portion engageable with the engagement portion of the reaction vessel. Body surface flattening jig.

(4)上記回転軸と上記懇架部とは、上記回転軸と上記懇架部との距離を調整可能に螺合されている上記(1)〜(3)のいずれかに記載の粉体表面平坦化治具。 (4) The powder according to any one of (1) to (3), wherein the rotating shaft and the suspending portion are screwed so that the distance between the rotating shaft and the suspending portion can be adjusted. Surface flattening jig.

(5)円筒状の粉体を収容する反応容器に昇華用原料を充填する工程と、
上記反応容器の断面の円中心を通って上記反応容器の上部開口部の縁に懇架された懇架部、上記懇架部材の中心部から上記反応容器の上記粉体側に伸びる回転軸、上記回転軸の懇架部側とは異なる側に設けられ、上記粉体表面に設置され、上記回転軸を軸に上記懇架部を回転させると回転して上記粉体表面の凸部を欠き取り上記粉体表面を平坦化する羽根部を備える粉体表面平坦化治具を用いて上記粉体表面を平坦化する工程と、
昇華雰囲気を形成し種結晶上に炭化ケイ素単結晶を成長させる工程と、
を含む炭化ケイ素単結晶の製造方法。
(5) filling a reaction vessel containing cylindrical powder with a sublimation raw material;
A pivot part extending from the center of the crossing member to the powder side of the reaction container through a circular center of the cross section of the reaction container, The rotating shaft is provided on a side different from the pivoted portion side, is installed on the powder surface, and rotates when the pivoted portion is rotated about the rotating shaft, and the convex portion of the powder surface is missing. Flattening the powder surface using a powder surface flattening jig comprising a blade portion for flattening the powder surface;
Forming a sublimation atmosphere to grow a silicon carbide single crystal on the seed crystal;
The manufacturing method of the silicon carbide single crystal containing this.

本発明によれば、原料粉体の表面を短時間で精度よく平坦化させることができる。   According to the present invention, the surface of the raw material powder can be flattened with high accuracy in a short time.

以下に実施形態を挙げて本発明を説明するが、本発明が以下の実施形態に限定されないことはいうまでもない。図中同一の機能を有するものについては同一または同様の符号を付して説明を省略する。   Hereinafter, the present invention will be described with reference to embodiments, but it goes without saying that the present invention is not limited to the following embodiments. Components having the same functions in the figures are given the same or similar reference numerals and description thereof is omitted.

(粉体表面平坦化治具)
図1に示す本発明の実施形態にかかる粉体表面平坦化治具1は、
円筒状の粉体を収容する反応容器(反応容器本体)21の断面の円中心を通って反応容器本体21の上部開口部の縁に懇架された懇架部2と、
懇架部2の中心部から反応容器本体21の昇華用原料41側に伸びる回転軸4と、
回転軸4の懇架部2側とは異なる側に設けられ、昇華用原料41表面に設置され、回転軸4を軸に回転させると昇華用原料41表面の凸部を欠き取り昇華用原料41表面を平坦化する羽根部10と、を備える。粉体表面平坦化治具1は、反応容器本体21の上部開口部の縁に沿って配置され、反応容器本体21の係合部と係合可能なねじ切り部を備えるリング部8と、回転軸4を軸に懇架部2を回転させた際に懇架部2にブレが生じることを防止するピン5a、5bをさらに有する。羽根部10は、図3(a)〜(c)に示すように、昇華用原料41表面の凸部を欠き取るテーパ部10aと、欠き取った余剰粉体を回収する回収溝10bとを備える。粉体表面平坦化治具1は、粉体が汚染されなければ特に制限なく、樹脂や石英ガラス、好ましくはデルリンから形成される。
(Powder surface flattening jig)
The powder surface flattening jig 1 according to the embodiment of the present invention shown in FIG.
An urging portion 2 embraced at the edge of the upper opening of the reaction vessel main body 21 through the circular center of the cross section of the reaction vessel (reaction vessel main body) 21 containing cylindrical powder;
A rotating shaft 4 extending from the central part of the support part 2 toward the sublimation raw material 41 side of the reaction vessel main body 21;
The rotation shaft 4 is provided on a side different from the support portion 2 side, and is installed on the surface of the sublimation raw material 41. And a blade portion 10 for flattening the surface. The powder surface flattening jig 1 is disposed along the edge of the upper opening of the reaction vessel main body 21, and includes a ring portion 8 having a threaded portion engageable with the engagement portion of the reaction vessel main body 21, and a rotation shaft. Pins 5a and 5b are further provided to prevent blurring of the cradle 2 when the cradle 2 is rotated about the axis 4. As shown in FIGS. 3A to 3C, the blade portion 10 includes a tapered portion 10 a that cuts off the convex portion on the surface of the sublimation raw material 41, and a collection groove 10 b that collects the excess powder that has been cut off. . The powder surface flattening jig 1 is not particularly limited as long as the powder is not contaminated, and is made of resin or quartz glass, preferably delrin.

図2に示すように、粉体表面平坦化治具1を、原料粉体が充填された円筒状の反応容器本体21に取り付ける。そして、回転軸4を中心に懇架部2を回転させると、粉体表面平坦化治具1は、上記発明特定事項を備えることより、テーパ部10aが昇華用原料41表面の凸部を欠き取り昇華用原料41表面を平坦化する。また、羽根部10が欠き取った余剰の昇華用原料41は、回収溝10bに回収される。そのため、単にテーパ部10aを用いる場合に比して、余剰の昇華用原料41を回収する工程を簡略化することができるため昇華用原料41の表面を短時間で平坦化することができる。さらに反応容器本体21の上部開口部の縁に沿ってリング部8を配置することで、粉体表面平坦化治具1を回転させた際に、粉体表面平坦化治具1が反応容器本体21の縁を削ることを防止できる。反応容器本体21とリング部8を螺合させることで回転軸4を軸に懇架部2を回転させた際の懇架部2のブレを防止できる。   As shown in FIG. 2, the powder surface flattening jig 1 is attached to a cylindrical reaction vessel main body 21 filled with raw material powder. Then, when the suspending portion 2 is rotated around the rotating shaft 4, the powder surface flattening jig 1 is provided with the above-described invention specific matters, so that the tapered portion 10 a lacks the convex portion on the surface of the sublimation raw material 41. The surface of the sublimation raw material 41 is flattened. Moreover, the surplus sublimation raw material 41 which the blade | wing part 10 cut off is collect | recovered by the collection groove | channel 10b. Therefore, since the process of collecting the surplus sublimation raw material 41 can be simplified as compared with the case where the taper portion 10a is simply used, the surface of the sublimation raw material 41 can be planarized in a short time. Further, by disposing the ring portion 8 along the edge of the upper opening of the reaction vessel main body 21, when the powder surface flattening jig 1 is rotated, the powder surface flattening jig 1 is moved to the reaction vessel main body. The edge of 21 can be prevented from being cut. By screwing the reaction vessel main body 21 and the ring part 8, it is possible to prevent the cradle part 2 from being shaken when the cradle part 2 is rotated about the rotation shaft 4.

粉体表面平坦化治具1を用いない場合、図6に示す反応容器本体21に収容された昇華用原料41の粉体高さAは基準値±3mmであるが、粉体表面平坦化治具1を用いることで、基準値±0.2mmの精度で平坦化することができる。粉体表面平坦化治具1によれば原料粉体の表面を短時間で精度よく平坦化させることができる。   When the powder surface flattening jig 1 is not used, the powder height A of the sublimation raw material 41 accommodated in the reaction vessel main body 21 shown in FIG. 6 is a reference value ± 3 mm. By using the tool 1, it is possible to flatten with an accuracy of a reference value ± 0.2 mm. According to the powder surface flattening jig 1, the surface of the raw material powder can be flattened with high accuracy in a short time.

(炭化ケイ素単結晶の製造装置)
炭化ケイ素単結晶の製造装置の実施形態としては、図6に示すように、
昇華用原料41を収容可能な反応容器本体21と、反応容器本体21に着脱自在に設けられた種結晶50を配置可能とする蓋部22と、を有する坩堝26と;
坩堝26を石英管30の内部に固定させる支持棒31と;
昇華用原料41が収容された部分の外周に環巻された状態で配置され、昇華用原料41を昇華可能となるように昇華雰囲気を形成する第一誘導加熱コイル23と;
種結晶50が配置された部分の外周に環巻された状態で配置され、第一誘導加熱コイル23により昇華された昇華用原料41が炭化ケイ素単結晶の種結晶50近傍でのみ再結晶可能となるように再結晶雰囲気を形成し、昇華用原料41を種結晶50上に再結晶させる第二誘導加熱コイル25と;
第一誘導加熱コイル23と第二誘導加熱コイル25との間に、誘導電流を通電可能であり、誘導電流を通電することにより第一誘導加熱コイル23と第二誘導加熱コイル25との間における干渉を防止する干渉防止コイル24と;を備える炭化ケイ素単結晶製造装置20が挙げられる。
(Silicon carbide single crystal manufacturing equipment)
As an embodiment of an apparatus for producing a silicon carbide single crystal, as shown in FIG.
A crucible 26 having a reaction vessel main body 21 capable of accommodating a sublimation raw material 41 and a lid portion 22 on which a seed crystal 50 detachably provided on the reaction vessel main body 21 can be disposed;
A support rod 31 for fixing the crucible 26 inside the quartz tube 30;
A first induction heating coil 23 that is arranged in a state of being wound around the outer periphery of a portion in which the sublimation raw material 41 is accommodated and forms a sublimation atmosphere so that the sublimation raw material 41 can be sublimated;
The sublimation raw material 41 arranged in a state of being wound around the outer periphery of the portion where the seed crystal 50 is arranged and sublimated by the first induction heating coil 23 can be recrystallized only in the vicinity of the seed crystal 50 of the silicon carbide single crystal. A second induction heating coil 25 that forms a recrystallization atmosphere and recrystallizes the sublimation raw material 41 on the seed crystal 50;
An induction current can be passed between the first induction heating coil 23 and the second induction heating coil 25, and the current between the first induction heating coil 23 and the second induction heating coil 25 can be passed by passing the induction current. And a silicon carbide single crystal manufacturing apparatus 20 including an interference preventing coil 24 for preventing interference.

反応容器本体21と蓋部22とは、嵌合、螺合等のいずれで着脱自在に設計されていてもよいが、螺合によるものが好ましい。坩堝26は、第二端部における蓋部22の少なくとも内周側面部の表面が、ガラス状カーボンもしくはアモルファスカーボンであることが好ましい。これにより少なくとも内周側面部の表面で、炭化ケイ素の再結晶化が抑制されるからである。坩堝26は、石英管30内に配置されるのが好ましい。昇華用原料41の昇華及び再結晶化のための加熱エネルギーの損失を減らすことができるからである。なお、石英管30は高純度品が入手可能であり、高純度品を用いると金属不純物の混入が少ない点で有利である。坩堝26を構成する反応容器本体21と蓋部22の材質は、特に制限はないが、昇華用原料41の昇華と再結晶の制御が容易である等の点で黒鉛が特に好ましい。   The reaction vessel main body 21 and the lid portion 22 may be designed to be detachable by fitting, screwing, or the like, but those by screwing are preferable. As for the crucible 26, it is preferable that the surface of the inner peripheral side surface part of the cover part 22 in a 2nd edge part is glassy carbon or amorphous carbon. This is because recrystallization of silicon carbide is suppressed at least on the surface of the inner peripheral side surface. The crucible 26 is preferably arranged in the quartz tube 30. This is because loss of heating energy for sublimation and recrystallization of the sublimation raw material 41 can be reduced. Note that a high-purity product is available for the quartz tube 30, and the use of a high-purity product is advantageous in that there is less contamination of metal impurities. The materials of the reaction vessel main body 21 and the lid portion 22 constituting the crucible 26 are not particularly limited, but graphite is particularly preferable in terms of easy control of sublimation and recrystallization of the sublimation raw material 41.

第二誘導加熱コイル25は、第一誘導加熱コイル23とは独立に温度制御可能に構成されている。   The second induction heating coil 25 is configured such that the temperature can be controlled independently of the first induction heating coil 23.

(昇華用原料)
昇華用原料41としては、炭化ケイ素である限り、結晶の多型、使用量、純度、その製造方法等については特に制限はなく、目的に応じて適宜選択することができる。
(Raw material for sublimation)
As long as it is silicon carbide, the sublimation raw material 41 is not particularly limited with respect to crystal polymorphism, amount used, purity, production method thereof and the like, and can be appropriately selected according to the purpose.

昇華用原料41の結晶の多型としては、例えば、4H,6H,15R,3Cなどが挙げられ、これらの中でも6Hなどが好適に挙げられる。これらは、1種単独で使用されるのが好ましいが、2種以上併用されてもよい。   Examples of the polymorph of the crystal of the sublimation raw material 41 include 4H, 6H, 15R, and 3C. Among these, 6H is preferable. These are preferably used alone, but may be used in combination of two or more.

昇華用原料41の使用量としては、製造する炭化ケイ素単結晶の大きさ、上記反応容器の大きさ等に応じて適宜選択することができる。   The amount of the sublimation raw material 41 used can be appropriately selected according to the size of the silicon carbide single crystal to be produced, the size of the reaction vessel, and the like.

昇華用原料41の純度としては、製造する炭化ケイ素単結晶中への多結晶や多型の混入を可能な限り防止する観点からは、純度の高いことが好ましく、具体的には、不純物元素の各含有量が0.5ppm以下であるのが好ましい。   The purity of the sublimation raw material 41 is preferably high from the viewpoint of preventing polycrystals and polymorphs from being mixed into the silicon carbide single crystal to be produced as much as possible. Each content is preferably 0.5 ppm or less.

ここで、上記不純物元素の含有量は、化学的な分析による不純物含有量であり、参考値としての意味を有するに過ぎず、実用的には、上記不純物元素が上記炭化ケイ素単結晶中に均一に分布しているか、局所的に偏在しているかによっても、評価が異なってくる。なお、ここで「不純物元素」とは、1989年IUPAC無機化学命名法改訂版の周期律表における1族から17族元素に属しかつ原子番号3以上(但し、炭素原子、酸素原子及びケイ素原子を除く)である元素をいう。また、成長する炭化ケイ素単結晶にn型あるいはp型の導電性を付与するため故意にそれぞれ窒素、アルミニウムなどのドーパント元素を添加した場合はそれらも除くこととする。   Here, the content of the impurity element is an impurity content by chemical analysis, and has only a meaning as a reference value. In practice, the impurity element is uniformly contained in the silicon carbide single crystal. The evaluation differs depending on whether the distribution is locally distributed or locally distributed. Here, the “impurity element” refers to a group 1 to group 17 element in the periodic table of the 1989 IUPAC inorganic chemical nomenclature revised edition and has an atomic number of 3 or more (however, a carbon atom, an oxygen atom and a silicon atom represent Element). In addition, in order to impart n-type or p-type conductivity to the growing silicon carbide single crystal, when a dopant element such as nitrogen or aluminum is intentionally added, these are also excluded.

昇華用原料41としての炭化ケイ素粉末は、例えば、ケイ素源として、ケイ素化合物の少なくとも1種と、炭素源として、加熱により炭素を生ずる有機化合物の少なくとも1種と、重合触媒又は架橋触媒とを溶媒中で溶解し乾燥して得られた粉末を非酸化性雰囲気下で焼成することにより得られる。上記ケイ素化合物としては、液状のものと固体のものとを併用することができるが、少なくとも1種は液状のものから選択する。上記液状のものとしては、アルコキシシラン及びアルコシシシラン重合体が好適に用いられる。上記アルコキシシランとしては、例えば、メトキシシラン、エトキシシラン、プロポキシシラン、ブトキシシラン等が挙げられ、これらの中でもハンドリングの点でエトキシシランが好ましい。上記アルコキシシランとしては、モノアルコキシシラン、ジアルコキシシラン、トリアルコキシシラン、テトラアルコキシシランのいずれであってもよいが、テトラアルコキシシランが好ましい。上記アルコキシシラン重合体としては、重合度が2〜15程度の低分子量重合体(オリゴマー)及びケイ酸ポリマーが挙げられる。例えば、テトラエトキシシランオリゴマーが挙げられる。上記固体のものとしては、SiO、シリカゾル(コロイド状超微細シリカ含有液、内部にOH基やアルコキシル基を含む)、二酸化ケイ素(シリカゲル、微細シリカ、石英粉末)等の酸化ケイ素が挙げられる。   The silicon carbide powder as the sublimation raw material 41 is, for example, a solvent in which at least one silicon compound as a silicon source, at least one organic compound that generates carbon by heating, and a polymerization catalyst or a crosslinking catalyst are used as a carbon source. It is obtained by firing in a non-oxidizing atmosphere a powder obtained by dissolving and drying in. As the silicon compound, a liquid one and a solid one can be used together, but at least one kind is selected from a liquid one. As the liquid, alkoxysilane and alkoxysilane polymers are preferably used. Examples of the alkoxysilane include methoxysilane, ethoxysilane, propoxysilane, and butoxysilane. Among these, ethoxysilane is preferable in terms of handling. The alkoxysilane may be any of monoalkoxysilane, dialkoxysilane, trialkoxysilane, and tetraalkoxysilane, but tetraalkoxysilane is preferable. Examples of the alkoxysilane polymer include a low molecular weight polymer (oligomer) having a polymerization degree of about 2 to 15 and a silicate polymer. An example is a tetraethoxysilane oligomer. Examples of the solid include silicon oxide such as SiO, silica sol (liquid containing colloidal ultrafine silica, containing OH group or alkoxyl group inside), silicon dioxide (silica gel, fine silica, quartz powder).

上記ケイ素化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。上記ケイ素化合物の中でも、均質性やハンドリング性が良好な点でテトラエトキシシランのオリゴマー、テトラエトキシシランのオリゴマーと微粉末シリカとの混合物、等が好ましい。   The said silicon compound may be used individually by 1 type, and may use 2 or more types together. Among the above silicon compounds, an oligomer of tetraethoxysilane, a mixture of an oligomer of tetraethoxysilane and fine powder silica, and the like are preferable in terms of good homogeneity and handling properties.

上記ケイ素化合物は、高純度であるのが好ましく、初期における各不純物の含有量が20ppm以下であるので好ましく、5ppm以下であるのがより好ましい。   The silicon compound preferably has a high purity, and since the content of each impurity in the initial stage is 20 ppm or less, it is preferably 5 ppm or less.

上記加熱により炭素を生じる有機化合物としては、液状のものを単独で用いてもよいし、液状のものと固体のものとを併用してもよい。   As the organic compound that generates carbon by heating, a liquid compound may be used alone, or a liquid compound and a solid compound may be used in combination.

上記加熱により炭素を生ずる有機化合物としては、残炭率が高く、かつ触媒若しくは加熱により重合又は架橋する有機化合物が好ましく、例えば、フェノール樹脂、フラン樹脂、ポリイミド、ポリウレタン、ポリビニルアルコール等の樹脂のモノマーやプレポリマーが好ましく、その他、セルロース、蔗糖、ピッチ、タール等の液状物が挙げられる。これらの中でも、高純度のものが好ましく、フェノール樹脂がより好ましく、レゾール型フェノール樹脂が特に好ましい。   As the organic compound that produces carbon by heating, a residual carbon ratio is high, and an organic compound that is polymerized or cross-linked by a catalyst or heating is preferable. For example, a resin monomer such as phenol resin, furan resin, polyimide, polyurethane, and polyvinyl alcohol And prepolymers, and other liquid materials such as cellulose, sucrose, pitch, and tar. Among these, high-purity ones are preferable, phenol resins are more preferable, and resol type phenol resins are particularly preferable.

上記加熱により炭素を生ずる有機化合物は、1種単独で用いてもよいし、2以上を併用してもよい。   The organic compound which produces carbon by the heating may be used alone or in combination of two or more.

上記加熱により炭素を生ずる有機化合物の純度としては、目的に応じて適宜選択することができるが、高純度の炭化ケイ素粉末が必要な場合には各金属を5ppm以上含有していない有機化合物を用いることが好ましい。   The purity of the organic compound that generates carbon by heating can be appropriately selected according to the purpose, but when high-purity silicon carbide powder is required, an organic compound that does not contain 5 ppm or more of each metal is used. It is preferable.

上記重合触媒及び架橋触媒としては、上記加熱により炭素を生ずる有機化合物に応じて適宜選択できるが、上記加熱により炭素を生ずる有機化合物がフェノール樹脂やフラン樹脂の場合、トルエンスルホン酸、トルエンカルボン酸、酢酸、しゅう酸、マレイン酸、硫酸等の酸類が好ましく、マレイン酸が特に好ましい。   The polymerization catalyst and the crosslinking catalyst can be appropriately selected according to the organic compound that generates carbon by heating, but when the organic compound that generates carbon by heating is a phenol resin or furan resin, toluenesulfonic acid, toluenecarboxylic acid, Acids such as acetic acid, oxalic acid, maleic acid and sulfuric acid are preferred, and maleic acid is particularly preferred.

上記加熱により炭素を生ずる有機化合物に含まれる炭素と、上記ケイ素化合物に含まれるケイ素との比(以下「C/Si比」と略記)は、両者の混合物を1000℃にて炭化して得られる炭化物中間体を、元素分析することにより定義される。化学量論的には、上記C/Si比が3.0の時に得られた炭化ケイ素粉末中の遊離炭素が0%となるはずであるが、実際には同時に生成するSiOガスの揮散により低C/Si比において遊離炭素が発生する。この得られた炭化ケイ素粉末中の遊離炭素量が適当な量となるように予め配合比を決定しておくのが好ましい。通常、1気圧近傍で1600℃以上での焼成では、上記C/Si比を2.0〜2.5にすると遊離炭素を抑制することができる。上記C/Si比が2.5を超えると、上記遊離炭素が顕著に増加する。但し、雰囲気の圧力を低圧又は高圧で焼成する場合は、純粋な炭化ケイ素粉末を得るためのC/Si比は変動するので、この場合は必ずしも上記C/Si比の範囲に限定するものではない。   The ratio of carbon contained in the organic compound that produces carbon by heating and silicon contained in the silicon compound (hereinafter abbreviated as “C / Si ratio”) is obtained by carbonizing a mixture of both at 1000 ° C. Carbide intermediates are defined by elemental analysis. Stoichiometrically, the free carbon in the silicon carbide powder obtained when the C / Si ratio is 3.0 should be 0%, but in practice it is reduced by volatilization of the simultaneously generated SiO gas. Free carbon is generated at the C / Si ratio. The blending ratio is preferably determined in advance so that the amount of free carbon in the obtained silicon carbide powder is an appropriate amount. Usually, in firing at 1600 ° C. or more near 1 atm, free carbon can be suppressed by setting the C / Si ratio to 2.0 to 2.5. When the C / Si ratio exceeds 2.5, the free carbon increases remarkably. However, when the atmospheric pressure is fired at a low pressure or a high pressure, the C / Si ratio for obtaining pure silicon carbide powder varies, and in this case, the range is not necessarily limited to the above C / Si ratio. .

なお、上記炭化ケイ素粉末は、例えば、上記ケイ素化合物と上記加熱により炭素を生ずる有機化合物との混合物を硬化することによっても得られる。   The silicon carbide powder can also be obtained, for example, by curing a mixture of the silicon compound and an organic compound that generates carbon by heating.

上記硬化の方法としては、加熱により架橋する方法、硬化触媒により硬化する方法、電子線や放射線による方法、などが挙げられる。   Examples of the curing method include a method of crosslinking by heating, a method of curing with a curing catalyst, a method of electron beam and radiation, and the like.

上記硬化触媒としては、上記加熱により炭素を生ずる有機化合物の種類等に応じて適宜選択することができ、フェノール樹脂やフラン樹脂の場合には、トルエンスルホン酸、トルエンカルボン酸、酢酸、しゅう酸、塩酸、硫酸、マレイン酸等の酸類、ヘキサミン等のアミン酸などが好適に挙げられる。これらの硬化触媒を用いる場合、上記硬化触媒は溶媒に溶解し又は分散される。上記触媒としては、低級アルコール(例えばエチルアルコール等)、エチルエーテル、アセトンなどが挙げられる。   The curing catalyst can be appropriately selected according to the type of organic compound that produces carbon by heating, and in the case of a phenol resin or furan resin, toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, Preferable examples include acids such as hydrochloric acid, sulfuric acid and maleic acid, and amine acids such as hexamine. When these curing catalysts are used, the curing catalyst is dissolved or dispersed in a solvent. Examples of the catalyst include lower alcohols (for example, ethyl alcohol), ethyl ether, acetone and the like.

以上により得られた炭化ケイ素粉末は、窒素又はアルゴン等の非酸化性雰囲気中、800〜1000℃にて30〜120分間、焼成される。   The silicon carbide powder obtained as described above is fired at 800 to 1000 ° C. for 30 to 120 minutes in a non-oxidizing atmosphere such as nitrogen or argon.

上記焼成により上記炭化ケイ素粉末が炭化物になり、上記炭化物を、アルゴン等の非酸化性雰囲気中、1350〜2000℃で焼成することにより、炭化ケイ素粉末が生成される。   The silicon carbide powder becomes a carbide by the firing, and the carbide is fired at 1350 to 2000 ° C. in a non-oxidizing atmosphere such as argon to produce a silicon carbide powder.

上記焼成の温度と時間とは、得ようとする炭化ケイ素粉末の粒径等に応じて適宜選択することができ、炭化ケイ素粉末のより効果的な生成の点で上記温度は1600〜1900℃が好ましい。   The firing temperature and time can be appropriately selected according to the particle size of the silicon carbide powder to be obtained, and the temperature is 1600 to 1900 ° C. in terms of more effective production of the silicon carbide powder. preferable.

なお、上記焼成の後に、不純物を除去し高純度の炭化ケイ素粉末を得る目的で、例えば、2000〜2400℃で3〜8時間加熱処理を行うのが好ましい。   In addition, after the said baking, it is preferable to heat-process at 2000-2400 degreeC for 3 to 8 hours, for the purpose of removing an impurity and obtaining a high purity silicon carbide powder, for example.

以上により得られた炭化ケイ素粉末は、大きさが不均一であるため、解粉、分級、等を行うことにより所望の粒度にすることができる。   Since the silicon carbide powder obtained as described above is non-uniform in size, it can be made into a desired particle size by pulverization, classification, and the like.

上記炭化ケイ素粉末の平均粒径としては、10〜700μmが好ましく、100〜400μmがより好ましい。   As an average particle diameter of the said silicon carbide powder, 10-700 micrometers is preferable and 100-400 micrometers is more preferable.

上記平均粒径が10μm未満であると、炭化ケイ素単結晶を成長させるための炭化ケイ素の昇華温度、即ち1800℃〜2700℃で速やかに焼結を起こしてしまうため、昇華表面積が小さくなり、炭化ケイ素単結晶の成長が遅くなることがあり、また、炭化ケイ素粉末を上記反応容器内へ収容させる際や、成長速度調整のために再結晶雰囲気の圧力を変化させる際に、炭化ケイ素粉末が飛散し易くなる。一方、上記平均粒径が500μmを超えると、炭化ケイ素粉末自身の比表面積が小さくなるため、やはり炭化ケイ素単結晶の成長が遅くなることがある。   When the average particle size is less than 10 μm, the silicon carbide sublimation temperature for growing the silicon carbide single crystal, that is, sintering occurs quickly at 1800 ° C. to 2700 ° C. The growth of the silicon single crystal may be slow, and when the silicon carbide powder is placed in the reaction vessel or when the pressure of the recrystallization atmosphere is changed to adjust the growth rate, the silicon carbide powder is scattered. It becomes easy to do. On the other hand, when the average particle size exceeds 500 μm, the specific surface area of the silicon carbide powder itself is decreased, and the growth of the silicon carbide single crystal may be slowed.

上記炭化ケイ素粉末としては、4H,6H,15R,3C、これらの混合物等のいずれであってもよいが、成長させる単結晶と同一の多型が好ましく、高純度のものであることが好ましい。   The silicon carbide powder may be any of 4H, 6H, 15R, 3C, a mixture thereof, and the like, but preferably has the same polymorph as the single crystal to be grown, and preferably has a high purity.

なお、上記炭化ケイ素粉末を用いて成長させた炭化ケイ素単結晶にn型又はp型の導電性を付与する目的で窒素又はアルミニウムなどをそれぞれ導入することができ、上記窒素又はアルミニウムを上記炭化ケイ素粉末の製造時に導入する場合は、まず上記ケイ素源と、上記炭素源と、窒素源又はアルミニウム源からなる有機物質と、上記重合又は架橋触媒とに均一に混合すればよい。このとき、例えば、フェノール樹脂等の炭素源と、ヘキサメチレンテトラミン等の窒素源からなる有機物質と、マレイン酸等の重合又は架橋触媒とを、エタノール等の溶媒に溶解する際に、テトラエトキシシランのオリゴマー等のケイ素源と十分に混合することが好ましい。   Nitrogen or aluminum can be introduced into the silicon carbide single crystal grown using the silicon carbide powder for the purpose of imparting n-type or p-type conductivity, and the nitrogen or aluminum can be introduced into the silicon carbide. In the case of introducing at the time of producing the powder, first, the silicon source, the carbon source, an organic substance composed of a nitrogen source or an aluminum source, and the polymerization or crosslinking catalyst may be uniformly mixed. At this time, for example, when an organic substance composed of a carbon source such as a phenol resin and a nitrogen source such as hexamethylenetetramine and a polymerization or crosslinking catalyst such as maleic acid are dissolved in a solvent such as ethanol, tetraethoxysilane is dissolved. It is preferable to sufficiently mix with a silicon source such as an oligomer of

上記窒素源からなる有機物質としては、加熱により窒素を発生する物質が好ましく、例えば、高分子化合物(具体的には、ポリイミド樹脂、及びナイロン樹脂等);有機アミン(具体的には、ヘキサメチレンテトラミン、アンモニア、トリエチルアミン等、及びこれらの化合物、塩類)の各種アミン類が挙げられる。これらの中でも、ヘキサメチレンテトラミンが好ましい。また、ヘキサミンを触媒として合成され、その合成工程に由来する窒素を樹脂1gに対して2.0mmol以上含有するフェノール樹脂も、上記窒素源からなる有機物質として好適に用いることができる。こられの窒素源からなる有機物質は、1種単独で使用してもよいし、2種以上を併用してもよい。なお、上記アルミニウム源からなる有機物質としては、特に制限はなく、目的に応じて適宜選択することができる。   The organic substance comprising the nitrogen source is preferably a substance that generates nitrogen by heating, such as a polymer compound (specifically, polyimide resin, nylon resin, etc.); organic amine (specifically, hexamethylene). And various amines of tetramine, ammonia, triethylamine, and the like, and their compounds and salts). Among these, hexamethylenetetramine is preferable. A phenol resin synthesized using hexamine as a catalyst and containing 2.0 mmol or more of nitrogen derived from the synthesis step with respect to 1 g of the resin can also be suitably used as the organic substance composed of the nitrogen source. These organic substances composed of a nitrogen source may be used alone or in combination of two or more. In addition, there is no restriction | limiting in particular as an organic substance which consists of said aluminum source, According to the objective, it can select suitably.

上記窒素源からなる有機物質の添加量としては、上記ケイ素源と上記炭素源とを同時に添加する場合には、上記ケイ素源1g当たり窒素が1mmol以上含有することが好ましく、上記ケイ素源1gに対して80〜1000μgが好ましい。   As the addition amount of the organic substance composed of the nitrogen source, when the silicon source and the carbon source are added simultaneously, it is preferable that 1 mmol or more of nitrogen is contained per 1 g of the silicon source, with respect to 1 g of the silicon source. 80 to 1000 μg is preferable.

炭化ケイ素単結晶の製造におけるより具体的な昇華用原料を列記すると以下の通りである。昇華用原料として、高純度のアルコキシシランをケイ素源とし、加熱により炭素を生成する高純度の有機化合物を炭素源とし、これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ケイ素粉末を用いることが好ましい。また昇華用原料として、高純度のアルコキシシラン及び高純度のアルコキシシランの重合体をケイ素源とし、加熱により炭素を生成する高純度の有機化合物を炭素源とし、これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ケイ素粉末を用いることが好ましい。また昇華用原料として、高純度のメトキシシラン、高純度のエトキシシラン、高純度のプロポキシシラン、高純度のブトキシシランからなる群から選択される少なくとも1種をケイ素源とし、加熱により炭素を生成する高純度の有機化合物を炭素源とし、これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ケイ素粉末を用いることが好ましい。さらに昇華用原料として、高純度のメトキシシラン、高純度のエトキシシラン、高純度のプロポキシシラン、高純度のブトキシシラン及び重合度が2〜15のそれらの重合体からなる群から選択される少なくとも1種をケイ素源とし、加熱により炭素を生成する高純度の有機化合物を炭素源とし、これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ケイ素粉末を用いることが好ましい。昇華用原料として、高純度のモノアルコキシシラン、高純度のジアルコキシシラン、高純度のトリアルコキシシラン、高純度のテトラアルコキシシラン及び重合度が2〜15のそれらの重合体からなる群から選択される少なくとも1種をケイ素源とし、加熱により炭素を生成する高純度の有機化合物を炭素源とし、これらを均一に混合して得た混合物を非酸化性雰囲気下で加熱焼成して得られた炭化ケイ素粉末を用いることが好ましい。   More specific materials for sublimation in the production of a silicon carbide single crystal are listed as follows. As a sublimation raw material, a high-purity alkoxysilane is used as a silicon source, a high-purity organic compound that generates carbon by heating is used as a carbon source, and a mixture obtained by uniformly mixing these is heated and fired in a non-oxidizing atmosphere. It is preferable to use the silicon carbide powder obtained in this way. Moreover, as a raw material for sublimation, a high purity alkoxysilane and a polymer of high purity alkoxysilane were used as a silicon source, and a high purity organic compound that generated carbon by heating was used as a carbon source, and these were uniformly mixed. It is preferable to use silicon carbide powder obtained by heating and firing the mixture in a non-oxidizing atmosphere. Moreover, as a raw material for sublimation, at least one selected from the group consisting of high-purity methoxysilane, high-purity ethoxysilane, high-purity propoxysilane, and high-purity butoxysilane is used as a silicon source, and carbon is generated by heating. It is preferable to use a silicon carbide powder obtained by heating and firing a mixture obtained by using a high-purity organic compound as a carbon source and mixing them uniformly in a non-oxidizing atmosphere. Further, at least one selected from the group consisting of high purity methoxysilane, high purity ethoxysilane, high purity propoxysilane, high purity butoxysilane and polymers having a polymerization degree of 2 to 15 as a sublimation raw material. A silicon carbide powder obtained by heating and firing a mixture obtained by uniformly mixing a high purity organic compound that generates carbon by heating using a seed as a silicon source, and in a non-oxidizing atmosphere. It is preferable to use it. The raw material for sublimation is selected from the group consisting of high-purity monoalkoxysilane, high-purity dialkoxysilane, high-purity trialkoxysilane, high-purity tetraalkoxysilane, and polymers having a polymerization degree of 2 to 15. Carbonization obtained by heating and firing a mixture obtained by uniformly mixing these, using at least one kind of silicon source as a carbon source and a high-purity organic compound that generates carbon by heating in a non-oxidizing atmosphere It is preferable to use silicon powder.

炭化ケイ素単結晶の種結晶50としては、その結晶の多型、大きさ等については、目的に応じて適宜選択することができる。結晶の多型としては、通常、得ようとする炭化ケイ素単結晶の多型と同じ多型が選択される。   As the seed crystal 50 of the silicon carbide single crystal, the polymorph, size, etc. of the crystal can be appropriately selected according to the purpose. As the polymorph of the crystal, the same polymorph as that of the silicon carbide single crystal to be obtained is usually selected.

(炭化ケイ素単結晶の製造方法)
(イ)まず反応容器本体21に昇華用原料41を充填する。このとき振動充填機により反応容器本体21を振動させながら昇華用原料41を充填することが好ましい。振動をかけながら昇華用原料41を充填することで昇華用原料41の嵩密度を均一にすることができるからである。
(Method for producing silicon carbide single crystal)
(A) First, the sublimation raw material 41 is filled in the reaction vessel main body 21. At this time, it is preferable to fill the sublimation raw material 41 while vibrating the reaction vessel main body 21 with a vibration filling machine. This is because the bulk density of the sublimation raw material 41 can be made uniform by filling the sublimation raw material 41 while applying vibration.

(ロ)次に反応容器本体21の断面の円中心を通るように反応容器本体21の上部開口部の縁に懇架部2を懇架させ、反応容器本体21に粉体表面平坦化治具1を取り付ける。そして懇架部2の中心部から反応容器本体21の昇華用原料41側に伸びる回転軸4を軸に懇架部2を回転させ、羽根部10により昇華用原料41の表面の凸部を欠き取り昇華用原料41の表面を平坦化する。 (B) Next, the support part 2 is placed on the edge of the upper opening of the reaction vessel body 21 so as to pass through the center of the circle of the cross section of the reaction vessel body 21, and the powder surface flattening jig is placed on the reaction vessel body 21. 1 is attached. Then, the pivot part 2 is rotated about the rotating shaft 4 extending from the center part of the cradle part 2 to the sublimation raw material 41 side of the reaction vessel main body 21, and the convex part on the surface of the sublimation raw material 41 is missing by the blade part 10 The surface of the sublimation raw material 41 is flattened.

(ハ)種結晶50が配置された蓋部22を、炭化ケイ素単結晶製造装置20の反応容器本体21に取り付ける。 (C) The lid portion 22 on which the seed crystal 50 is disposed is attached to the reaction vessel main body 21 of the silicon carbide single crystal manufacturing apparatus 20.

(ニ)次に昇華用原料41の昇華雰囲気を形成すると共に、上記雰囲気の温度よりも種結晶50上近傍での温度を低くして、昇華した昇華用原料の再結晶雰囲気を形成する。再結晶雰囲気としては種結晶50が配置される面の径方向において、中心部(内側領域の中心)に近づくほど温度が低くなるような温度分布となる雰囲気を形成することが好ましい。かかる再結晶雰囲気の形成は、第二誘導加熱コイル25により好適に行うことができる。第二誘導加熱コイル25の環巻された巻数としては、特に制限はなく、第一誘導加熱コイル23との距離、反応容器の材料等により加熱効率や温度効率が最適となるように決定することができる。第二誘導加熱コイル25に通電する誘導加熱電流の量は、第一誘導加熱コイル23に通電する誘導加熱電流の量との関係で適宜決定することができる。両者の関係としては、第一誘導加熱コイル23における誘導加熱電流の電流値が、第二誘導加熱コイル25における誘導加熱電流の電流値よりも大きくなるように設定することが好ましい。再結晶化が容易に行われるからである。また、第二誘導加熱コイル25における誘導加熱電流の電流値としては、成長する炭化ケイ素単結晶の径が大きくなるにつれて、加熱量が連続的又は段階的に小さくなるように制御することが好ましい。成長を続ける炭化ケイ素単結晶の近傍でしか再結晶が行われず、炭化ケイ素単結晶55の周囲に炭化ケイ素多結晶が生ずることが効果的に抑制されるからである。なお、第二誘導加熱コイル25における誘導加熱電流の電流値としては、炭化ケイ素単結晶の種結晶50の径が大きい場合には小さくなるように制御し、径が小さい場合には大きくなるように制御するのが好ましい傾向がある。 (D) Next, a sublimation atmosphere of the sublimation raw material 41 is formed, and a temperature near the seed crystal 50 is made lower than the temperature of the above atmosphere to form a recrystallization atmosphere of the sublimated raw material. As the recrystallization atmosphere, it is preferable to form an atmosphere having a temperature distribution such that the temperature decreases in the radial direction of the surface on which the seed crystal 50 is disposed as it approaches the center (center of the inner region). Such recrystallization atmosphere can be suitably formed by the second induction heating coil 25. There are no particular limitations on the number of turns of the second induction heating coil 25, and the number of turns is determined so that the heating efficiency and temperature efficiency are optimal depending on the distance from the first induction heating coil 23, the material of the reaction vessel, and the like. Can do. The amount of the induction heating current that is passed through the second induction heating coil 25 can be determined as appropriate in relation to the amount of the induction heating current that passes through the first induction heating coil 23. The relationship between the two is preferably set so that the current value of the induction heating current in the first induction heating coil 23 is larger than the current value of the induction heating current in the second induction heating coil 25. This is because recrystallization is easily performed. Further, the current value of the induction heating current in the second induction heating coil 25 is preferably controlled so that the heating amount decreases continuously or stepwise as the diameter of the growing silicon carbide single crystal increases. This is because recrystallization is performed only in the vicinity of the continuously growing silicon carbide single crystal, and the formation of silicon carbide polycrystal around the silicon carbide single crystal 55 is effectively suppressed. The current value of the induction heating current in the second induction heating coil 25 is controlled to be small when the diameter of the seed crystal 50 of the silicon carbide single crystal is large, and is large when the diameter is small. There is a tendency to favor control.

第二誘導加熱コイル25により形成される再結晶雰囲気の温度としては、第一誘導加熱コイル23により形成される昇華雰囲気の温度よりも、30〜300℃低いことが好ましく、30〜150℃低いことがより好ましい。第二誘導加熱コイル25により形成される再結晶雰囲気の圧力としては、10〜100Torr(1330〜13300Pa)が好ましい。なお、この圧力条件にする場合には、減圧したまま加熱するのではなく、設定温度まで加熱をしてから減圧を行い、所定の数値範囲内になるように圧力条件を調整するのが好ましい。再結晶雰囲気は、アルゴンガス等の不活性ガス雰囲気にしておくのが好ましい。   The temperature of the recrystallization atmosphere formed by the second induction heating coil 25 is preferably 30 to 300 ° C lower than the temperature of the sublimation atmosphere formed by the first induction heating coil 23, and is 30 to 150 ° C lower. Is more preferable. The pressure of the recrystallization atmosphere formed by the second induction heating coil 25 is preferably 10 to 100 Torr (1330 to 13300 Pa). In addition, when setting it as this pressure condition, it is preferable not to heat with reducing pressure but to adjust to the pressure condition so that it may be within a predetermined numerical range by reducing the pressure after heating to the set temperature. The recrystallization atmosphere is preferably an inert gas atmosphere such as argon gas.

大径の炭化ケイ素単結晶を得る観点からは、以下のように温度制御することが好ましい。即ち、昇華用原料41を収容した第一端部側の温度をT1とし、炭化ケイ素単結晶の種結晶50を配置した第二端部側の温度をT2とし、第二端部側における、反応容器の内周側面部との隣接部の温度T3としたとき、T3−T2及びT1−T2が連続的又は段階的に大きくなるように制御することが好ましい。この場合、T1−T2が連続的又は段階的に大きくなるので、経時的に、炭化ケイ素単結晶が第一端部側に向かって成長を続けても、炭化ケイ素単結晶の結晶成長先端側は常に再結晶が起こり易い状態に維持される。一方、T3−T2が連続的又は段階的に大きくなるので、経時的に、炭化ケイ素単結晶が第二端部側における外周方向に向かって成長を続けても、炭化ケイ素単結晶の結晶成長外周端側は常に再結晶が起こり易い状態に維持される。その結果、炭化ケイ素多結晶の生成が効果的に抑制され、炭化ケイ素単結晶は、その径を拡大しながらその厚みを増す方向に成長を続ける。最終的には、図7に示されるような、炭化ケイ素多結晶等の混入がなく、大径の炭化ケイ素単結晶55が得られる。 From the viewpoint of obtaining a large-diameter silicon carbide single crystal, it is preferable to control the temperature as follows. That is, the temperature on the first end side containing the sublimation raw material 41 is T 1 , the temperature on the second end side where the silicon carbide single crystal seed crystal 50 is disposed is T 2, and the temperature on the second end side is It is preferable to control so that T 3 -T 2 and T 1 -T 2 increase continuously or stepwise when the temperature T 3 is adjacent to the inner peripheral side surface of the reaction vessel. In this case, since T 1 -T 2 increases continuously or stepwise, even if the silicon carbide single crystal continues to grow toward the first end portion over time, the crystal growth tip of the silicon carbide single crystal The side is always maintained in a state where recrystallization is likely to occur. On the other hand, since T 3 -T 2 increases continuously or stepwise, even if the silicon carbide single crystal continues to grow toward the outer circumference on the second end side over time, the crystal of the silicon carbide single crystal The growth outer peripheral end side is always maintained in a state where recrystallization is likely to occur. As a result, the formation of silicon carbide polycrystal is effectively suppressed, and the silicon carbide single crystal continues to grow in the direction of increasing its thickness while expanding its diameter. Ultimately, a silicon carbide single crystal 55 having a large diameter is obtained without contamination of silicon carbide polycrystal or the like as shown in FIG.

(炭化ケイ素単結晶)
本発明の炭化ケイ素単結晶55は、前述の炭化ケイ素単結晶の製造方法により製造される。
本発明の炭化ケイ素単結晶55は、溶融アルカリによりエッチングして評価した結晶欠陥(パイプ欠陥)が100個/cm2以下であるのが好ましく、50個/cm2以下であるのがより好ましく、10個/cm2以下であるのが特に好ましい。
炭化ケイ素単結晶55における金属不純物元素の総含有量としては、10ppm以下が好ましい。
本発明により得られる炭化ケイ素単結晶55は、多結晶や多型の混入やマイクロパイプ等の結晶欠陥がなく、極めて高品質であるので、絶縁破壊特性、耐熱性、耐放射線性等に優れ、半導体ウエハ等の電子デバイス、発光ダイオード等の光学デバイスなどに特に好適に用いられる。
(Silicon carbide single crystal)
The silicon carbide single crystal 55 of the present invention is manufactured by the above-described method for manufacturing a silicon carbide single crystal.
In the silicon carbide single crystal 55 of the present invention, crystal defects (pipe defects) evaluated by etching with molten alkali are preferably 100 pieces / cm 2 or less, more preferably 50 pieces / cm 2 or less, It is particularly preferable that the number is 10 pieces / cm 2 or less.
The total content of metal impurity elements in silicon carbide single crystal 55 is preferably 10 ppm or less.
The silicon carbide single crystal 55 obtained by the present invention is free from crystal defects such as polycrystals, polymorphs and micropipes, and is extremely high quality. It is particularly suitably used for electronic devices such as semiconductor wafers and optical devices such as light emitting diodes.

以上、本発明の実施形態にかかる炭化ケイ素単結晶の製造方法によれば、高品質な炭化ケイ素単結晶を効率よく、かつ割れ等の破損がない状態で容易に製造することができる。   As described above, according to the method for producing a silicon carbide single crystal according to the embodiment of the present invention, a high-quality silicon carbide single crystal can be produced easily and efficiently without breakage such as cracks.

以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が以下の実施例に限定されるものでないことは言うまでもない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but it goes without saying that the present invention is not limited to the following examples.

(実施例)
図1に示す粉体表面平坦化治具1、及び図6に示す炭化ケイ素単結晶製造装置20を用いて炭化ケイ素単結晶を製造した。粉体高さAは55±0.2mmであった。即ち粉体表面の粗さは±0.2mmであった。圧力50Torr、アルゴン雰囲気下で実験を行った。
昇華用原料41は、高純度のテトラエトキシシラン重合体をケイ素源とし、レゾール型フェノール樹脂を炭素源とし、これらを均一に混合して得た混合物をアルゴン雰囲気下で加熱焼成して得られた炭化ケイ素粉末(6H(一部3Cを含む)、平均粒径が200μm)であった。
炭化ケイ素単結晶の種結晶50は、6Hのレーリー結晶であり、その種結晶厚は0.9mm、直径は20mmであった。
炭化ケイ素単結晶製造装置20において、第一誘導加熱コイル23に電流を通電させこれを加熱しその熱で昇華用原料41を加熱した。その際反応容器本体21の底部(C点)を2540℃にまで加熱した後、アルゴンガス雰囲気で圧力を50Torr(6645Pa)に維持した。昇華用原料41は、所定の温度(2540℃)にまで加熱されて昇華した。
一方、蓋部22側は、第二誘導加熱コイル25により加熱されている。蓋部22のB点の温度が2350℃になるように第二誘導加熱コイル25を用いて温度調整を行った。
得られた炭化ケイ素単結晶の側面断面図を図7に示す。図7に示す通り、大口径の炭化ケイ素単結晶55が得られることが分かった。
同様の実験を5回行い、蓋部22のB点の到達温度と結晶成長高さを測定した。得られた結果を図8に示す。
(Example)
A silicon carbide single crystal was manufactured using the powder surface flattening jig 1 shown in FIG. 1 and the silicon carbide single crystal manufacturing apparatus 20 shown in FIG. The powder height A was 55 ± 0.2 mm. That is, the powder surface roughness was ± 0.2 mm. The experiment was performed under a pressure of 50 Torr and an argon atmosphere.
The sublimation raw material 41 was obtained by heating and baking a mixture obtained by uniformly mixing a high purity tetraethoxysilane polymer as a silicon source and a resol type phenol resin as a carbon source in an argon atmosphere. It was silicon carbide powder (6H (including 3C in part), average particle size was 200 μm).
The seed crystal 50 of the silicon carbide single crystal was a 6H Rayleigh crystal, and the seed crystal thickness was 0.9 mm and the diameter was 20 mm.
In the silicon carbide single crystal manufacturing apparatus 20, a current was passed through the first induction heating coil 23 to heat it, and the sublimation raw material 41 was heated with the heat. At that time, the bottom (point C) of the reaction vessel main body 21 was heated to 2540 ° C., and then the pressure was maintained at 50 Torr (6645 Pa) in an argon gas atmosphere. The sublimation raw material 41 was heated to a predetermined temperature (2540 ° C.) and sublimated.
On the other hand, the lid 22 side is heated by the second induction heating coil 25. The temperature was adjusted using the second induction heating coil 25 so that the temperature at the point B of the lid portion 22 was 2350 ° C.
A side sectional view of the obtained silicon carbide single crystal is shown in FIG. As shown in FIG. 7, it was found that a large-diameter silicon carbide single crystal 55 was obtained.
A similar experiment was performed five times, and the temperature reached at point B of the lid portion 22 and the crystal growth height were measured. The obtained result is shown in FIG.

(比較例)
図1に示す粉体表面平坦化治具1を用いなかったことを除き、実施例と同様にして実験を行った。粉体高さAは55±3mmであった。即ち粉体表面の粗さは±3mmであった。得られた結果を図9に示す。
(Comparative example)
An experiment was conducted in the same manner as in Example except that the powder surface flattening jig 1 shown in FIG. 1 was not used. The powder height A was 55 ± 3 mm. That is, the roughness of the powder surface was ± 3 mm. The obtained results are shown in FIG.

粉体表面に凸凹がある比較例ではB点の到達温度がばらつき、その結果結晶成長高さにばらつきが生じた。一方、粉体表面の凸凹をなくした実施例では、B点の到達温度が一定となり、その結果結晶成長高さが一定となった。   In the comparative example with unevenness on the powder surface, the temperature reached at point B varied, and as a result, the crystal growth height varied. On the other hand, in the example in which the unevenness of the powder surface was eliminated, the temperature reached at point B was constant, and as a result, the crystal growth height was constant.

(実施形態の変形例)
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。例えば、図5に示すように、回転軸4にネジ山4aを設け、ナット6a、6bの位置を調整することで、羽根部10と懇架部2との距離を調整可能に懇架部2と回転軸4を螺合させてもよい。また羽根部10を例えば図4に示すような形状の羽根部11にしてもよい。このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
(Modification of the embodiment)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. For example, as shown in FIG. 5, the screw shaft 4a is provided on the rotating shaft 4, and the positions of the nuts 6a and 6b are adjusted so that the distance between the blade portion 10 and the hook portion 2 can be adjusted. And the rotating shaft 4 may be screwed together. The blade portion 10 may be a blade portion 11 having a shape as shown in FIG. As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

図1は本発明の実施形態にかかる粉体表面平坦化治具の側面図である。FIG. 1 is a side view of a powder surface flattening jig according to an embodiment of the present invention. 図2は本発明の実施形態にかかる粉体表面平坦化治具の使用状態を示す斜視図である。FIG. 2 is a perspective view showing a usage state of the powder surface flattening jig according to the embodiment of the present invention. 図3(a)〜(c)はそれぞれ本発明の実施形態にかかる粉体表面平坦化治具の羽根部の上面図、断面図及び側面図である。3A to 3C are a top view, a cross-sectional view, and a side view, respectively, of a blade portion of a powder surface flattening jig according to an embodiment of the present invention. 図4(a)〜(c)はそれぞれ本発明の実施形態の変形例にかかる粉体表面平坦化治具の羽根部の上面図、断面図及び側面図である。4A to 4C are a top view, a cross-sectional view, and a side view, respectively, of a blade portion of a powder surface flattening jig according to a modification of the embodiment of the present invention. 図5は本発明の実施形態の変形例にかかる粉体表面平坦化治具の側面図である。FIG. 5 is a side view of a powder surface flattening jig according to a modification of the embodiment of the present invention. 図6は炭化ケイ素単結晶製造装置の側面図である。FIG. 6 is a side view of the silicon carbide single crystal manufacturing apparatus. 図7は炭化ケイ素単結晶の成長状態を示す炭化ケイ素単結晶製造装置の側面図である。FIG. 7 is a side view of the silicon carbide single crystal manufacturing apparatus showing the growth state of the silicon carbide single crystal. 図8は実施例にかかる炭化ケイ素単結晶の成長高さと蓋部のB点の到達温度の関係を示す図である。FIG. 8 is a graph showing the relationship between the growth height of the silicon carbide single crystal according to the example and the temperature reached at point B of the lid. 図9は比較例にかかる炭化ケイ素単結晶の成長高さと蓋部のB点の到達温度の関係を示す図である。FIG. 9 is a graph showing the relationship between the growth height of the silicon carbide single crystal according to the comparative example and the temperature reached at point B of the lid.

符号の説明Explanation of symbols

1…粉体表面平坦化治具
2…懇架部、
4…回転軸、
5a、5b…ピン
8…リング部
10…羽根部
10a…テーパ部
10b…回収溝
20…反応容器
21…反応容器本体(反応容器)
22…蓋体
40…粉体
41…昇華用原料
1 ... Powder surface flattening jig 2 ... Bridge part,
4 ... Rotating shaft,
5a, 5b ... pin 8 ... ring part 10 ... blade part 10a ... taper part 10b ... recovery groove 20 ... reaction vessel 21 ... reaction vessel body (reaction vessel)
22 ... Lid 40 ... Powder 41 ... Sublimation raw material

Claims (5)

円筒状の粉体を収容する反応容器の断面の円中心を通って前記反応容器の上部開口部の縁に懇架された懇架部と、
前記懇架部の中心部から前記反応容器の粉体側に伸びる回転軸と、
前記回転軸の懇架部側とは異なる側に設けられ、粉体表面に設置され、前記回転軸を軸に回転させると前記粉体表面の凸部を欠き取り前記粉体表面を平坦化する羽根部と、を備えることを特徴とする粉体表面平坦化治具。
An angulation part erected on the edge of the upper opening of the reaction vessel through the circular center of the cross section of the reaction vessel containing the cylindrical powder;
A rotating shaft extending from the central part of the support part to the powder side of the reaction vessel;
Provided on the side of the rotating shaft that is different from the crossing portion side, installed on the powder surface, and when rotated about the rotating shaft, the powder surface is cut off to flatten the powder surface. A powder surface flattening jig comprising: a blade portion.
前記羽根部は、欠き取った余剰粉体を回収する回収溝を備えることを特徴とする請求項1記載の粉体表面平坦化治具。   The powder surface flattening jig according to claim 1, wherein the blade portion includes a collection groove for collecting the excess powder that has been cut off. 前記反応容器の上部開口部の縁に沿って配置され、前記反応容器の係合部と係合可能なねじ切り部を備えるリング部をさらに有することを特徴とする請求項1又は2記載の粉体表面平坦化治具。   The powder according to claim 1, further comprising a ring portion that is disposed along an edge of the upper opening of the reaction vessel and includes a threaded portion that can engage with the engagement portion of the reaction vessel. Surface flattening jig. 前記回転軸と前記懇架部とは、前記回転軸と前記懇架部との距離を調整可能に螺合されていることを特徴とする請求項1〜3のいずれかに記載の粉体表面平坦化治具。   The powder surface according to any one of claims 1 to 3, wherein the rotating shaft and the suspending portion are screwed together so that a distance between the rotating shaft and the suspending portion can be adjusted. Flattening jig. 円筒状の粉体を収容する反応容器に昇華用原料を充填する工程と、
前記反応容器の断面の円中心を通って前記反応容器の上部開口部の縁に懇架された懇架部、前記懇架部材の中心部から前記反応容器の前記粉体側に伸びる回転軸、前記回転軸の懇架部側とは異なる側に設けられ、前記粉体表面に設置され、前記回転軸を軸に前記懇架部を回転させると回転して前記粉体表面の凸部を欠き取り前記粉体表面を平坦化する羽根部を備える粉体表面平坦化治具を用いて前記粉体表面を平坦化する工程と、
昇華雰囲気を形成し種結晶上に炭化ケイ素単結晶を成長させる工程と、
を含む炭化ケイ素単結晶の製造方法。

Filling a reaction vessel containing cylindrical powder with a raw material for sublimation;
A pivot part that is suspended on the edge of the upper opening of the reaction container through a circular center of the cross section of the reaction container, a rotation shaft that extends from the central part of the suspension member to the powder side of the reaction container, The rotating shaft is provided on a side different from the suspending portion side, is installed on the powder surface, and rotates when the suspending portion is rotated about the rotating shaft, and the convex portion of the powder surface is missing. Flattening the powder surface using a powder surface flattening jig having a blade portion for flattening the powder surface;
Forming a sublimation atmosphere to grow a silicon carbide single crystal on the seed crystal;
The manufacturing method of the silicon carbide single crystal containing this.

JP2006049284A 2006-02-24 2006-02-24 Tool for flattening surface of powder and method for producing silicon carbide single crystal Pending JP2007223867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049284A JP2007223867A (en) 2006-02-24 2006-02-24 Tool for flattening surface of powder and method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049284A JP2007223867A (en) 2006-02-24 2006-02-24 Tool for flattening surface of powder and method for producing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2007223867A true JP2007223867A (en) 2007-09-06

Family

ID=38546017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049284A Pending JP2007223867A (en) 2006-02-24 2006-02-24 Tool for flattening surface of powder and method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2007223867A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136391A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Method for producing silicon carbide single crystal
WO2015015662A1 (en) * 2013-07-31 2015-02-05 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal
JP2018076233A (en) * 2018-02-13 2018-05-17 住友金属鉱山株式会社 Filling device
CN108969366A (en) * 2018-05-30 2018-12-11 广东知识城运营服务有限公司 A kind of filling machine leads powder device
JP2020007203A (en) * 2018-07-11 2020-01-16 住友金属鉱山株式会社 Powder leveling fixture and powder leveling device using the same
KR102633194B1 (en) * 2023-10-20 2024-02-05 정은진 End mill surface treatment device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295898A (en) * 1990-04-16 1991-12-26 Nippon Steel Corp Method and device for growing silicon carbide single crystal
JP2005121836A (en) * 2003-10-15 2005-05-12 Ricoh Co Ltd Powder evaluation apparatus and electrostatic charge image developing toner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295898A (en) * 1990-04-16 1991-12-26 Nippon Steel Corp Method and device for growing silicon carbide single crystal
JP2005121836A (en) * 2003-10-15 2005-05-12 Ricoh Co Ltd Powder evaluation apparatus and electrostatic charge image developing toner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136391A (en) * 2010-12-27 2012-07-19 Mitsubishi Electric Corp Method for producing silicon carbide single crystal
WO2015015662A1 (en) * 2013-07-31 2015-02-05 太平洋セメント株式会社 Silicon carbide powder and method for producing silicon carbide single crystal
US9816200B2 (en) 2013-07-31 2017-11-14 Taiheiyo Cement Corporation Silicon carbide powder and method for producing silicon carbide single crystal
JP2018076233A (en) * 2018-02-13 2018-05-17 住友金属鉱山株式会社 Filling device
CN108969366A (en) * 2018-05-30 2018-12-11 广东知识城运营服务有限公司 A kind of filling machine leads powder device
JP2020007203A (en) * 2018-07-11 2020-01-16 住友金属鉱山株式会社 Powder leveling fixture and powder leveling device using the same
JP7087753B2 (en) 2018-07-11 2022-06-21 住友金属鉱山株式会社 Powder leveling jig and powder leveling device using this
KR102633194B1 (en) * 2023-10-20 2024-02-05 정은진 End mill surface treatment device

Similar Documents

Publication Publication Date Title
EP1354987B1 (en) Method for producing a silicon carbide single crystal
US7387679B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP2007223867A (en) Tool for flattening surface of powder and method for producing silicon carbide single crystal
JP4162923B2 (en) Method for producing silicon carbide single crystal
US7497906B2 (en) Seed crystal fixing apparatus and a method for fixing the seed crystal
JP2020063163A (en) Apparatus for manufacturing single crystal
US20020189536A1 (en) Silicon carbide single crystal and production thereof
JP2010090012A (en) Production method of silicon carbide single crystal
JP2013060328A (en) Method for manufacturing silicon carbide crystal
JP4619567B2 (en) Silicon carbide single crystal and method for producing the same
JP5171571B2 (en) Method for producing silicon carbide single crystal
JP2002293525A (en) Silicon carbine powder, its production method and silicon carbine monocrystal
JP2009084071A (en) Method for manufacturing silicon carbide single crystal
JP4731766B2 (en) Silicon carbide single crystal and method for producing the same
JPH07157307A (en) Production of high purity beta-type silicon carbide powder for producing silicon carbide single crystal
JP2007112661A (en) Method and apparatus for manufacturing silicon carbide single crystal
JP4708746B2 (en) Method and apparatus for producing silicon carbide single crystal
JP4986342B2 (en) Silicon carbide single crystal and method for producing the same
JP2008260665A (en) Method and apparatus for producing silicon carbide single crystal
JP2010090013A (en) Production method of silicon carbide single crystal
JP2010030828A (en) Production method of silicon carbide single crystal and apparatus
JP2006290685A (en) Method for producing silicon carbide single crystal
JP2012046424A (en) Silicon carbide single crystal
JP2010100447A (en) Apparatus and method for producing silicon carbide single crystal
JP2006321678A (en) Method and apparatus for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Effective date: 20110301

Free format text: JAPANESE INTERMEDIATE CODE: A02